
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 24, 2022

Impact of Autocorrelation on Principal Components and Their Use in Statistical
Process Control

Vanhatalo, Erik; Kulahci, Murat

Published in:
Quality and Reliability Engineering International

Link to article, DOI:
10.1002/qre.1858

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Vanhatalo, E., & Kulahci, M. (2015). Impact of Autocorrelation on Principal Components and Their Use in
Statistical Process Control. Quality and Reliability Engineering International. https://doi.org/10.1002/qre.1858

https://doi.org/10.1002/qre.1858
https://orbit.dtu.dk/en/publications/e80aae79-1bbd-49e1-97d9-7a3f04c5d688
https://doi.org/10.1002/qre.1858


Research Article

(wileyonlinelibrary.com) DOI: 10.1002/qre.1858 Published online in Wiley Online Library
Impact of Autocorrelation on Principal
Components and Their Use in Statistical
Process Control
Erik Vanhataloa*† and Murat Kulahcia,b
A basic assumption when using principal component analysis (PCA) for inferential purposes, such as in statistical process
control (SPC), is that the data are independent in time. In many industrial processes, frequent sampling and process
dynamics make this assumption unrealistic rendering sampled data autocorrelated (serially dependent). PCA can be used
to reduce data dimensionality and to simplify multivariate SPC. Although there have been some attempts in the literature
to deal with autocorrelated data in PCA, we argue that the impact of autocorrelation on PCA and PCA-based SPC is neither
well understood nor properly documented.

This article illustrates through simulations the impact of autocorrelation on the descriptive ability of PCA and on the
monitoring performance using PCA-based SPC when autocorrelation is ignored. In the simulations, cross-correlated and
autocorrelated data are generated using a stationary first-order vector autoregressive model.

The results show that the descriptive ability of PCA may be seriously affected by autocorrelation causing a need to incorporate
additional principal components to maintain the model’s explanatory ability. When all variables have equal coefficients in a
diagonal autoregressive coefficient matrix, the descriptive ability is intact, while a significant impact occurs when the variables
have different degrees of autocorrelation. We also illustrate that autocorrelation may impact PCA-based SPC and cause lower
false alarm rates and delayed shift detection, especially for negative autocorrelation. However, for larger shifts, the impact
of autocorrelation seems rather small. © 2015 The Authors. Quality and Reliability Engineering International published
by John Wiley & Sons Ltd.

Keywords: principal component analysis; multivariate data; serial dependence; vector autoregressive model
1. Introduction

T
he popularity of latent variable methods such as principal component analysis (PCA) keeps growing alongside the development
of automatic data collection schemes with increasing availability of multivariate data. PCA is one of the most commonly used
techniques in multivariate analysis, and according to Jolliffe1 (p. 1), the central idea of principal component analysis (PCA) is

“to reduce dimensionality of a data set consisting of a large number of interrelated variables”.
In many applications of PCA, the purpose is descriptive. That is, we want to reduce the dimensions of the data and describe and

interpret the data through a fewer number of latent variables. Reducing the dimensions is also important for inferential purposes,
such as in statistical process control (SPC). In many SPC applications, the large number of quality characteristics makes univariate
monitoring ineffective and inefficient; see MacGregor.2 The difficulty for the engineer to simultaneously keep track of many univariate
control charts is generally a strong argument in favor of a multivariate approach to SPC. Process monitoring by use of multivariate
statistical methods has been an active research area during the last few decades. Excellent and comprehensive overviews of
developments of methods within this area are given by, for example, Bersimis et al.,3 Kourti,4 and Qin.5

Traditional SPC techniques assume independent data in time. However, this assumption is becoming increasingly unrealistic in
today’s applications. Because of system dynamics combined with frequent sampling, successive observations will often be serially
correlated; see Montgomery et al.6 and Bisgaard and Kulahci.7 The issue of autocorrelation in univariate SPC charts has been discussed
by many authors.8–13 Clearly, less research has been reported on the effects of and remedies for autocorrelation in multivariate SPC
charts. Vanhatalo and Kulahci14 show how the Hotelling T2 chart is affected by autocorrelation. There are also articles proposing
potential solutions to this problem in multivariate SPC.14–20 In this article, we simply explore the impact of autocorrelation on PCA
and PCA-based SPC and leave a more in-depth study on solutions to remedy this impact for our future research.
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E. VANHATALO AND M. KULAHCI
2. Motivation

Principal components are linear combinations of cross-correlated variables that are assumed to be independent in time. Although it is
not required for calculating the principal components, useful interpretation of the principal components and inferences can be made
if data are assumed to be independent and come from a multivariate normal distribution; see Johnson and Wichern21 and Joliffe.1 In
summary, Jollife1 (p. 299) states that “when the main objective of PCA is descriptive, not inferential, complications such as non-
independence [in time] does not seriously affect this objective”. In this article, we aim to put this statement to test and investigate
how the descriptive ability of PCA is affected by autocorrelation.

If the purpose of PCA is inferential, such as when PCA is used within SPC and the principal components are monitored for a process
with multiple quality characteristics, serial dependence in the data is expected to affect monitoring performance. This is easily
explained by the fact that the principal components are linear combinations of autocorrelated variables and therefore, the principal
components will also be autocorrelated.

Often, empirical studies on PCA-based SPC do not discuss remedies for autocorrelated data but rather proceed under the
(unspoken) assumption that the data are independent even though it can be more plausible from the specific cases that the data
are autocorrelated; see, for example, Vanhatalo.22 In general, we argue that there is no clear-cut recommendation on how to deal with
autocorrelated data for PCA-based SPC. However, within chemometrics literature, a method of augmenting the input and/or output
matrix with time-lagged values of the variables, as in the case of the so-called dynamic PCA (DPCA), has been put forward as a
solution; see Ku et al.23 and Kourti and MacGregor.24 However, monitoring based on DPCA still suffers from autocorrelated principal
components, and recently, Rato and Reis25 suggested an improvement using decorrelated residuals in DPCA.
3. Principal component analysis

This section provides a short technical background on PCA. For a more complete explanation, see, for example, Johnson and
Wichern,21 Jackson,26 and Jolliffe.1

Let the p variable random vector X′ ¼ x1; x2;…; xp
� �

have the associated covariance matrix Σ with eigenvalues λ1 ≥ λ2 ≥… ≥ λp ≥ 0.
In particular, Σ is the symmetric p× p matrix:

Σ ¼

σ11 σ12 ⋯ σ1p
σ12 σ22 ⋯ σ2p
⋮ ⋮ ⋱ ⋮

σ1p σ2p ⋯ σpp

2
6664

3
7775; (1)

where the diagonal elements are the variances of each variable and the off-diagonal elements are the covariances among the
variables. Let ei, i= 1, 2,…, p, be the eigenvectors of Σ, and given that the eigenvectors form columns of matrix C, we have

C′ΣC ¼ Λ ¼ diag λ1; ; λ2;…; ; λp
� �

(2)

The p principal components (scores) are then given as follows:

z1 ¼ e1X ¼ e11x1 þ e12x2 þ…þ e1pxp

z2 ¼ e2X ¼ e21x1 þ e22x2 þ…þ e2pxp

⋮

zp ¼ epX ¼ ep1x1 þ ep2x2 þ…þ eppxp

(3)

where eij is the jth entry of the ith eigenvector corresponding to the ith largest eigenvalue. In many cases, less than p principal
components are sufficient to explain a reasonable amount of the total variance. The proportion of the total population variance that
can be explained by the ith principal component is given by

λi
λ1 þ λ2 þ…þ λp
� � (4)

The components (loadings) of each eigenvector e′i ¼ ei1; ; ei2;…; ; eip
� �

are important to interpret the underlying meaning of the
principal component. For example, the sign and magnitude of eij determine the importance of the jth variable on the ith principal
component and are proportional to the correlation between zi and xj.

In cases where the scale and the variance of the variables are substantially different, it is a common practice to obtain principal
components from standardized variables, which is equivalent to obtaining the eigenvalue–eigenvector pairs from the correlation
matrix ρ of X.

Jolliffe1 describes a number of ways to numerically calculate the principal components, such as through singular value
decomposition. Another method popularized within chemometrics literature is the nonlinear iterative partial least squares algorithm,27

which often is faster when only the first few principal components need to be calculated and also has the advantage of working for
matrices with a moderate amount of normally distributed missing observations in the matrix.
© 2015 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015



E. VANHATALO AND M. KULAHCI
4. Simulated data

Although it is not required by the PCA technique, we will assume that our quality characteristics (variables) follow a multivariate
normal distribution. The multivariate normal distribution is an extension of the univariate normal distribution to a situation with
multiple (p) variables; see, for example, Montgomery.28 The multivariate normal density function is

f Xð Þ ¼ 1

2πð Þp=2 Σj j1=2
e�

1
2 X � μð Þ′Σ�1 X � μð Þ (5)

where X′ ¼ x1; x2;…; xp
� �

, �∞< xj<∞, and j= 1, 2,…, p, and μ is a p × 1 vector with the means of the p variables.

We simulate independent errors for the variables X′ ¼ x1; x2;…; xp
� �

, from a multivariate normal distribution with mean zero and
with covariance matrix Σ. Autocorrelation in the variables is introduced by ‘filtering’ the errors through a first-order vector
autoregressive model, VAR(1). Now, let

Xt ¼ c þ ΦXt � 1 þ εt

or in matrix form
x1;t

x2;t

⋮

xp;t

2
6664

3
7775 ¼

c1

c2

⋮

cp

2
6664

3
7775þ

ϕ11 ϕ12 ⋯ ϕ1p

ϕ21 ϕ22 ⋯ ϕ2p

⋮ ⋮ ⋱ ⋮

ϕp1 ϕp2 ⋯ ϕpp

2
6664

3
7775

x1;t�1

x2;t�1

⋮

xp;t�1

2
6664

3
7775þ

ε1;t
ε2;t
⋮

εp;t

2
6664

3
7775 (6)

or

x1;t ¼ c1 þ ϕ11x1;t�1 þ ϕ12x2;t�1 þ … þ ϕ1pxp;t�1 þ ε1;t
x2;t ¼ c2 þ ϕ21x1;t�1 þ ϕ22x2;t�1 þ …þ ϕ2pxp;t�1 þ ε2;t
⋮

xp;t ¼ cp þ ϕp1x1;t�1 þ ϕp2x2;t�1 þ…þ ϕppxp;t�1 þ εp;t

where εt ∼N(0,Σ). This allows us to manipulate the autocorrelation structure in the variables through theΦ matrix. For the process to
be stationary, all absolute values of the eigenvalues of the autoregressive coefficient matrix Φ should be less than one. For a
stationary VAR(1) process, the expected value is

E Xtð Þ ¼ μ¼ I�Φð Þ�1c ; (7)

where I is the identity matrix. The covariance matrix of the VAR(1) process is then computed using the following equations; see Reinsel29:

cov Xtð Þ ¼ cov cð Þ þ cov ΦXt�1ð Þ þ cov εtð Þ
Γ 0ð Þ ¼ ΦΓ 0ð ÞΦ′ þ Σ

(8)

where Γ(0) is the covariance matrix of the data and Σ is the covariance matrix for the errors. The covariance structure of the first-order
autoregressive process is hence dependent on both the autocorrelation matrixΦ and the covariance matrix Σ of the errors, which we
need to consider in what follows. Note that by choosing c andΦ as a zero vector/matrix, the model in (6) reduces back to generating
data from a multivariate normal distribution with zero mean.

All simulations in this article were performed using R statistics software, and the R code for the simulations is available upon request.
5. Impact on the descriptive ability: a look at the bivariate case

To illustrate and visualize the impact of autocorrelation on PCA and PCA-based SPC, we start with a simple bivariate case:

x1;t ¼ c1 þ ϕ11x1;t�1 þ ϕ12x2;t�1 þ ε1;t
x2;t ¼ c2 þ ϕ21x1;t�1 þ ϕ22x2;t �1 þ ε2;t

(9)

where we let

Φ ¼ ϕ11 0

0 ϕ22

� 	
and Σ ¼ 1 0:9

0:9 1

� 	
(10)

Thus, for time-independent data (i.e., Φ=0), the eigenvalues Σ are 1.9 and 0.1, and we should thus expect one dominant latent
variable. In other words, the first principal component would explain most of the variance in the data. Here, Σ can be viewed as giving
the ‘static relations’ among the variables, while Φ determines the ‘dynamic relations’ in the form of autocorrelation.
© 2015 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015
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Figure 1a–d visualizes 500 observations of simulated data with different autocorrelation structures, the two estimated
eigenvalues of the correlation matrix of the variables, and the proportion of explained variance per principal component.
All four cases in Figure 1a–d are based on the same innovations (errors).

As illustrated in Figure 1a–d, as autocorrelation increases in a variable, so does the variance of that variable, at least for the tested
cases with a diagonalΦmatrix. It is worth noting that when the degree of autocorrelation in the two variables is unequal, the correlation
between the variables is ‘distorted’, which also affects the results from PCA. For example, in Figure 1d, the first principal component
explains around 54% of the variance in the data compared with around 95% for independent data in Figure 1a. It is thus evident from
these limited simulations that autocorrelation affects the descriptive ability of PCA.

It turns out that for a diagonal Φ matrix when the both variables have equal autocorrelation coefficients, that is,
ϕ11 =ϕ22 =ϕ, the true correlation between the variables is the same as for independent data. We can show that

Γ 0ð Þ ¼ ΦΓ 0ð ÞΦ′ þ Σ

¼
ϕ 0

0 ϕ

" #
Γ 0ð Þ

ϕ 0

0 ϕ

" #′

þ Σ

¼ϕIΓ 0ð ÞϕIþ Σ
¼ϕ2Γ 0ð Þ þ Σ

⇒Γ 0ð Þ 1

1� ϕ2Σ

Because in this case, the covariance of the data is simply a scaled version of the covariance of the errors, the correlation between
the two variables is the same as the correlation between two errors, and therefore, eigenvalues of the correlation matrix of the
variables are the same as the eigenvalues of the correlation matrix of the errors. Furthermore, because we consider the stationary
Figure 1. (a) No autocorrelation, ϕ11 = ϕ22 = 0; (b) autocorrelation in x1, ϕ11 ¼ 0:9; ϕ22 ¼ 0; (c) autocorrelation in x1 and x2, ϕ11 = ϕ22 = 0.9; and (d) autocorrelation in x1
and x2, ϕ11 ¼ 0:9; ϕ22 ¼ �0:9

© 2015 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015
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process, that is, |ϕ|< 1, the variances of the variables are bigger than the variances of the errors as can be seen by comparing
Figure 1a and 1c.

However, when ϕ11≠ϕ22, the correlation between the variables is distorted with the biggest change occurring when the
autocorrelation coefficients are large but with opposite signs; see Figure 1d. This phenomenon is further illustrated in Figure 2, which
shows the ‘true’ correlation among the variables as a function of ϕ11 and ϕ22 for the Φ and Σ matrices given in (10).
6. Impact on PCA-based statistical process control in the bivariate case

In this section, we discuss the false alarm rate and the shift detection ability in phase II of PCA-based control charts for two variables
only for illustration purposes. In our simulations, the PCA model is built based on observations from a process that initially is in control
(phase I). This model is then used in the online monitoring stage (phase II). Because different autocorrelation structures will be tested
in the simulations, the variances of the variables will not always be equal. Therefore, standardized variables will be used. In phase II,
the variables are standardized based on their mean vector and standard deviations from the phase I sample. The simulations are
based on a phase I sample of m= 500 observations of an in-control process. The scores of the two principal components in phase
II are here monitored in separate Shewhart charts as well as in a Hotelling T2 chart for individual observations, and the average
run length is measured. Three-sigma limits are used in the Shewhart charts. That is,

UCLShewhart;PCi ¼ 3� ffiffiffiffi
λi

p

LCLShewhart;PCi ¼ �3� ffiffiffiffi
λi

p (11)

where PCi is the ith principal component corresponding to the ith eigenvalue, λi. In the Hotelling T2 chart, we use the traditional
estimator S for the sample covariance matrix as Vanhatalo and Kulahci14 showed it to be less sensitive to autocorrelation:

S ¼ 1

m� 1
¼

Xm
i ¼ 1

xi � xð Þ � xi � xð Þ′ (12)

The phase II upper control limit for the Hotelling T2 chart using the traditional estimator S is based on the F distribution and given
as follows:

UCLT2 ¼
p m þ 1ð Þ m � 1ð Þ

m2 �mp
Fα;p;m � p (13)

where p is the number of variables, m is the number of samples (i.e., observations) in phase I, α is the acceptable false alarm rate, and
Fα,p,m � p is the upper αth percentile of the F distribution with p and m� p degrees of freedom.

The shift detection ability is measured by generating shifts in the process mean, δ1 and δ2, in terms of the ‘true’ standard deviation
of the variables in the VAR(1) model, which can be calculated using (8). It should be noted that the control limits in (11) and (13) are
used as we simply follow the naïve approach where the autocorrelation is ignored or overlooked.
Figure 2. Visualization of the true correlation between the two variables depending on the autocorrelation coefficients ϕ11 and ϕ22 for theΦ and Σmatrices given in (10)

© 2015 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015
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6.1. False alarm rate in the bivariate case

The average in-control run length (ARL0), in phase II, for individual Shewhart charts for the principal components and the Hotelling T2

chart based on both principal components, is given in Table I, which covers the four different cases of autocorrelation structures
shown in Figure 1. From Table I, it can be seen that the false alarm rate decreases (ARL0 values increase) with increasing magnitudes
of autocorrelation in the variables. For the Shewhart charts, the most dramatic increase in ARL0 comes for the case with high and
positive autocorrelation in both variables, while for the Hotelling T2 chart, the largest ARL0 value is for the case with high
autocorrelation but with opposite signs in both variables.

6.2. Shift detection capability in the bivariate case

The average out-of-control run length (ARL1), in phase II, for individual Shewhart charts for the principal components and the Hotelling
T2 chart based on both principal components, is given in Table II. The behavior of the ARL1 values depends on the different shift
scenarios. For example, the shift scenario that is ‘easiest’ to detect in Table II is when both variables shift but in different directions,
which goes against the correlation structure among the errors in the phase I sample. However, it is more difficult to detect the case
with equal shifts in both variables. In general, the shift detection capability is reduced with increasing magnitude of autocorrelation
in the variables.

The low ARL1 values for the Shewhart chart for PC2 for cases (a) and (c) when there is only a shift in x1 are a consequence of the true
correlation structure of the variables in phase I; see also Figure 2. In cases (a) and (b), the variables are highly correlated, which causes
the shift in only x1 to be unusual as the shift is in another direction than the main latent structure (PC1). The shift is therefore easily
detected in the direction of PC2.
7. Impact on PCA-based statistical process control for a five-variable example

Finally, we explore the impact of autocorrelation in a somewhat more complex case. Here, we choose to explore a five-variable case,
which will provide the possibility to study the performance of PCA-based SPC using the combination of the two complementing
charts: [1] a Hotelling T2 chart for the A first ‘important’ principal components (T2A chart) and [2] the squared prediction error (SPE);
see, for example, Ferrer.30

The SPE for observation i is given as follows:

SPE ¼ eTi ei ¼ xi � x�i
� �T

xi � x�i
� �

(14)

where ei is the residual vector for the ith observation and x�i is the predicted observation vector from the PCA model based on the
A first principal components.

An abnormal value in T2A chart can be viewed as an outlier in the dimensions of the retained principal components and indicates
that the observation includes some extreme values in some (or all) of the original variables, while the correlation structure among the
Table I. Average in-control run length (ARL0) for different autocorrelation structures based on 10,000 simulations in each case

Shewhart T2

Case ϕ11 = ϕ22 = PC1 PC2 PC1–2

a 0 0 386.4 380.9 401.6
b 0.9 0 413.8 398.4 540.8
c 0.9 0.9 922.3 784.8 573.4
d 0.9 �0.9 565.8 552.6 901.6

Table II. Average out-of-control run length (ARL1) for different autocorrelation structures based on 10,000 simulations in
each case

δ1 = 1, δ2 = 0 δ1 = 1, δ2 = 1 δ1 = 1, δ2 =� 1

Shewhart T2 Shewhart T2 Shewhart T2

Case ϕ11 = ϕ22 = PC1 PC2 PC1–2 PC1 PC2 PC1–2 PC1 PC2 PC1–2

a 0 0 156.1 4.6 6.3 42.8 373.0 69.7 386.8 1.1 1.2
b 0.9 0 184.9 100.7 166.1 58.0 369.3 73.8 400.2 24.4 29.2
c 0.9 0.9 514.4 34.0 39.8 184.6 777.5 192.4 958.4 10.4 12.0
d 0.9 �0.9 206.3 176.4 253.6 54.5 501.6 79.4 518.5 43.0 62.7

© 2015 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 201
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variables remains intact. An outlier in the SPE chart can be viewed as an outlier in the dimensions of the remaining principal
components not included in the model and indicates that the correlation structure among the variables captured in phase I is
different from what is being observed in phase II. In other words, the outlier does not behave in the same way as what is expected
from the reference data set.

There are several different approximations for the upper control limit for the SPE chart; see, for example, Ferrer.30 Here,
we choose the approximation given by Jackson and Mudholkar31 because, for our limited initial simulations, it seemed
to provide in-control run lengths closest to the nominal value but still somewhat too high. The upper control limit for
the SPE chart is given by

UCLSPE;α ¼ θ1
zα

ffiffiffiffiffiffiffiffiffiffiffiffi
2θ2h

2
0

q
θ1

þ 1 � θ2h0 h0 � 1ð Þ
θ21

2
4

3
5

1
h0=

(15)

where zα is the 100(1� α) percentile of the standardized normal distribution, θi ¼ ∑p
j ¼ A þ 1λ

i
j , and h0 ¼ 1� 2θ1θ3ð Þ=3θ22.

Even with as few as five variables, the number of possible combinations of covariance structures for the errors and autocorrelation
basically becomes unfeasibly large. Therefore, we only consider a model for a given covariance structure of the errors and vary the
autocorrelation through different diagonal Φ matrices.

We assume that we have a five-variable VAR(1) model with the following error covariance matrix (static relations):

Σ ¼

1 0:9 0:8 0 0

0:9 1 0:7 0 0

0:8 0:7 1 0 0

0 0 0 1 0:9

0 0 0 0:9 1

2
6666664

3
7777775

which essentially means that the resulting variables are correlated through two blocks of correlated errors. The first block contains
correlated errors for x1, x2, x3 and the second block, correlated errors for x4 and x5. In the simulations, we will change the parameters
of the diagonal Φ matrix (dynamic relations) as follows:

Φ ¼

ϕ11 0 0 0 0

0 ϕ22 0 0 0

0 0 ϕ33 0 0

0 0 0 ϕ44 0

0 0 0 0 ϕ55

2
6666664

3
7777775

applying different combinations of autocorrelation parameters using the following values:

ϕii ¼
þ0:9 high positive autocorrelation

0 no autocorrelation independent in timeð Þ
�0:9 high negative autocorrelation

8><
>:

We consider both the in-control and the out-of-control run lengths for different types of shifts in the variables.
In the simulations, we need to decide on A: how many principal components to retain? There are several different rules

and recommendations that can be used, such as the SCREE plot, minimum eigenvalue, or cross-validation. However, because
we aim to study the impact of autocorrelation on PCA-based SPC, we choose to treat the time-independent case as the
baseline. For time-independent data, the two first principal components would here explain roughly 90.1% of the total
variance. Therefore, in the simulations with autocorrelated data, we retain as many principal components as required to
explain at least 90.1% of the variance. All the following simulations are based on a phase I sample of m = 500 observations
from an in-control process.
7.1. False alarm rate for the five-variable example

The average in-control run length (ARL0), in phase II, for the T2A and SPE charts as well as the average number of retained principal
components in the simulations, are provided in Tables III–V for a variety of autocorrelation coefficient combinations.

In Tables III–V, we observe that the average number of retained principal components varies for different magnitudes and
signs of autocorrelation. This is because the autocorrelation distorts the correlation among the variables compared to the
time-independent case where two principal components are enough to explain just over 90% of the variance. Instead, two to
five principal components are needed to be retained depending on the dynamic relations in the Φ matrix. This is also clearly
visible from the ‘true’ correlation matrices for the variables and their eigenvalues. In other words, the impact of autocorrelation
may be interpreted as a distortion of the relative importance among the latent structures in the data. Thus, the descriptive
© 2015 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015
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capability of PCA and the possible simplification that PCA provides are affected by autocorrelation in the data. In fact, for some
of the more extreme cases in Tables III–V, four or five principal components are needed to be retained to maintain the
explanatory ability of the PCA model based on time-independent data.

An important conclusion is that when the autocorrelation coefficients are the same or nearly the same within the two blocks
of correlated variables, the eigenvalues of the correlation matrix are the same or nearly the same as in the time-independent
case. This is similar to the conclusion that we discussed in Section 5. We can therefore conclude that for a diagonal Φ matrix
when all variables have the same (or nearly the same) autocorrelation coefficients, the descriptive ability of PCA remains intact
(or nearly intact).

We can also conclude that the ARL0 values for the T2A chart increase for many of the autocorrelation cases in Tables III–V; for

some cases, the increase is moderate, whereas for others, it is more dramatic. The largest increase in the ARL0 values for the T2A
chart comes with negative autocorrelation in the variables. The behavior of the ARL0 values for the SPE chart is more varying
where the run lengths decrease for some cases and increase for others. However, one needs to keep in mind that the SPE chart
basically monitors the remaining unimportant principal components (the residuals) and that the number of remaining principal
components varies among the cases. Also, for the SPE chart, the ARL0 values increase the most for negative autocorrelation in
the variables.

Table VI provides some examples when the autocorrelation coefficients are the same or roughly the same within the two blocks of
variables. Although the ARL0 values for the T

2
A and SPE chart do not dramatically increase because of autocorrelation, there is a larger

increase when there is a mix of positive and negative autocorrelation in the two blocks of variables and when all variables have
negative autocorrelation.

It should be noted that the large values of ARL0 may not seem as problematic but they imply an adverse effect on shift detection
ability of the control chart.
7.2. Shift detection capability for the five-variable example

In this section, we study the average out-of-control run length (ARL1) in phase II, for the T2A and SPE charts as well as the average
number of retained principal components for simulated shift scenarios. The shifts are expressed as multiples of the true
standard deviation units of the variables. The impact of autocorrelation on the shift detection capability is studied for a limited
number of examples, and the results are organized in two subsections: shift scenarios that for time-independent data are likely
to be detected first in the Hotelling T2 chart and other shift scenarios that are expected to generate faster shift detection in the
SPE chart.
7.2.1. Shifts likely to be detected first in the Hotelling T2 chart

Table VII provides results from a one-standard-deviation shift in the same direction for all variables within the first block; that is, δx1 ¼
δx2 ¼ δx3 ¼ 1. This scenario indicates an unusual event in agreement with the PCA model as the observations after the shift include
unusual values in the first three variables although the correlation structure among the variables remains more or less intact. Another
unusual event agreeing with the model is investigated in Table VIII, which provides the results from two-standard-deviation shifts in
the same direction for the two variables within the second block; that is, δx4 ¼ δx5 ¼ 2.

As expected, the T2A chart is faster to react to the shifts studied in Tables VII and VIII. The shift detection capability is however

affected by autocorrelation, and for smaller shifts, the autocorrelation causes an increase in ARL1 values for the T2A chart. For larger
shifts, the autocorrelation to a large extent does not seem to affect the shift detection capability.
7.2.2. Shifts likely to be detected first in the squared prediction error chart

Table IX provides results from one-standard-deviation shifts in different directions for the three variables within the first block; here,
δx1 ¼ �1 and δx2 ¼ δx3 ¼ 1. This scenario is an unusual event in disagreement with the PCA model because the correlation structure
among the variables captured in phase I data is different from that of the observations after the shift. Table X shows results from
another shift of this kind, namely, a two-standard-deviation shift in different directions for the two variables within the second block;
here, δx4 ¼ 2 and δx5 ¼ �2.

Note that for most simulations in case (e) in Tables VII–X, all five principal components were retained to explain at least 90.1% of
the overall variation leaving no errors for SPE calculations.

As expected, the SPE chart is the fastest to react to the shifts studied in Tables IXa–c and Xa–c that goes against the
correlation structure among the variables in the time-independent case. Although the SPE chart clearly has the lowest
ARL1 values for cases (a–c), there is a peculiar increase in ARL1 values for the cases in Table IXd and Xd. This delay in shift
detection in the SPE chart is caused by the fact that the SPE chart in these cases is based only on the fifth principal
component. For these specific cases, it turns out that the signs and magnitudes of the average loadings of the fifth principal
component more or less cancel out the simulated shifts in the variables. This cancelation produces a weak signal in the SPE
chart yielding much slower shift detection.
© 2015 The Authors. Quality and Reliability Engineering International published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2015
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8. Conclusions and discussion

In this article, we set out to investigate and illustrate the impact of autocorrelation on the descriptive ability of PCA and on the
monitoring performance using PCA-based SPC. We intentionally show the impact of naïvely proceeding with PCA by ignoring the
autocorrelation in the data. In the simulations, we introduce autocorrelation in the variables through a VAR(1) model. Conceptually,
this means that we let the static relations among the variables be represented by the covariance matrix of the innovations (errors)
in the VAR(1) model and the dynamic relations be represented by the autocorrelation coefficient matrix Φ of the VAR(1) model. In
reality, the analyst will typically not be aware of the difference between static relations and dynamic relations but will simply model
the sampled data – including both the static and dynamic relations’ effect on the correlation structure of the variables. Our
argumentation from an SPC point of view builds upon the assumption that the ‘true’ latent structure is given by the static relations
among the variables. We believe that in that regard, there is a need to truly define what is meant by a latent structure/variable when
data are autocorrelated. But this is beyond the scope of this paper.

The consequence of the naïve approach is that descriptive ability of PCA is affected by autocorrelation and the analyst may find
additional important latent variables. The number of principal components that need to be retained to explain a given fraction of
the variability in the data may increase as a result of autocorrelation. We show that the impact on the descriptive ability can vary from
non-existent when Φ is diagonal and all variables have the same autocorrelation coefficients to dramatic when the variables have
large autocorrelation coefficients with opposite signs. This means that the descriptive ability of PCA may be seriously affected by a
situation where the variables have different degrees of autocorrelation, especially with different signs.

In this article, we also confirm and illustrate how autocorrelation can affect the naïve use of PCA for the inferential purpose of SPC.
The false alarm rate and the shift detection capability of PCA-based SPC are affected by autocorrelation and can cause delayed shift
detection. The impact on the false alarm rate and the shift detection capability of PCA-based SPC is largest for negative
autocorrelation, but for shifts of larger magnitudes, the impact of autocorrelation seems to be rather small.

This article is not focused on solving the problem with autocorrelated data, but as mentioned earlier, a potential solution to reduce
the impact of autocorrelation on PCA-based SPC is to adjust the control limits of the Hotelling T2 chart for the A first principal
components and the SPE chart. However, this would require an adjustment to each specific case, which is a time-consuming solution.
Another time-consuming solution is to use a residuals approach where, for example, a multivariate time series model is fitted to the
data and PCA is performed on the time-independent residuals. DPCA with decorrelated residuals25 seems to be one of the most
recently proposed solutions. However, we argue that expanding the data matrix with additional time-lagged variables increases
model complexity, may have a negative impact on model interpretation, and makes it somewhat more difficult to identify causes
of the fault. In our future research, we aim to compare different approaches in multivariate SPC to remedy the problems created
by autocorrelation in the process data.
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