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Summary
The role of the pediatric neuroanesthetist is to provide comprehensive

care to children with neurologic pathologies. The cerebral physiology

is influenced by the developmental stage of the child. The under-

standing of the effects of anesthetic agents on the physiology of

cerebral vasculature in the pediatric population has significantly

increased in the past decade allowing a more rationale decision

making in anesthesia management. Although no single anesthetic

technique can be recommended, sound knowledge of the principles of

cerebral physiology and anesthetic neuropharmacology will facilitate

the care of pediatric neurosurgical patients.
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Introduction

Anesthesia for neurosurgery in children differs from

adults because of numerous age-related anatomic and

physiologic reasons. Although adolescent neuroan-

esthesia management inferences can be made from

adult neurosurgical and -anesthetic literature, avail-

able information for infants and children is scarce.

This paper reviews the neurophysiology and -phar-

macology considerations pertinent to the manage-

ment of anesthesia in the pediatric neurosurgical

patient with particular attention to cerebrovascular

physiology and its modulation by anesthetic agents.

Physiology

Cerebrospinal fluid

The functional integrity of the brain depends on a

tightly controlled milieu intérieur. The cerebrospinal

fluid (CSF) ensures maintenance of this internal

environment and shields the brain from homeostatic

disturbances, such as acute changes in the serum

concentrations of electrolytes (e.g. Na+, K+). CSF is

produced by active and passive membrane transport

mainly in the choroid plexus in the cerebral ventri-

cles. Although it is less in premature babies and

small infants, the rate of CSF formation is relatively

constant, between 0.3 and 0.4 mlÆmin)1 in both

adults and children (1,2). Because the CSF reservoir

system is smaller in children, CSF turnover rate is

higher, contributing to a faster increase in intracra-

nial pressure (ICP) in the presence of a noncommu-

nicating hydrocephalus (3). The arachnoid villi are

responsible for the passive process of CSF absorp-

tion. The rate of absorption depends on the CSF-

to-venous pressure gradient and the absorption

resistance. Villi allow flow of CSF into cerebral

sinuses at a pressure difference of 1.5 mmHg or

greater (4). Under normal conditions, the production

and absorption of CSF is balanced, however, reduc-

tion of CSF production by one third reduces ICP by
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only 1.1 mmHg (1). Accordingly, a reduction in CSF

production by acetazolamide or furosemide has only

minimal effects on ICP unless the patient’s intracra-

nial compliance is significantly decreased.

Intracranial pressure

Intracranial pressure is age-dependent, with 0–6,

6–11, and 13–15 mmHg representing normal levels

in infants, toddlers, and adolescents, respectively (5).

However, ICP can be negative in premature infants

and term neonates (5). The open fontanels and floating

calvarial bone plates in infants allow for slow

increases in intracerebral volume and ICP. The fon-

tanel can also provide a way of monitoring ICP. The

dura is a non-elastic membrane that does not allow a

rapidly expanding space-occupying processes to be

accommodated. Therefore, ventriculoperitoneal

shunt malfunction, sub- or epidural hemorrhage or

cerebral edema following traumatic brain injury

(TBI), will quickly result in increased ICP despite the

presence of open fontanels and unfused sutures.

Determinants of cerebral blood flow

Cerebral blood flow (CBF) and metabolism are a

function of age (Figure 1). Global CBF is lower

in premature infants and term neonates (40–

50 mlÆ100 g)1Æmin)1) and higher in infants and chil-

dren aged from 6 months to 3 years (70–110 mlÆ
100 g)1Æmin)1) than in adults (50 mlÆ100 g)1Æmin)1)

(6). The pattern of regional cerebral blood flow

(rCBF) is also age-dependent. The grey matter of

children has a markedly higher rCBF, and there is a

lack of frontal predominance when compared with

adults. The adult distribution pattern of rCBF is

attained by early adolescence (7–10).

Cerebral metabolic rate for oxygen (CMRO2) is

one of the determinants of CBF as supply and

demand are closely coupled in the brain. In children,

CMRO2 is higher (5.5 mlÆ100 g)1Æmin)1) than in

adults (3.5 mlÆ100 g)1Æmin)1), and its distribution

parallels the distribution of rCBF described earlier

(10). Likewise, the pediatric brain consumes 6.8 mg

of glucose per 100 g of tissue per minute, whereas

the adult brain consumes 5.5 mgÆ100 g)1Æmin)1 (11).

Apart from the metabolic demands, CBF is further

determined by cerebral perfusion pressure (CPP)

and the arterial oxygen (PaO2) and carbon dioxide

tensions (PaCO2). CPP is the difference between

mean arterial pressure (MAP) measured at the level

of the external ear canal, and the effective down-

stream pressure across the cerebral vascular bed,

which is determined by the highest value of central

venous pressure, ICP, or zero flow pressure vascular

tone.

The idea of zero flow pressure originates from the

application of Laplace’s law to vessels with active

wall tension (12), and is determined as follows:

while continuously decreasing perfusion pressure,

there is a point, the zero flow pressure, below which

the transmural hydrostatic pressure is not sufficient

to counteract wall tension, and the vessel collapses.

Correspondingly, if the wall tension is greater, the

closing pressure will be higher. This has been

consistently confirmed in multiple recent studies,

where changing PaCO2 and thereby altering cerebral

vascular tone caused reciprocal changes in zero flow

pressure (13–15). A direct association between zero

flow pressure and MAP has been reported in

neonates (16), likely reflecting cerebral autoregula-

tion causing an increase in wall tension in response

to an increase in MAP. In contrast, in a maximally

dilated vascular bed, such as after severe head

trauma, the effective downstream pressure of the

cerebral circulation is the ICP (17,18). Propofol and

sevoflurane have been shown to exert opposing

effects on zero flow pressure (19). This well-

described impact on cerebral vasculature will be

discussed later.
Figure 1
Cerebral blood flow is age dependent. Adapted from reference (6).
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Cerebral autoregulation

Autoregulation of the cerebral vasculature maintains

CBF constant when CPP varies between 50–

150 mmHg of MAP in adults (20,21). Outside this

range cerebral perfusion becomes systemic blood

pressure dependent, increasing the potential for

ischemia below the lower limit of autoregulation

(LLA) and cerebral edema and ⁄ or hemorrhage

above the upper limit (22). Studies have confirmed

the presence of dynamic and static autoregulation in

the normotensive preterm baby (23), full term

neonate (24), and young child (25), but the auto-

regulatory limits remain largely undefined. Munro

et al. (23) determined CBF in preterm neonates using

near-infrared spectroscopy and calculated an LLA of

30 mmHg. Vavilala et al. (26) studied static auto-

regulation using transcranial Doppler ultrasono-

graphy in children aged 6 months or older, and

identified a LLA of 60 mmHg regardless of age. This

value is close to the resting MAP of younger

children, predicting a significantly lower autoregu-

latory reserve in this age group. More recently, using

the transient hyperemic response test, Wong et al.

(27) demonstrated that dynamic autoregulation is

preserved in the presence of increasing sevoflurane

concentrations in young children. As this transient

hyperemic response is present despite estimated

MCA pressures well below 60 mmHg, one could

speculate that the LLA is lower than this value in

children aged 1.5–2.5 years. Cerebral autoregulation

is believed to be impaired in critically ill preterm

neonates (22,28,29), following moderate to severe

TBI in children (30), and in the penumbra surround-

ing brain tumors (31). In addition, autoregulation is

attenuated by vasodilating agents, such as nitro-

prusside, high concentrations of volatile anesthetics

(32), or hypercapnia (33).

Cerebrovascular reactivity to carbon dioxide
and oxygen tensions

In adults, there is a linear relationship between CBF

and the PaCO2 between 20 and 80 mmHg. This

cerebrovascular reactivity to carbon dioxide

(CCO2R) forms the basis of the immediate bedside

management of a life-threatening increase in ICP.

CBF and therefore, cerebral blood volume, responds

rapidly to changes in PaCO2 and reaches a plateau

within 2 min. However, hyperventilation is only

effective for 4–8 h, after which CBF is gradually reset

to its initial value reflecting normalization of pH in

the CSF (21,34). In children, CCO2R is logarithmic

with a maximum vasodilatory effect reached at

around 50 mmHg (35). Arterial hypotension appears

to impair CO2 reactivity (33).

In adults, CBF is unaffected by decreases in PaO2

until a partial pressure of 60 mmHg is reached,

below which an exponential increase in CBF

occurs (21,36,37). In contrast, hyperoxia (PaO2 >

300 mmHg) causes cerebral vasoconstriction and

reduces CBF in the adult (37,38). There is some

evidence that cerebral oxygen vasoreactivity is

affected by vascular diseases and TBI (39,40). Fetal

and neonatal circulation have a heightened response

to decreases in PaO2 possibly reflecting the increased

oxygen affinity of fetal hemoglobin (41).

Rheology

Blood viscosity has been suggested as an indepen-

dent regulator of CBF (42,43), and may help to

explain the mechanism by which mannitol decreases

ICP. According to the Hagen–Poiseuille law,

decreasing viscosity of a fluid increases its flow.

The effect of rheology on cerebral autoregulation is

called rheology-autoregulation and refers to the

ability of cerebral vessels to dilate or constrict in

response to increased or decreased viscosity. In the

context of ICP management, administration of man-

nitol as a bolus decreases blood viscosity thereby

augmenting CBF, which in the presence of intact

autoregulation leads to vasoconstriction and de-

creased cerebral blood volume (44). Further analysis

of the response revealed that the active changes in

vessel diameter reflect an oxygen-dependent mech-

anism that attempts to maintain cerebral oxygen

delivery constant (45).

In conclusion, comparatively little is known about

the regulation of CBF in the newborn, infant, and

young child. While autoregulation is likely present

in the healthy newborn, the range of autoregulation

has not been determined. In addition, critically ill

neonates may present with pressure passive cerebral

perfusion. Without exact knowledge of normal CPP

and the potential for cerebral edema and ⁄ or intra-

ventricular hemorrhage in the preterm infant

with supra-normal CPP, it is difficult to make
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evidence-based recommendations for the manage-

ment of these children in the critical care setting.

Pharmacology

Volatile anesthetic agents

Nitrous oxide. Nitrous oxide is a cerebrovasodilator

when used alone (46–49) or as an adjunct to volatile

agents (50–55) or propofol (56,57) in both adults, and

children. More specifically, N2O increases regional

CBF and regional CBV in supratentorial grey matter.

This is in contrast to the global cerebral vasodilata-

tion produced by CO2 (46,47). The exact mechanism

behind this cerebral vasodilatation is not known,

however, mitochondrial activation (46,53,54,58,59),

and sympathoadrenal stimulation (60,61) have been

suggested. According to the experimental data, N2O

increases CMRO2 when given alone (62) or in

combination (63–65) with other anesthetic drugs.

Nitrous oxide does not affect CCO2R in adults (66–

69) and in children during propofol anesthesia (70).

The addition of N2O to 1.5 MAC sevoflurane

significantly reduces CCO2R in the hypocapnic

range in children (71). Cerebral autoregulation is

impaired when N2O is used either as a sole hypnotic

agent (72) or when it is used in combination with

sevoflurane (55,73). In conclusion, as N2O has

the ability to impair autoregulation and CCO2R,

increases CBF and CMRO2, and potentially ICP, it

should be avoided in patients at risk for impaired

cerebral perfusion.

Halogenated inhalational anesthetics. All potent vola-

tile anesthetics are direct cerebral vasodilators.

Halothane is widely regarded as the most potent

(74). In children, halothane induced increases in

CBF persist even after halothane concentrations

have been decreased (75). This cerebrovascular

hysteresis phenomenon is not present during iso-

flurane anesthesia (76). Matta et al. (77) found that

at propofol-induced maximal EEG suppression

halothane produces less cerebral vasodilatation

than isoflurane or desflurane. Among all inhala-

tional agents, sevoflurane has the least effect at

equipotent concentrations (77). In children, Leon

et al. (78) demonstrated no significant difference in

CBF velocity between isoflurane and halothane at

0.5 and 1.0 MAC at the same end tidal CO2 values.

The ‘dual action hypothesis’ (79,80) attempts to

provide an explanation for these conflicting results

of inhalation anesthetics on the cerebral vascula-

ture. This hypothesis states that apart from the

direct cerebral vasodilatory action, CBF will also be

determined by functional flow-metabolism cou-

pling and the anesthetic-induced decrease in

CMRO2. Both, isoflurane and sevoflurane reduce

the CMRO2 to a greater extent than halothane.(81)

Of the newer halogenated agents, desflurane seems

to be the most potent cerebral vasodilator, whereas

sevoflurane causes the least increase in CBF and

CBV in both adults (77,82,83) and children (50,84–

86).

Children, in general, seem to have an increased

sensitivity to the cerebral vasodilatory effects of

inhalational anesthetic agents (78). For instance,

cerebral vasodilatation is already maximal at 1.0

MAC of desflurane in normocapnic children (84),

whereas in adults (77) 1.5 MAC resulted in a further

increase in CBF. Although isoflurane causes signif-

icant impairment of cerebral autoregulation at clin-

ical concentrations (32), hypocapnia restores cerebral

autoregulation during isoflurane anesthesia at 1.4

MAC (87).

In adults, cerebral autoregulation is preserved

up to 1.5 MAC of sevoflurane (55,88,89). Higher

doses of sevoflurane (2.0 MAC) (90) or the com-

bination of hypercapnia (endtidal CO2 of 50 mm

Hg) (91) and lower sevoflurane concentrations

decrease the autoregulatory capacity. Dynamic

cerebral autoregulation, i.e. the fast component of

autoregulation in response to acute changes in

pressure pulsations, as opposed to the slow static

reaction in response to changes in MAP, is

marginally impaired at 1.5 MAC sevoflurane in

adults (88). In young children, similar to older

children and adults, CBF is unaffected up to 1.5

MAC of sevoflurane (86), and autoregulation is

maintained with low concentrations (<1.0 MAC) of

sevoflurane (25). In addition, dynamic autoregula-

tion in young children remains functional up to 1.5

MAC of sevoflurane (27). The effects of desflurane

on cerebral autoregulation in the pediatric popu-

lation has not been evaluated, one may speculate

that its powerful vasodilatory effect must affect it.

In adults, cerebral autoregulation is impaired at 1.0

MAC, and nearly abolished at 1.5 MAC of

desflurane (92).
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In general, cerebrovascular carbon dioxide reac-

tivity is maintained during the administration of

inhalational anesthesia. In contrast to adults, there is

a loss of response beyond 45–50 mmHg of endtidal

CO2 (78,93,94), because maximal cerebral vasodila-

tation is reached in this age group (Figure 2) (35).

Changes in PaCO2 result in more pronounced

changes in CBF in the presence of sevoflurane (93)

than with other volatile anesthetics, further empha-

sizing the comparably moderate actions of this agent

on the cerebral vasculature.

Discussion of the neuroprotective and precondi-

tioning properties of inhalational anesthetics is

beyond the scope of the present paper. The inter-

ested reader is referred to recently published re-

views of the subject (95–97).

In summary, the cerebral vasculature of children

seems to have a heightened response to inhalational

anesthetics with maximal cerebral vasodilatation

achieved at lower concentrations when compared

with adults. While desflurane has the lowest blood-

gas partition coefficient allowing for fast emergence

from general anesthesia, its effects on the cerebral

vasculature are the least favorable among the newer

inhalational agents (98). Sevoflurane and isoflurane

appear to be superior volatile anesthetics for neuro-

anesthesia.

Intravenous anesthetic agents

Thiopental. Sodium thiopental is considered an

exemplary neuroprotective agent in clinical practice.

It decreases CBF, CBV, and CMRO2 in a dose-

dependent manner and consequently reduces ICP,

while at the same time maintaining autoregulation

and CCO2R. Thiopental may reduce myocardial

contractility, arterial blood pressure, and CPP. The

neuroprotective effect of thiopental in vivo is

believed to be a result of decreased CMRO2. Sodium

thiopental attenuates ischemia-induced glutamate

release (99), and inhibits cortical intracellular cal-

cium increase (100). Its sulphydryl moiety seems to

provide additional brain protection via free radical

scavenging in vitro (101). Sodium thiopental is

capable of reducing the extent of cerebral damage

in focal cerebral ischemia (102,103), and in cerebral

edema induced by cortical freeze injury in animal

studies (104).

Propofol. Propofol appears to have the properties of

an ideal hypnotic agent for neurosurgical proce-

dures. It is a cerebral vasoconstrictor that reduces

CBF and CMRO2 in a dose dependent manner in

both children (105) and adults (106). Its rapid

redistribution from the central compartment and

fast metabolic clearance allows for an early and

predictable emergence making it suitable for main-

tenance of anesthesia by continuous infusion. Prop-

ofol may have neuroprotective effects during

ischemia (107–109), but seems, at least in vitro,

inferior in this regard to thiopental (110), Propofol

preserves cerebral autoregulation and CCO2R

(111,112). In contrast to adults, CCO2R seems max-

imal below a PaCO2 level of 30 mmHg in children

anesthetized with propofol (113). It is conceivable

that the combined cerebral vasoconstrictive effect of

propofol anesthesia and an endtidal CO2 below

30 mmHg is near maximal, increasing the risk of

iatrogenically induced cerebral ischemia (Figure 2).

It may be possible that the propofol-induced

increase in cerebral vascular tone will lead to an

increase in zero flow pressure, and ultimately

decrease effective CPP (19). The clinical significance

of increased zero flow pressure has not been

Figure 2

Cerebrovascular reactivity to CO2 in children assessed by trans-
cranial Doppler ultrasound of the middle cerebral artery in the
presence of propofol and sevoflurane. Adapted from reference
(113), see text for details.
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investigated, but caution should be exercised in the

presence of concurrent hypotension.

Etomidate. Etomidate reduces ICP by decreasing CBF

and CMRO2, and produces less cardiovascular

depression than propofol or thiopental (114). Etom-

idate was generally assumed to have neuroprotec-

tive effects (115) by its virtue of decreasing CMRO2

(116), and was used during temporary arterial

occlusion in cerebrovascular procedures to this effect

(117,118). More recently, the neuroprotective effect

has been called into question, particularly in the

context of focal ischemia (119,120). Etomidate de-

creases CBF by increasing cerebral vascular resis-

tance at levels far below those that would cause a

decrease in CMRO2 (121), and significant reduction

of brain tissue oxygenation to ischemic levels devel-

ops (122,123). The increased vascular resistance

seems to be related to inhibition of nitric oxide

synthase by etomidate (124). Etomidate is well

known to cause suppression of the adrenocortical

system (125), further cautioning against its use in

neurocritical care.

Ketamine. Ketamine is an N-methyl-D-aspartate

antagonist with proven neuroprotective effects both,

in vivo (126,127), and in vitro (128–130). However, it

is also a potent cerebral vasodilator producing

increases in CBF, CBV, CMRO2 and potentially

ICP, and can not be recommended in patients with

reduced intracranial compliance (74,131–133).

Benzodiazepines. In healthy adults, benzodiazepines

reduce global CBF and CMRO2 (134–136), and

maintain cerebrovascular reactivity to carbon diox-

ide (53,137). At sedative doses the decrease in CBF is

approximately 10% (134,138), while at anesthetic

levels it is approximately 30% (136) with an appar-

ent ceiling effect (139). Further studies reveal specific

decreases in regional CBF (134,135,138) and glucose

metabolism (140) caused by benzodiazepines in

areas of the brain involved in memory formation

and arousal.

The benzodiazepine antagonist flumazenil when

administered alone is devoid of any effect on

cerebral physiology (141,142). When given after

midazolam or lorazepam, it reverses their cerebro-

vascular and metabolic effects (138,142) with the

probability of an increase in ICP (143). In contrast,

Knudsen et al. demonstrated that flumazenil had

no effect on CBF and CMRO2 when used for

reversal of midazolam anesthesia for craniotomy

(144).

Studies on the cerebrovascular effects of ben-

zodiazepines in the pediatric population are scarce,

and mainly relate to their safe use in premature

infants (145–147) with similar sedation-related de-

creases in CBF (145,147) as seen in adults.

Opioids. In general, opioids have little or no effect on

CBF, CMRO2, and ICP. Cerebrovascular reactivity to

carbon dioxide and autoregulation appear pre-

served. Opioids may indirectly decrease CBF by

blocking catecholamine release in patients experi-

encing pain (33). In this regard, it is particularly

advantageous to blunt the hemodynamic response

to direct laryngoscopy in patients with increased ICP

or cerebrovascular pathology.

In children, a study (148) comparing equipotent

remifentanil and fentanyl infusions during induction

and direct laryngoscopy reported better hemody-

namic stability with fentanyl. Specifically, remifen-

tanil, but not fentanyl, caused a significant decrease

in MAP and CBF prior to tracheal intubation, and

could not prevent a sudden increase in CBF during

laryngoscopy (148). However, remifentanil, which

has a very short half-life and constant context-

sensitive half time (149,150), does not impair CCO2R

even at high doses (151), seems to be an ideal

analgesic agent during the maintenance of anesthe-

sia for neurosurgery.

Conclusion

The role of the pediatric neuroanesthetist is to

provide comprehensive care to children with neu-

rologic pathologies. The cerebral physiology is

influenced by the developmental stage of the child.

The understanding of the effects of anesthetic

agents on the physiology of cerebral vasculature

in the pediatric population has significantly

increased in the past decade allowing a more

rationale decision making in anesthesia manage-

ment. Although no single anesthetic technique can

be recommended, sound knowledge of the princi-

ples of cerebral physiology and anesthetic neuro-

pharmacology will facilitate the care of pediatric

neurosurgical patients.
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