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Abstract

Objectives Digital breast tomosynthesis (DBT) increases sensitivity of mammography and is increasingly implemented in breast

cancer screening. However, the large volume of images increases the risk of reading errors and reading time. This study aims to

investigate whether the accuracy of breast radiologists reading wide-angle DBT increases with the aid of an artificial intelligence

(AI) support system. Also, the impact on reading time was assessed and the stand-alone performance of the AI system in the

detection of malignancies was compared to the average radiologist.

Methods A multi-reader multi-case study was performed with 240 bilateral DBT exams (71 breasts with cancer lesions, 70

breasts with benign findings, 339 normal breasts). Exams were interpreted by 18 radiologists, with and without AI support,

providing cancer suspicion scores per breast. Using AI support, radiologists were shown examination-based and region-based

cancer likelihood scores. Area under the receiver operating characteristic curve (AUC) and reading time per examwere compared

between reading conditions using mixed-models analysis of variance.

Results On average, the AUC was higher using AI support (0.863 vs 0.833; p = 0.0025). Using AI support, reading time per

DBT exam was reduced (p < 0.001) from 41 (95% CI = 39–42 s) to 36 s (95% CI = 35– 37 s). The AUC of the stand-alone AI

system was non-inferior to the AUC of the average radiologist (+0.007, p = 0.8115).

Conclusions Radiologists improved their cancer detection and reduced reading time when evaluating DBT examinations using

an AI reading support system.

Key Points

• Radiologists improved their cancer detection accuracy in digital breast tomosynthesis (DBT) when using an AI system for

support, while simultaneously reducing reading time.

• The stand-alone breast cancer detection performance of an AI system is non-inferior to the average performance of radiologists

for reading digital breast tomosynthesis exams.

• The use of an AI support system could make advanced and more reliable imaging techniques more accessible and could allow

for more cost-effective breast screening programs with DBT.
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Abbreviations

AI Artificial intelligence

AUC Area under the ROC curve

CC Cranio-caudal

CI Confidence interval

DBT Digital breast tomosynthesis

GLME Generalized linear mixed-effects

MLO Mediolateral oblique

MRMC Multi-reader multi-case

ROC Receiver operating characteristic

SM Synthetic mammography

Introduction

In recent years, several clinical trials have demonstrated how

using digital breast tomosynthesis (DBT) as a breast cancer

screening modality may improve screening results compared

to 2D mammography, leading to increased cancer detection

and a reduction of recalls [1–3]. Albeit a reduction in the

frequency of interval cancers has not yet been shown [4], the

improved detection is possible because DBT generates a

pseudo-3D volume of the breast which partially overcomes

one of the main limitations of any 2D imaging technique:

tissue superposition [5]. However, the introduction of DBT

as a screening modality still faces difficulties. The interpreta-

tion of DBT screening exams takes significantly longer com-

pared to interpreting 2D mammography images [6, 7].

Particularly in settings where exams are double-read, like

most European screening programs, the increasing lack of

specialized breast radiologists [8] reduces the potential of

DBT introduction. Deep learning–based artificial intelligence

(AI) systems are quickly gaining attention in the field of radi-

ology, particular in breast imaging [9]. The current stand-

alone performance of AI systems for mammography is ap-

proaching, if not already exceeding, the performance of radi-

ologists [10–13]. This may result in tools that sustain current

mammography-based breast cancer screening programs with

less human interaction or even improve the overall quality of

screening [14, 15]. AI support in screening with DBT could

improve cost-efficiency by increasing radiologists’ breast can-

cer detection performance, allowing radiologists to read DBT

exams faster [16, 17], or triaging the studies [15].

The first studies investigating the impact of using AI

during DBT interpretation use narrow-angle DBT exami-

nations (with scan angle of 20° or lower) [16]. However,

technical specifications of DBT are highly variable across

vendors of DBT systems, leading to more substantial dif-

ferences in the resulting images compared to mammogra-

phy [18]. This is mainly due to differences in the angular

range of the various machine models, the reconstruction,

and other post-processing algorithms. Technically, a wider

angle provides a higher depth resolution [18] and may en-

able better separation of lesions from superimposed

fibroglandular tissue, but may lead to a poorer calcification

depiction [5].

This study evaluates the impact of an AI support system in

wide-angle DBT, previously validated for 2D mammograms

[10, 11, 15], on radiologists’ accuracy and reading time. It was

hypothesized that radiologists’ average performance in the

detection of malignancies using AI support is superior to read-

ing unaided. In addition, the aim was to demonstrate whether

AI support could improve radiologists’ average reading time

while maintaining or improving sensitivity and specificity and

to compare the stand-alone detection performance of the AI

system to the average radiologist.

Materials and methods

A HIPAA-compliant fully-crossed fully-randomized multi-

reader multi-case (MRMC) study was performed with 18 ra-

diologists, reading a series of wide-angle DBT exams twice,

with and without AI support.

Study population

Case collection

This study included 360 cases: 110 biopsy-proven cancer

cases, 104 benign cases (proven by biopsy or at least 6-

month follow-up), and 146 randomly selected negative

cases (at least 1-year follow-up). Cases were collected from

a dataset of a previous, IRB-approved, clinical trial regis-

tered with protocol number NCT01373671 [19, 20]. Data

was collected between May 2011 and February 2014 from

seven US clinical sites, representative of women undergo-

ing screening and diagnostic DBT exams in the USA. The

mean age was 56.3 ± 9.8 (standard deviation) years. Each

case consists of a bilateral two-view (cranio-caudal/

mediolateral oblique CC/MLO) DBT exam acquired using

standard exposure settings with a Mammomat Inspiration

(Siemens Healthineers)) and reconstructed with the latest

algorithm (EMPIRE), also generating the corresponding

synthetic mammography (SM) images [21]. The DBT sys-

tem has a wide 50° scanning angle. This data was not used

for the development of the AI support system.

Case selection protocol

The case selection was aimed at obtaining a challenging and

representative set for the observer evaluation. Exclusion

criteria were as follows: breast implants, sub-optimal quality

(judged by a radiologist and a radiographer with respectively

14 and 38 years of breast imaging experience), missing image
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data, or missing truth data. After exclusion and performing a

power analysis [22], to achieve a power of at least 0.8 (80%)

to test the primary hypothesis of the study, we target to select

110 negative cases, 65 benign cases, and 65 malignant cases.

Negative and benign cases were randomly selected to avoid

selection bias. The aim for the malignant case selection was to

include all cases categorized as “subtle”, and as many “mod-

erately subtle” cases as available while including at least a

random selection of five “obvious” cases. To reach the

targeted sample size of 65 malignant cases, a subtlety score

(1, “subtle”; 2, “moderately subtle”; 3, “obvious”) was inde-

pendently determined by three breast radiologists (respective-

ly 14, 39, and 5 years mammography experience; 5, 5, and 5

years DBT experience), with the third acting as an arbiter in

case of disagreement.

Reference standard

For every case, per breast, the reference standard based on

pathology and imaging reports was available in electronic

format and reviewed by the radiologists participating in the

case selection process (not participating in the observer study),

including location and radiological characterization of can-

cers, location of benign lesions, or confirmed normal status.

AI support system

The AI support system used during the observer evaluation

was Transpara™ 1.6.0, (ScreenPoint Medical BV). This sys-

tem is based on deep convolutional neural networks [23, 24]

and automatically detects lesions suspicious of breast cancer

in 2D and DBT mammograms from different vendors. The

results are shown to radiologists in two distinct ways:

& A score from 1 to 10, indicating the increasing likelihood

that a visible cancer is present at the mammogram. In a

screening setting, approximately 10% of mammograms

are assigned each score.

& The most suspicious findings are marked and a scored

with the level of suspicion (LOS) for cancer (1–100).

The system has been validated for 2D mammograms in

previously performed clinical studies with independent

datasets [10, 11, 15]. It has been trained and tested using a

proprietary database containing over 1,000,000 2Dmammog-

raphy and DBT images (over 20,000 with cancer), acquired

with machines from five different mammography vendors at a

dozen institutions (academic and private health centers) across

10 countries in Europe, America, and Asia.

Each selected DBT mammogram was processed by the AI

system. The results of this analysis were shown during the

observer evaluation. Radiologists could concurrently use the

AI system with or without the corresponding SM and

interactive navigation support. Interactive navigation support

consists of automatic access to the DBT plane where the AI

algorithm detected abnormalities, with a single click on a

mark shown on the SM.

Observer evaluation

Sessions and training

The observer evaluation consisted of two parts. Exams were

read twice, with and without AI support, separated by a wash-

out period of at least 4 weeks. The case order and the avail-

ability of AI support were randomized for each radiologist.

During the evaluation of the cases with the AI support

available, two reading protocols were tested. Half of the radi-

ologists (readers 1–9) read the exams with access to the cor-

responding SM and interactive navigation support, while the

other half (readers 10–18) read exams without these function-

alities, showing AI findings only in the 3D DBT stack.

To get familiar with the AI system and workstation before

participating in the study, all radiologists were trained by eval-

uating a set of 50 DBT exams (not included in the study).

Radiologists were blinded to patient history and any other

information not visible in the included DBT imaging exams.

Reporting

The radiologists used a reading workstation for DBT exams

and a 12MP DBT-certified diagnostic color display (Coronis

Uniti, Barco) calibrated to the DICOM Grayscale Standard

Display Function. The workstation tracked the reader actions

in the interface with timestamps.

For every case, radiologists were instructed to the

following:

& Mark the 3D location of findings in every view visible

& Assign a LOS to each finding

& Provide a BI-RADS category (1, 2, 3, 4a, 4b, 4c, or 5) per

breast.

Readers

All radiologists were American Board of Radiology–certified,

qualified to interpret mammograms under the Mammography

Quality Standard Act (MQSA) and active in reading DBT

exams in clinical practice. Half of the readers devoted less

than 75% of their professional time to breast imaging for the

last 3 years while the other half devoted more time. The me-

dian experience withMQSA qualification of the readers was 9

years (range 2–23 years) and the median volume of 2D or

DBT mammograms read per year was 4200 (1000-18,000).
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All the readers were at the time of the study reading DBT

exams in clinical practice.

Endpoints and statistical analysis

Primary hypothesis

The primary hypothesis was that radiologists’ average breast-

level area under the receiver operating characteristic (ROC)

curve (AUC) for detection of malignancies in DBT using AI

reading support is superior to reading unaided. This was tested

against the null hypothesis: radiologists’ average breast-level

AUC with AI support being equivalent to their average AUC

unaided. p < 0.05 indicated a statistically significant difference

between both reading conditions.

AUC superiority analysis was performed using the statistical

package developed by Tabata et al [25], using the Obuchowski

and Rockette method adapted to consider clustered data when

calculating reader by modality covariances [26, 27].

ROC curves were built using the LOS assigned to each

breast. Standard errors (SE) and 95% confidence intervals

(CI) were computed.

Secondary hypotheses

If the primary hypothesis was met, four secondary hypotheses

were evaluated in a (hierarchical) fixed sequence to control

type I error rate at significance level alpha = 0.05.

i. Radiologists’ average reading time per DBT exam using

AI support is superior to (shorter than) the average reading

time per DBT exam unaided.

Average reading times per DBT exam were compared be-

tween reading conditions by using a generalized linear mixed-

effects (GLME) model, taking repeated measures by multiple

readers into account [28].

Fig. 1 Flow of women through

the study, from data collection

until data selection for the

observer evaluation
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ii. Radiologists’ average sensitivity reading DBT exams

with AI support is non-inferior/superior compared to

reading DBT exams unaided, at a pre-specified non-infe-

riority margin delta of 0.05.

iii. Radiologists’ average specificity reading DBT exams

with AI support is non-inferior/superior compared to

reading DBT exams unaided, at a pre-specified non-in-

feriority margin delta of 0.05.

The analysis was performed following the analysis de-

scribed in the primary hypothesis for AUC comparisons, for-

matting the input data accordingly. A breast was considered

positive if the radiologist assigned a BI-RADS score ≥ 3.

iv. The stand-alone AI system AUC is non-inferior to the

radiologists’ average breast-level AUC reading DBT

exams unaided at a pre-specified non-inferiority margin

delta of 0.05.

The public domain iMRMC software (version 4.0.3,

Division of Imaging, Diagnostics, and Software Reliability,

OSEL/CDRH/FDA) was used, which can also handle single

reader data (the AI system) [29].

Results

Study population

Figure 1 shows the case selection flowchart. The characteris-

tics of the selected sample are detailed in Tables 1 and 2. No

protocol deviations were found during data selection.

Impact on breast cancer detection accuracy

All readers completed the reading sessions as planned; 8640

case reports were received (240 × 18 × 2), and there was no

missing data.

Radiologists significantly improved their DBT detec-

tion performance using AI support. The average AUC

increased from 0.833 (95% CI = 0.799–0.867) to 0.863

(95% CI = 0.829–0.898), p = 0.0025 (difference + 0.030,

95% CI = 0.011–0.049). The average ROC curves are

presented in Fig. 2. Differences per reader are shown in

Table 3. Sixteen out of 18 readers (89%) had a higher

AUC using AI support; improvements ranged from

+ 0.010 to + 0.088.

Descriptive analysis showed AUC improvements when

using AI support were present in all subgroups:

& Lesion type (+ 0.022 [95% CI = −0.005, 0.049] for cases

with soft tissue lesions, + 0.046 [95% CI = 0.015, 0.077]

for cases with calcifications)

Table 1 Truth status on a case, breast, and lesion level of the cohort of

240 cases used in the observer evaluation

Truth Cases Breasts Lesions

Normal 110/240 (46%) 334/480 (70%) n/a

Benign* 65/240 (27%) 75/480 (16%) 86

Malignant** 65/240 (27%) 71/480 (14%) 85

*Within the benign breasts, six are the contralateral breast to a malignant

breast. Two breasts containing a malignant and a benign lesion were

regarded as malignant at the breast level. Four cases have benign lesions

in both breasts. Seven breasts have two benign lesions and one breast has

three benign lesions

**Six cases have breast cancer lesions in both breasts

Table 2 Characteristics of the cohort of 240 cases used in the observer

evaluation, including the pathological and morphological characteristics

of the lesions.

Cases 240

Mean age in years (range) 56 (30–81)
Median compressed breast thickness in

mm (range)
59 (27–99)

BI-RADS breast density A: 27/240 (11%)
B: 93/240 (39%)
C: 105/240 (44%)
D: 15/240 (6%)

Median size in mm of malignant lesions
(range)

15 (3–116)

Morphology of the key findings of
malignant breasts

Mass: 40/71 (56%)
Calcifications: 17/71 (24%)
Mass + calcifications: 2/71 (3%)
Architectural distortion: 8/71

(11%)
Mass + architectural distortion:

1/71 (1%)
Asymmetric density: 3/71 (4%)

Morphology of the key findings of benign
breasts

Mass: 26/75 (35%)
Calcifications: 38/75 (51%)
Mass + calcifications: 2/75 (3%)
Architectural distortion: 4/75

(5%)
Asymmetric density: 4/75 (5%)
Mass + asymmetric density: 1/75

(1%)
Histology of malignant breasts IDC (invasive ductal ca.): 32/71

(45%)
ILC (invasive lobular ca.): 7/71

(10%)
DCIS (ductal ca. in situ): 15/71

(21%)
IDC + DCIS: 11/71 (15%)
IDC + other invasive type: 4/71

(6%)
Invasive papilloma: 1/71 (1%)
Invasive medullar ca.: 1/71 (1%)

Histology of benign breasts Atypical ductal hyperplasia:
22/75 (29%)

Fibroadenoma: 12/75 (16%)
Adenosis: 6/75 (8%)
Fibrocystic changes: 5/75 (7%)
Breast cysts: 4/75 (5%)
Fat necrosis: 3/75 (4%)
Papilloma: 3/75 (4%)
Apocrine metaplasia: 2/75 (3%)
Others: 18/75 (24%)
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& Reading protocol (+ 0.041 [95% CI = 0.019, 0.063] for

radiologists using SM and interactive navigation, + 0.020

[95% CI = −0.004, 0.044] for radiologists reading DBT

alone)

& Radiologists’ specialization (+0.020 [95% CI = −0.007,

0.047] for radiologists who dedicated > 75% of their pro-

fessional time to breast imaging in the last 3 years, +0.038

[95% CI = 0.022, 0.054] for the rest).

Impact on reading time

The average reading time per DBT exam was significantly

shorter using AI support (36 s, 95% CI = 35–37s)

compared to reading unaided (41 s, 95% CI = 39–42s);

resulting in a difference of −11% (95% CI = −8%, −13%),

p < 0.001 (Table 3). Descriptively, reading time was

shorter using AI support, regardless of breast density

(low breast density: −13% (95% CI = −10%, −16%); high

breast density: −10% (95% CI = −7%, −13%)) or reading

protocol. However, the reduction was larger using 2D SM

images and interactive navigation (shorter for 7/9 radiol-

ogists, decreasing from 39 to 32s, a difference of −19%,

95% CI = −16%, −22%), than without these tools (shorter

for 5/9 radiologists (56%), decreasing from 42 to 40s, a

difference of −4%, 95% CI = −1%, −7%).

The reading time reduction using AI support was cor-

related with the exam-level score assigned by the AI

Table 3 Differences in the area under the receiver operating

characteristic curve (AUC) and reading time for each radiologist between

reading breast tomosynthesis unaided and reading breast tomosynthesis

with AI support. Rad, radiologist; SE, standard error; CI, confidence

interval. > 75% = in the last 3 years > 75% devoted to breast imaging

AUC (SE) Reading time in s (95% CI)

Rad. With SM > 75% Unaided With AI support Difference Unaided With AI support % difference

1 Y N 0.817 (0.031) 0.837 (0.029) + 0.020 (0.030) 45

(43, 48)

33

(31, 36)

−26

(−31, −21)

2 Y N 0.745 (0.031) 0.792 (0.030) + 0.047 (0.034) 19

(17, 21)

16

(14, 18)

−17

(−29, −4)

3 Y Y 0.813 (0.030) 0.901 (0.023) + 0.088 (0.030) 29

(27, 31)

27

(25, 29)

−6

(−14, 2)

4 Y Y 0.862 (0.027) 0.872 (0.026) + 0.010 (0.027) 67

(64, 70)

48

(46, 55)

−28

(−32, −25)

5 Y N 0.820 (0.032) 0.868 (0.028) + 0.047 (0.029) 62

(59, 64)

49

(46, 51)

−21

(−25, −17)

6 Y Y 0.886 (0.027) 0.896 (0.025) + 0.011 (0.018) 46

(44, 49)

38

(35, 40)

−19

(−24, −14)

7 Y N 0.799 (0.030) 0.863 (0.027) + 0.065 (0.031) 45

(43, 47)

26

(24, 28)

−42

(−48, −38)

8 Y Y 0.837 (0.029) 0.884 (0.026) + 0.047 (0.030) 24

(22, 26)

28

(26, 30)

20

(10, 30)

9 Y N 0.801 (0.031) 0.837 (0.027) + 0.036 (0.031) 27

(25, 29)

27

(25, 29)

2

(−7, 10)

10 N Y 0.878 (0.026) 0.892 (0.024) + 0.014 (0.027) 67

(65, 70)

71

(68, 74)

6

(3, 9)

11 N N 0.849 (0.029) 0.882 (0.026) + 0.032 (0.026) 55

(52, 57)

57

(54, 59)

4 (−1, 8)

12 N N 0.835 (0.029) 0.829 (0.030) -0.006 (0.025) 41

(38, 43)

37

(35, 40)

−7 (−13, −2)

13 N Y 0.859 (0.027) 0.861 (0.027) + 0.014 (0.029) 40

(38, 43)

32

(30, 34)

−22 (−27, −16)

14 N Y 0.873 (0.026) 0.850 (0.028) -0.023 (0.031) 24

(21, 26)

15

(13, 17)

−3 (−47, −27)

15 N N 0.849 (0.029) 0.889 (0.026) + 0.036 (0.028) 64

(62, 67)

61

(58, 63)

−6 (−9, −2)

16 N N 0.780 (0.031) 0.835 (0.029) + 0.054 (0.031) 23

(21, 25)

31

(29, 34)

38 (28, 48)

17 N N 0.796 (0.029) 0.849 (0.028) + 0.053 (0.029) 19

(17, 21)

23

(21, 25)

20 (7, 32)

18 N Y 0.898 (0.025) 0.908 (0.023) + 0.010 (0.025) 54

(52, 57)

47

(44, 49)

−15 (−19, −10)
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system: reductions were stronger for the lowest exam-

level scores (−30%) (see Fig. 3). Figure 4 shows an ex-

ample where radiologists consistently read the exam faster

when using AI support.

Impact on sensitivity and specificity

Using AI support, radiologists significantly improved their

cancer detection sensitivity. The average sensitivity increased

from 74.6 (95% CI = 68.3–80.8%) to 79.2% (95% CI = 73.3–

85.1%), a relative difference of +6.2% (95%CI = 1.3–11.1%),

p = 0.016. Specificity was maintained: a relative difference of

+ 1.1% (95% CI = −1.3%, 3.5%), p = 0.380. Figure 5 shows

an example where radiologists consistently improved sensitiv-

ity when using AI support.

Stand-alone AI detection performance

The stand-alone AUC of the AI system was 0.840 (SE = 0.034),

+0.007 higher (95% CI = −0.048, 0.062) compared to the aver-

age unaided radiologist AUC. This performance was statistically

non-inferior (p = 0.8115). Descriptively, the stand-alone AUC

was higher compared to the AUC of 10/18 radiologists, reading

DBT unaided. The stand-alone ROC curve of the AI system

compared to radiologists’ performance is depicted in Fig. 6.

Discussion

This study shows that a deep learning–based AI system

for DBT enables radiologists to increase their breast can-

cer detection performance in terms of overall accuracy

and sensitivity at similar specificity, while reducing read-

ing time. The observed improvement in accuracy is com-

parable to what has been reported with an earlier version

of this AI program for mammography evaluation and

another AI program for evaluation of narrow-angle

DBT [10, 16]. The sensitivity improvement could help

to reduce the number of DBT screening false negatives,

i.e. lesions being overlooked or misdiagnosed [3], while

Fig. 2 Average receiver operating characteristic curves (ROC) of the

radiologists reading breast tomosynthesis (DBT) unaided and reading

DBT exams with AI support concurrently. The difference in ROC area

under the curve was significant, + 0.03, p = 0.0025

Fig. 3 Average differences in

reading time (%) across

radiologists using synthetic

mammograms and interactive

navigation features between

reading breast tomosynthesis

exams unaided or reading with AI

support, as a function of the

exam-level score assigned by the

AI system
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the reduced reading time might enable the implementa-

tion of DBT for screening in sites where DBT is current-

ly considered too time-intensive. Furthermore, the im-

provement in AUC was observed for all radiologists re-

gardless of the time they dedicate to breast imaging in

clinical practice.

The reduction in reading time per DBT exam when con-

currently using an AI system for reading support is similar

to those from other studies [16, 17]. Nevertheless, reading

times heavily rely on the specific functionality of the view-

ing application used for interpretation, as well as the exact

viewing protocol used to evaluate the DBT exams, which

prevents direct comparisons among the available studies.

For example, the average unaided reading time in the study

by Conant et al [16] using another AI software was almost

twice as long as the one found in our study, but interestingly,

the AI-assisted reading times were similar in both studies;

approximately 30 s per four-view DBT exam with 2D syn-

thetic images. Also, observing the largest reading time re-

duction in this study for the readers presented with an SM

for navigation suggests that functionality of the reading en-

vironment is an important factor.

Similar to results in a previous 2D mammography study

with this AI system [10], a strong dependency of the reading

time reduction on the exam-based AI scores was found (Fig.

3). This suggests that the biggest reading time reduction can

be achieved for the lowest exam-based AI scores, indicating

the readers were confident enough to spend less time on

exams categorized as most likely normal, despite the rela-

tively short time to get familiar with the AI system. The

resulting reading times per category may be used to estimate

the potential of AI support in a representative series of

Fig. 4 Breast tomosynthesis

exam (the synthetic image) of a

woman without cancer and an

exam-level cancer likelihood

score of 1 (lowest) by the AI

system. When reading the case

aided, 17/18 (94%) radiologists

read the exam faster, with an

average reduction of reading time

of −54% (from 36 to 19 s)

Fig. 5 Breast tomosynthesis exam of a woman with an architectural

distortion in the right breast, proven to be a 15-mm invasive ductal car-

cinoma (zoomed). The AI system marked the regions and assigned

region-scores of 76 and 39 on cranio-caudal and mediolateral oblique

views, respectively, and an exam-level cancer likelihood score of 10,

the highest category. When reading the case unaided, 8/18 (44%) radiol-

ogists would have recalled the woman, a proportion that increased to 15/

18 (83%) radiologists when reading the case with AI support
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screening exams. Provided that readers will be using 2D SM

images and interactive navigation, the reading time reduc-

tion in a screening population would be approximately

−20% (95% CI = −16%, −25%).

The increased accuracy and decreased reading time were

observed using cases from a previously, prospectively collect-

ed dataset, consisting of DBT exams obtained with a large

acquisition angle. Since a previous study [10] showed similar

improvements for 2D mammography, it is likely that the AI

induced improvements hold true for the whole spectrum of

mammographic techniques, which is corroborated by the fact

that the stand-alone performances of the AI system equal the

radiologists for both wide-angle DBT and 2Dmammography.

As the stand-alone performance of the AI system was equiv-

alent to the performance of the radiologists, it may be feasible to

explore implementation strategies beyond the concurrent read-

ing of DBT exams with AI support. Like in 2Dmammography,

it might be feasible to use AI for efficient triaging of the screen-

ing workload [14, 15]. By identifying a large group of normal

exams with a high negative predictive value, alternative strate-

gies such as single-reading when double-reading, or even ex-

clusion from radiologist evaluation, could be explored.

A limitation of this study is the use of a cancer-enriched

dataset instead of a consecutively collected sample of screening

mammograms from a clinical setting. This was to allow amulti-

reader evaluation with sufficient findings to draw useful con-

clusions. Consequently, this may not be fully representative of a

real screening situation. To what extent this difference affects

the results is unknown. The effectiveness of AI support in

screening with DBT still needs to be assessed: results from this

study should serve as a starting point for prospective studies

focusing on the impact of using AI in DBT mammography in

clinical and screening environments. In conclusion, radiologists

improved their cancer detection in DBT examinations when

using an AI support system, while simultaneously reducing

reading time. Using an AI reading support system could allow

for more cost-effective screening programs with DBT.
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