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)e present article aims to investigate the behaviour ofMaxwell–Sutterby fluid past an inclined stretching sheet accompanied with
variable thermal conductivity, exponential heat source/sink, magneto-hydrodynamics (MHD), and activation energy. By utilizing
the compatible similarity transformations, the nondimensionless PDEs are converted into dimensionless ODEs and further these
ODEs are tackled with the help of the bvp4c numerical technique. To check the legitimacy of upcoming results and reliability of the
applied bvp4c numerical scheme, a comparison with existing literature and nonlinear shooting method is made. )e numerical
outcomes delivered here show that the temperature profile escalates due to an augmentation in the heat sink parameter and
moreover mass fraction field escalates on account of an improvement in the activation energy parameter.

1. Introduction

)e fluids whose viscosity changes due to applied stress are
termed as non-Newtonian fluids. Daily life examples of these
kind of fluids are ketchup, blood, honey, glue, jellies, etc.
Unlike Newtonian fluids, it is complicated to mathematically
model the non-Newtonian fluids due to variation in viscosity
and elasticity. Many researchers are working to explore the
properties like viscosity and elasticity hidden in various non-
Newtonian fluids. Prashu and Nandkeolyar [1] utilized finite
difference scheme to achieve the numerical solution of three-
dimensional Casson fluid under thermal radiation and Hall
effect. Saidulu et al. [2] explored the coduct of MHD on
radiative tangent hyperbolic nanofluid past an inclined
stretchable surface and noticed that the velocity of the fluid
diminishes owing to an increment in the magnetic number.
Sajid et al. [3] contemplated the impact of heat source/sink
and species diffusivity on radiative Reiner–Philippoff fluid
past a stretchable surface. Williamson fluid accompanied
with MHD, heat source, and nonlinear thermal radiation

was deliberated by Parmar [4] who concluded that tem-
perature gradient augments on account of an enhancement
in the thermal radiation effect. Wang [5] studied the impact
of free convection on vertical stretching surface and noticed
that the Nusselt number upsurges because of an augmen-
tation in the Prandtl number. Tlili [6] explored the marvels
of MHD, mixed convection, and heat source on Jeffrey fluid
flowing across a stretchable surface. )ey perceived that the
temperature field escalates by escalating the magnetic pa-
rameter. Khan al. [7] studied the behaviour of non-New-
tonian Carreau fluid flow over an inclined surface and found
that the fluid velocity diminishes because of an augmen-
tation in theWeissenberg number. Koriko et al. [8] analyzed
the conduct of thermal stratification and nonlinear thermal
radiation on micropolar fluid moving over a vertical surface.
)e phenomenon of heat transfer has been investigated by
many researchers [9–14].

In recent years, the study of the phenomena like heat
generation/absorption and temperature-dependent ther-
mal conductivity has gained interest of the researchers
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because of its enormous applications in the field of
computer technology and mechanical engineering. )e
phenomena such as heat source/sink alter the heat dis-
tribution which later on make a difference to the particle
deposition rate in the system. Heat generation/absorption
has immense applications in nuclear reactor engineering,
chillers, and heat pumps. )e ability of a material to
conduct heat is called thermal conductivity. )ermal
conductivity’s dependence on temperature is termed as
variable thermal conductivity. In fluids, thermal con-
ductivity of fluid changes due to intermolecular collision
which gives rise to a gradual increase in temperature
inside the fluid. Variable thermal conductivity is im-
portant in electrolytes which have been important for the
preparation of batteries. Various researchers have studied
the importance of heat generation/absorption and vari-
able thermal conductivity for the purpose of heat transfer
analysis. Patil et al. [15] contemplated the fluid above an
exponentially stretching surface along with MHD and
nonuniform heat source/sink. )ey found that tempera-
ture profile diminishes by escalating the thermal relaxa-
tion effect. Carreau fluid flow under the effect of joule
heating and heat source/sink was elucidated by Reddy
et al. [16] who determined that an augmentation in the
Weissenberg number leads to an enrichment in the
temperature distribution. Mahanthesh et al. [17] found
the solution of the Casson liquid embedded with expo-
nential temperature-dependent heat source/sink and
cross diffusion effects and revealed that an embellishment
in the velocity profile occurred by ascending the fluid
relaxation effect. Konda et al. [18] studied the Williamson
fluid past a vertical sheet with the inclusion of convective
heat transfer at the boundary surface along with non-
uniform heat source/sink and perceived that the tem-
perature of the fluid abates because of an enrichment in
heat sink parameter. Tsai et al. [19] adopted the Cheby-
shev finite difference scheme to achieve the numerical
solution of fluid flowing across a stretchable surface ac-
companied with nonuniform heat source/sink. Yousif
et al. [20] studied radiative Carreau nanofluid flow over an
exponentially stretchable embedded with MHD, thermal
radiation, and internal heat source/sink and found that
the temperature distribution upsurges by mounting the
thermal radiation parameter. Kumar and Varma [21]
utilized the Runge–Kutta method to achieve the numer-
ical solution of the fluid flow above a porous stretching
surface along with suction and internal heat generation/
absorption. Abel et al. [22] investigated the viscoelastic
fluid flow over a permeable stretching surface together
with MHD and heat source/sink. Khan et al. [23] con-
templated the impact of heat generation/absorption and
MHD on Sisko fluid past a porous stretching sheet. Khan
et al. [24] examined the effect of heat source/sink on
Maxwell nanofluid flow over a stretchable surface. Irfan
et al. [25] scrutinized the behaviour of Maxwell nanofluid
influenced by a stretched cylinder embedded with heat

source/sink and MHD. Haq et al. [26] scrutinized the
impact of heat source/sink and chemical reaction on Cross
nanofluid moving over a wedge.

)e ability of a material to conduct heat is called
thermal conductivity. )ermal conductivity solely de-
pends upon the nature of the material and changes with
temperature. Metals have high thermal conductivity in
comparison to solids and liquids. In fluids, thermal
conductivity depends upon intermolecular collisions of
the atoms inside the molecules. As a result of intermo-
lecular collision, the molecules exchange energy with each
other and fluid temperature increases which consequently
amplifies the thermal conductivity. )ermal conductivity
has enormous utilization in the field and technology like
electrolytes, steam generators, concrete heating, lami-
nating, catalysis, and molding blow. Gbadeyan et al. [27]
analyzed the conduct of variable thermal conductivity and
diffusivity on two-dimensional Casson nanofluid past a
stretching sheet and found that the temperature field
magnifies by amplifying the thermal conductivity pa-
rameter. Hamid et al. [28] adopted the Galerkin approach
to achieve the numerical solution of nanofluid past a
stretchable surface accompanied with variable thermal
conductivity. It is noted that the temperature profile es-
calates as a result of an augmentation in the thermal
conductivity parameter. Si et al. [29] contemplated the
pseudoplastic fluid moving along a vertical stretching
plate embedded with variable thermal conductivity and
noted that the mass fraction field augments owing to an
embellishment in the power law index. Kumar et al. [30]
deliberated the performance hyperbolic tangent fluid with
the inclusion of variable thermal conductivity past a
sensor stretching surface and found that the velocity field
by enhancing the Weissenberg number. Viscous fluid flow
between two parallel plates in the presence of variable
thermal conductivity, variable viscosity and first order
chemical reaction is observed by Umavathi and Shekar
[31] and deduced that the temperature profile embellish
by embellishing the thermal conductivity variation effect.
Salawu and Dada [32] pondered the conduct of inclined
magnetic field on incompressible fluid flow over a
stretching medium with variable thermal conductivity
and found that an escalation in the temperature profile
occurred on account of an enrichment in thermal con-
ductivity effect. Lin et al. [33] studied the impact of
variable thermal conductivity and thermal radiation on
pseudoplastic non-Newtonian nanofluid and found that
the temperature distribution increases because of an
enlargement in the value of thermal radiation parameter.
Aziz et al. [34] scrutinized the conduct of temperature-
dependent thermal conductivity and heat generation on
inclined radiating plate and observed that the velocity
distribution decreases as a result of an improvement in the
Prandtl number.

Recently, many researchers studied the influences of
electrical conductivity fluid in the presence of magnetic field.
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)ese studies have important applications in generators,
pumps, bearings, magneto-hydrodynamic (MHD) genera-
tors, etc. One of the basic and important problems in this
area is the unsteady magnetic fluid behaviour of boundary
layers along fixed or moving stretching surfaces. Khan et al.
[35] studied the effect of MHD on Carreau nanofluid
moving along a bidirectional stretching surface. )ey noted
that a positive improvement in magnetic parameter in-
creases the temperature field. Sharma and Mishra [36]
studied the impact of MHD and internal heat generation/
absorption on micropolar fluid moving along a stretchable
sheet. Prasad et al. [37] developed a mathematical model of
electrical conductivity fluid moving along a slender elastic
sheet under the effect of temperature-dependent thermal
conductivity, and it is remarkable that a positive amplifi-
cation in magnetic parameter brings about a decrement in
velocity field. Dessie and Kissan [38] investigated heat
transfer characteristic of magnetic hydrodynamic fluid past a
stretching sheet under the effect of viscous dissipation and
heat source/sink utilizing the shooting method. From their
numerical study, it is noted that a positive variation in heat
sink parameter leads to a reduction in temperature field.
Awati [39] scrutinized the behaviour of electrically con-
ducting fluid flow over a stretching sheet accompanied with
suction/blowing effects. )e effect of variable internal heat
generation/absorption and variable thermal conductivity on
Carreau fluid moving along a stretchable surface has been
debated in detail by Irfan et al. [40]. Mishra et al. [41]
analyzed the magneto power law fluid past a porous
stretching sheet embedded with nonuniform heat source/
sink and found that the velocity of the fluid depreciates
owing to an improvement in porosity parameter. Ganga
et al. [42] studied the behaviour of MHD on nanofluid past a
vertical stretching plate. It is observed that velocity field
abates owing to an enhancement in magnetic parameter.
Khan et al. [43] contemplated the impact of MHD on
Burger’s nanofluid past a stretchable surface accompanied
with nonlinear thermal radiation and motile gyrotactic
microorganisms. Khan et al. [44] studied the impact of
MHD and thermal radiation on 3D Sisko fluid moving along
a stretchable surface. )e impact of MHD on Sisko fluid
moving over a stretchable surface embedded with homog-
enous/heterogenous reaction and thermal radiation has been
debated in detail by Khan et al. [45].

)e minimum energy provided to the system to start a
chemical reaction is called activation energy. Two im-
portant energies called kinetic and potential energies are
responsible for breaking the bonds during chemical re-
actions. Sometimes the reaction between molecules are not
complete due to the loss of kinetic energy or improper
collision. At this stage, minimum amount of energy is
needed to start the chemical reaction. Activation energy
has distinguished applications in hydrodynamics, geo-
thermal, and oil storage industry. Various researchers
studied the marvels of activation energy. Kumar et al. [46]
examined the conduct of chemical reaction and activation
energy on Carreau fluid and observed that the concen-
tration field increases because of an increment in the
activation energy parameter. Gireesha et al. [47] studied

the behaviour of activation energy and exponential tem-
perature-dependent heat source on nano-Casson fluid and
observed that the concentration distribution depreciates
owing to an enhancement in Lewis parameter. Zaib et al.
[48] determined the entropy of stagnated nano-Wil-
liamson fluid past a moving plate along with activation
energy and found that the velocity distribution reduces as a
result of an improvement in the Williamson parameter.
Alshomrani et al. [49] examined the unsteady Eyr-
ing–Powell fluid embedded with MHD and activation
energy and observed that the concentration distribution
reduces by raising the fitted rate constant parameter.
Nanofluid past a stretching sheet along with activation
energy and convective boundary conditions was analyzed
by Dhlamini et al. [50] who found that the concentration
distribution showed a decreasing trend in the case of
improvement in the reaction rate constant parameter.
Chetteti and Chukka [51] manipulated the consequences
of activation energy and convective boundary conditions
on nanofluid flow over a cone. )ey analyzed that the
temperature distribution increases by rising the activation
energy parameter. Majeed et al. [52] pondered on the
impact of activation energy and momentum slip condition
on non-Newtonian fluid. )ey perceived that a positive
variation in the Schmidt number abates the fluid con-
centration. Babu and Sathian [53] treated the water flow
through carbon nanotubes along with activation energy.
Ahmed and Khan [54] studied the impact of activation
energy on Sisko nanofluid moving over a curved surface.
)e impact of activation energy and binary chemical re-
action on 3D Cross nanofluid has been scrutinized in detail
by Khan et al. [55]. )e impact of activation energy along
with nanoparticles on Cross fluid has been discussed by
Sultan et al. [56]. Muhammad et al. [57] studied the heat
and mass transfer analysis of cross magneto liquid ac-
companied with thermal conductivity and activation en-
ergy. )e activation energy was used by many authors to
observe its impact on the fluid flow [58–61].

)e objective of the present study in the light of above
mentioned literature is to explore the importance of various
effects on Maxwell–Sutterby fluid flow over an inclined
stretching surface. Heat transfer analysis has been carried out
in the presence of variable thermal conductivity along with
temperature-dependent heat source sink, and both parameters
have important applications in energy sector like electrolytes,
steam generators, cooling reactors, and nuclear reactors,
whereas mass transfer analysis has been debated in the pres-
ence of activation energy and variable molecular diffusivity.
)is paper is important in its sense that no literature has been
reported yet to study the mixture of Sutterby and Maxwell
fluids past an inclined stretching surface in terms of heat and
mass analysis with the aforementioned effects most impor-
tantly with variable molecular diffusivity and activation energy.

2. Mathematical Formulation

Two-dimensional incompressible electrically conducting
Maxwell–Sutterby fluid flows over a stretching sheet inclined
at an angle α under the effect of magnetic field B0 acting

Mathematical Problems in Engineering 3



perpendicular to the sheet as shown in Figure 1. Magnetic
field inclination is actually the angle made with the hori-
zontal by the magnetic field lines. Positive values of incli-
nation indicate that the field is pointing downward, into the
sheet surface. In this article, the angle of inclination is 45°. It
is due to the fact that with an increase in angle of inclination
α � 0°, 45°, 60°, 90°, the effect of magnetic field on fluid
particles increases which enhances the Lorentz force and
furthermore depreciates the fluid flow. It is quite notable that
maximum resistance is offered for the fluid particles when
α � 90°. )e x − axis is taken along the leading edge of the
inclined stretching sheet with stretching velocity Uw � ax
and y − axis is normal to the surface.)emagnetic Reynolds
number is considered very small so that the effect of electric
current and induced magnetic field can be neglected as

compared to the applied magnetic field. Temperature and
concentration at the surface of the sheet are denoted by Tw
and Cw, whereas ambient temperature and concentration
are indicated by T∞ and C∞. )e sheet temperature is
Tw >T∞; moreover, fluid concentration is Cw >C∞. Fur-
thermore, the effects like activation energy, exponential
temperature-dependent heat source/sink, and variable
thermal and molecular diffusivity are also considered during
mathematical formulation of the problem.

Under the aforementioned assumptions and after uti-
lizing the necessary boundary layer approximations the
Cartesian form of governing equations regarding continuity,
momentum, energy, and concentration are enumerated
underneath [10, 13]:
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Figure 1: Geometry of the problem.
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)e boundary conditions are

y � 0: u � uw(x) � ax,
υ � 0,

T � Tw(x),
C � Cw,
y⟶∞: u � 0,

T⟶ T∞,

C⟶ C∞.



(5)

)e expression regarding variable thermal conductivity
[21] is enumerated below:

κ � κ∞ 1 + ε1θ( ), (6)

while the variable molecular diffusivity [21] is

DB � DB∞ 1 + ε2ϕ( ). (7)

By utilizing transformation [9] given below, we convert
dimensionless PDEs to nondimensional ODEs.

u � axf′(η),

υ � −
��
a]

√
f(η),

η �
��
a

]

√
y,

ϕ(η) � C − C∞
Cw − C∞

,

θ(η) � T − T∞
Tw − T∞

.

(8)

After applying similarity transformation, equation (1)
satisfies automatically and equations (2)–(4) yield

1 − M
2
ReDef″2( ) − 2cf2[ ]f‴ + 4cff′f″ − 2Hf′

+ 2Hcff″ − 2f′2 + 2ff″+

2(Grθ + Brϕ)cos α � 0,

(9)

1 + ε1θ( )θ″ + ε1θ′
2 + Prfθ′ + PrQtθ + PrQee− nη � 0,

(10)

1 + ε2ϕ( )ϕ″ + ε2ϕ′
2 + Scfϕ′ − σSc(1 + δθ)m

· exp − E
1 + δθ
( )ϕ � 0.

(11)

)e boundary conditions are

η � 0: f(η) � 0,

f′(η) � 1,

θ(η) � 1,

ϕ(η) � 1,

η⟶∞: f′(η)⟶ 0,

θ(η)⟶ 0,

ϕ(η)⟶ 0,



(12)
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(13)

)e skin friction coefficient, rate of heat transfer, and
mass transfer on the wall are denoted by
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Cfx �
τw
ρU2

w

,

Nux �
xqw

k Tw − T∞( ) ,
Shx �

xqm
DB Cw − C∞( ),

(14)

whereas the expressions regarding τw, qw, and qm are given
by [13]
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(15)

)e dimensionless form of heat transfer and mass
transfer is given by

CfxRe
− 1/2
x � − (1 + c)f″ +M

3
ReDef″3[ ],

NuxRe
− 1/2
x � − θ′(0),

ShxRe
− 1/2
x � − ϕ′(0).


(16)

3. Numerical Scheme

)e nonlinear nondimensional transformed problem
equations (9)–(11) along with boundary conditions (12) have
been solved with the help of the MATLAB built-in function
bvp4c [62–64] and nonlinear shooting scheme. In the
shooting method, first-order ODEs along with initial con-
ditions are integrated with the utilization of RK4 method
and modified missing initial conditions with the utilization
of Newton’s scheme until solution meets the specified ac-
curacy. )e asymptotic convergence is observed to be
achieved for ηmax � 7. bvp4c is one of the boundary value
problem solvers in MATLAB package. We use MATLAB
software where we performed a finite difference method
which is a collocation method of order four. All the nu-
merical results achieved in this problem are subjected to an
error tolerance 10− 6. )e system of partial differential
equations (PDEs) is converted into first-order ordinary
differential equations (ODEs) by utilizing the variables
enumerated underneath:

f � y1,

f′ � y2,

f″ � y3,

θ � y4,

θ′ � y5,

ϕ � y6,

ϕ′ � y7.

(17)

)us, equations (9)–(11) become

y3
′ � 2y2

2 − 4cy1y2y3 + 2Hy2 − 2H cy1y3 − 2y1y3 − 2 Gry4 + Bry6( )cos α[ ]
1 − (M/2)ReDey2

3( ) − 2cy2
1[ ] ,

y5
′ � − Pry1y5 + PrQty4 + PrQee− nx + ε1y

2
5( )

1 + ε1y4( ) ,

y7
′ � σ Sc 1 + δ y4( )m exp − E/1 + δ y4)y6 − Scy1y7 − ε2y

2
5( ]

1 + ε2y4( ) ,[ },

(18)

having boundary conditions enumerated underneath:

η � 0: y1(0) � 0,

y2(0) � 1,

y4(0) � 1,

y6(0) � 1,

η⟶∞: y2(∞)⟶ 0,

y5(∞)⟶ 1,

y7(∞)⟶ 0.



(19)

To the reader’s convenience, a detailed procedure of
bvp4c numerical technique is prescribed in Figure 2.

4. Results and Discussion

In this section, the behaviour of various physical parameters
emerging during numerical simulation of the problem on
the velocity, temperature, and concentration profiles has
been debated in the form of graphs, and likewise their impact
on skin friction coefficient and heat transfer and mass
transfer rate is also discussed in the form of tables. )e
comparison analysis of numerical results is available in the

6 Mathematical Problems in Engineering



literature. In order to check the authenticity of the numerical
scheme and results, a problem can be tackled with nonlinear
shooting scheme as well. A comparison analysis of the
present scheme with shooting scheme reveals that the
computed numerical results are quite reliable and authentic.

Table 1 portrays a comparison analysis of results ob-
tained for − f″(0) with those reported by Ibrahim and
Negera [9] by keeping Gr � 0, Br � 0, α � 0, c � − 0.14,
M � 0, Re � 0, and De � 0.

Table 2 explores the conduct of distinguished parameters
on the surface drag coefficient. From the table, it is quite
clear that an improvement in parameters such as Maxwell
fluid Deborah number c, magnetic parameter H, Reynolds
number Re, Sutterby fluid Deborah number De, angle of
inclination α, and power law index M leads to an en-
hancement in the surface drag coefficient but a variation in
the thermal Grashof number Gr and solutal Grashof number
Br brings about an abatement in the surface drag coefficient.
Table 3 shows the effect of various parameters on the heat
transfer and mass transfer rates. From the table, it is ob-
served that an augmentation in the values of Prandtl number
Pr, heat source Qt, heat sink Qe, reaction rate constant σ,
Schmidt number Sc, exponential index n, temperature dif-
ference parameter δ, and thermal conductivity ε1 produces a
decrement in the heat transfer rate, but an improvement in
the heat transfer rate is observed on account of an im-
provement in the fitted rate constantm, activation energy E,
and species diffusivity ε2. )e mass transfer rate enlarges
because of an augmentation in the values of various

parameters such as Qt, Qe, σ, Sc, n, δ, and ε1 but mass
transfer rate decreases in the case of Pr, m, E, and ε2.

Figure 3 explores the consequences of solutal Grashof
number Br against the velocity profile. Grashof number is
actually the ratio of buoyancy forces to the viscous forces. It
is quite interesting to note that increasing the value of Br
lessens the viscous forces and strengthens the shear forces
which eventually improves the velocity field. Figure 4 is
sketched to show the impact of Maxwell fluid Deborah
number α on the velocity field. )e fluids behave like liquids
in the case of smaller Deborah number and become more
viscous in the case of large values of Deborah number which
eventually slows down the fluid velocity and eventually leads
to a decrement in the velocity field. Figure 5 is sketched to
witness the features of thermal Grashof number Gr on the
velocity field. A positive variation in the thermal Grashof
number leads to an abatement in the viscous forces which
thickens the boundary layer and moreover lessens the ve-
locity profile. )e variation of magnetic parameterH on the

Define mesh and initial vectors enumerated underneath:

Define the functions “odefun,” “bcfun,” and “solinit” in the following way:

Introduce the function “solinit” using “bvpinit” as stated underneath:

solinit = bvpinit(x, yinit, parameters);

dydx = odefun(η, y)

res = bcfun(y0, yinf)

dydx = [y2; y3; F(η, f, f ′, f″); y5; G(η, f, θ, θ′); y7; H(η, f, θ, ϕ, ϕ′)]

res = [y0(1); y0(2) – 1; yinf(2); y0(4) – 1; yinf(4); y0(6) – 1; yinf(6)];

Utilize the following command to integrate the problem:

sol. x = xsol; (Mesh by bvp4c)

sol. y = ysol; (Approximate solution by bvp4c)

plot(xsol, ysol(2, :)) (This will plot f ′ against η)

End

sol = bvp4c(@odefun, @bcfun, solinit);

x = linspace(a, b, n);

yinit = [0 1 0 1 0 1 0];

Figure 2: Procedure of numerical scheme bvp4c.

Table 1: Comparison analysis of the obtained results with Ibrahim
and Negera [9].

H Ibrahim and Negera [9] Present study

0 1.2105 1.1706
0.3 1.3578 1.3393
0.5 1.4478 1.4408
1 1.6504 1.6677

Table 2: Values of the surface drag coefficient CfxRe
1/2
x for dif-

ferent parameters.

CfxRe
1/2
x

Gr Br α H Re De c M bvp4c Shooting

0.2 0.1 0.1 0.1 1 0.1 45° 0.1 1.42862 1.42862
0.3 1.35904 1.35904
0.4 1.29146 1.29146
0.5 1.22556 1.22556

0.2 1.33346 1.33346
0.3 1.24192 1.24192
0.4 1.15328 1.15328

0.2 1.60140 1.60140
0.3 1.78077 1.78077
0.4 1.96660 1.96660

0.2 1.51040 1.51040
0.3 1.58891 1.58891
0.4 1.66451 1.66451

1.2 1.43062 1.43062
1.4 1.43262 1.43262
1.6 1.43462 1.43462

0.2 1.43865 1.43865
0.3 1.44879 1.44879
0.4 1.45907 1.45907

0° 1.33200 1.33200
60° 1.49991 1.49991
90° 1.68932 1.68932

0.2 1.43865 1.43865
0.3 1.44879 1.44879
0.4 1.45907 1.45907
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Table 3: Values of NuxRe
1/2
x and ShxRe

1/2
x for distinguished parameters.

NuxRe
− 1/2
x ShxRe

− 1/2
x

Pr Qt Qe σ Sc n m δ E ε1 ε2 bvp4c Shooting bvp4c Shooting

1.7 0.01 0.01 1 0.1 0.1 0.1 0.5 0.5 0.5 0.1 0.5353 0.5353 0.2858 0.2858
1.9 0.5741 0.5741 0.2853 0.2852
2.1 0.6113 0.6113 0.2847 0.2847
2.3 0.6469 0.6469 0.2843 0.2843

0.03 0.5149 0.5149 0.2860 0.2860
0.05 0.4937 0.4937 0.2863 0.2863
0.07 0.4715 0.4715 0.2865 0.2865

0.03 0.4750 0.4750 0.2873 0.2873
0.05 0.4158 0.4158 0.2887 0.2887
0.07 0.3576 0.3576 0.2900 0.2900

1.1 0.5349 0.5349 0.3054 0.3054
1.2 0.5340 0.5340 0.3149 0.3149
1.3 0.5336 0.5336 0.3241 0.3241

0.2 0.0977 0.0977 0.8197 0.8197
0.3 0.0973 0.0973 0.8780 0.8780
0.4 0.0969 0.0969 0.9328 0.9328

0.2 0.5296 0.5296 0.4015 0.4015
0.3 0.5256 0.5256 0.4980 0.4980
0.4 0.5227 0.5227 0.5820 0.5820

− 0.5 0.5356 0.5356 0.2743 0.2743
0.7 0.5356 0.5356 0.2994 0.2994
0.9 0.5349 0.5349 0.3044 0.3044

0.7 0.5352 0.5352 0.2891 0.2891
1 0.5351 0.5351 0.2934 0.2934
1.5 0.5350 0.5350 0.2992 0.2992

0.7 0.5361 0.5361 0.2704 0.2704
0.9 0.5368 0.5368 0.2567 0.2567
1.1 0.5374 0.5374 0.2447 0.2447

0.7 0.4896 0.4896 0.2864 0.2864
0.9 0.4525 0.4525 0.2868 0.2868
1.1 0.4217 0.4217 0.2873 0.2873

0.2 0.5360 0.5360 0.2700 0.2700
0.3 0.5366 0.5366 0.2564 0.2564
0.4 0.5372 0.5372 0.2446 0.2446
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Figure 3: Influence of Br on f′.
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velocity field is shown in Figure 6. Fluid moving through an
electric field in the presence of magnetic field experiences a
force called Lorentz force which reduces the movement of
the fluid flow.)e impact of Sutterby fluid Deborah number
De on the velocity profile is shown in Figure 7. Deborah
number is defined as the ratio of the characteristic time to
the time scale of deformation. )e Deborah number is used
to represent the viscoelastic nature of the material. It is
observed that the greater the Deborah number, the more
solid the material; the smaller the Deborah number is, the
more fluid it is. From the figure, it is quite clear that an
augmentation in the Deborah number brings about an
abatement in the fluid movement. As a result, velocity field

reduces. Impression of Reynolds number Re on the velocity
field is shown in Figure 8. Reynolds number is defined as the
ratio of inertial forces to the viscous forces. )e fluid be-
comes more viscous in the case of the higher values of the
Reynolds number. )e viscous forces dominate the inertial
forces which bring about an abatement in the fluid flow.
Figure 9 is portrayed to explore the marvels of inclination
angle α against the velocity profile. It is revealed that an
augmentation in the inclination angle parameter depreciates
the buoyancy forces which furthermore reduces the fluid
velocity. Figure 10 shows the contribution of power law
index m on the velocity field. A shear thinning attitude is
observed in liquid in the case of an enhancement in the
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Figure 5: Effect of Gr on f′.
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Figure 7: Impact of De on θ.
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Figure 6: Influence of H on f′.
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power law index which brings about a reduction in the
velocity profile. Figure 11 demonstrates the impact of heat
sink parameter Qe on the temperature profile. From the
figure, it is quite evident that a positive variation in the heat
sink parameter generates more heat into the liquid which
leads to an improvement in the thermal boundary layer
thickness and temperature profile. Figure 12 is sketched to
interpret the features of Pr on the temperature field. Prandtl
number is defined as the ratio of momentum diffusivity to
the thermal diffusivity. It is quite evident that amplification
in thermal diffusivity leads to a reduction in Prandtl number
which depreciates the temperature field. Figure 13 dem-
onstrates the conduct of exponential index n on the tem-
perature profile. It is found that a positive variation in n
depreciates the heat source/sink term Qtθ + Qee− nη and

thermal boundary layer thickness. It is found that a positive
variation in the exponential index brings about a decrement
in the fluid temperature. Figure 14 shows the influence of
thermal conductivity ε1 on temperature field. It is note-
worthy that when the molecules collide with each other, they
shift energy which consequently improves the temperature.
As a result, an improvement in the thermal conductivity
parameter causes amelioration in the fluid temperature and
furthermore results in an embellishment in the temperature
profile. )e impression of reaction rate constant σ on the
mass fraction field is shown in Figure 15. It is found that an
augmentation in reaction rate constant causes an im-
provement in the factor σSc(1 + δθ)m exp(− E/1 + δθ). As a
result, destructive chemical reaction occurs andmoreover an
abatement in the mass fraction field takes place. Figure 16 is
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Figure 8: Effect of Re on θ.
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Figure 11: Effect of Qe on θ.
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designed to depict the effect of Schmidt number Sc on the
mass fraction field. Schmidt number is actually the ratio of
momentum diffusivity to the Brownian diffusivity. It is
observed when molecules collide randomly, the Brownian
diffusivity parameter increases which depreciates the
Schmidt number. )e concentration boundary layer
thickness increases due to an improvement in Sc which leads
to a reduction in the mass fraction field. Figure 17 explores
the conduct of temperature difference parameter δ on the
mass fraction field. When the difference between surface
temperature and ambient temperature rises, the concen-
tration boundary layer thickness increases which eventually
makes a decrement in the mass fraction field. Figure 18
demonstrates the consequences of activation energy E on the

mass fraction field. According to the definition, minimum
energy required to start a reaction is called activation energy.
It is revealed that at lower temperature and high activation
energy brings about a decrement in the reaction rate con-
stant which eventually slows down the chemical reaction and
furthermore an enhancement in the mass fraction field takes
place. Figure 19 shows the behaviour of variable molecular
diffusivity ε2 on the mass fraction field. It is monitored that
an augmentation in the species diffusivity ε2 gives rise to an
elevation in the concentration boundary layer thickness. It is
also observed that the species diffusivity is directly pro-
portional to the concentration. )at is why an embellish-
ment in the mass fraction field takes place as a result of an
improvement in species diffusivity parameter. Figure 20 is
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portrayed to analyze the conduct of fitted rate constantm on
the velocity profile. It is found that a boost inm brings about
an enhancement in factor σSc(1 + δθ)m exp(− E/1 + δθ)
which favours the destructive chemical reaction and leads to
an increment in the mass fraction field.

5. Final Remarks

)e forthright aim of this correspondence is to investigate
the influence of exponential temperature dependent-heat
source/sink, variable thermal and molecular diffusivity,
MHD, and activation energy onMaxwell–Sutterby fluid.)e
main findings of the present study are enumerated
underneath:

(i) )e velocity profile f′(η) decreases on account of
an improvement in magnetic parameter H.

(ii) Shear thickening behaviour is observed on account
of an improvement in power law index n.

(iii) )e temperature profile ϕ(η) increases on ac-
count of an improvement in the thermal con-
ductivity ε1, porosity parameter λ, and Deborah
number c.

(iv) Both thermal conductivity parameter ε1 and the
heat sink parameter Qe boost the temperature field.

(v) A positive variation in heat sink Qe depreciates the
velocity field.

(vi) An improvement in fitted rate constantm amplifies
the concentration field.
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Figure 18: Effect of E on ϕ.

ϕ
 (η

)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gr = 0.1, δ = 1.5, α = 0.1, Br = 0.1, Re = 0.1,

γ = 45°, H = 1, M = 0.5, Pr = 0.7, Qt = 0.1,

Qe = 0.1, Sc = 0.1, De = 0.1, m = 0.1, n = 0.1,

E = 0.5, Sc = 0.1, ε1 = 0.1.

η

ε2 = 0.1

ε2 = 0.5

ε2 = 1

ε2 = 1.5

Figure 19: Influence of ε2 on ϕ.
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(vii) Mass fraction field ϕ(η) augments owing to an
improvement in E and ε2.

Nomenclature

Gr: Grashof number
Br: Solutal Grashof number
C: Nanoparticles’ concentration
ε2: Dimensionless thermal conductivity
Cw: Wall concentration
T∞: Ambient temperature
C∞: Ambient concentration
u, υ: Velocity components
λ1: Relaxation time
Uw: Stretching velocity
H: Magnetic parameter
De: Deborah number
Re: Reynolds number
ε2: Species diffusivity
c: Maxwell fluid Deborah number
α: Inclination angle
jw: Mass flux
κ: Temperature-dependent thermal conductivity
n: Power law index
qw: Surface heat flux
Nux: Nusselt number
ϕ: Dimensionless concentration
Pr: Prandtl number
Rd: Radiation parameter
Ea: Activation energy
Sc: Schmidt number
σ: Dimensionless reaction rate constant
δ: Temperature difference parameter
m: Fitted rate constant
qr: Radiative heat flux
B0: Magnetic field strength
θw: Temperature ratio parameter

Kr2: Reaction rate constant
Q∗E : Heat sink
Qt: Dimensionless heat source
Qe: Dimensionless heat sink
Q∗T : Heat source.
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