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Abstract: Today, food safety and quality are some of the main concerns of consumer and health
agencies around the world. Our current lifestyle and market globalization have led to an increase in
the number of people affected by food poisoning. Foodborne illness and food poisoning have different
origins (bacteria, virus, parasites, mold, contaminants, etc.), and some cases of food poisoning can
be traced back to chemical and natural toxins. One of the toxins targeted by the Food and Drug
Administration (FDA) and European Food Safety Authority (EFSA) is the biogenic amine histamine.
Biogenic amines (BAs) in food constitute a potential public health concern due to their physiological
and toxicological effects. The consumption of foods containing high concentrations of biogenic
amines has been associated with health hazards. In recent years there has been an increase in the
number of food poisoning cases associated with BAs in food, mainly in relation to histamines in fish.
We need to gain a better understanding of the origin of foodborne disease and how to control it if
we expect to keep people from getting ill. Biogenic amines are found in varying concentrations in a
wide range of foods (fish, cheese, meat, wine, beer, vegetables, etc.), and BA formation is influenced
by different factors associated with the raw material making up food products, microorganisms,
processing, and conservation conditions. Moreover, BAs are thermostable. Biogenic amines also play
an important role as indicators of food quality and/or acceptability. Hence, BAs need to be controlled
in order to ensure high levels of food quality and safety. All of these aspects will be addressed in
this review.

Keywords: biogenic amines; food products; food quality; food safety; quality control; quality indexes;
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1. Biogenic Amines and Food Safety

Food safety is one of the main concerns of consumer and health agencies around the globe
(European Food Safety Authority (EFSA), Food and Drug Administration (FDA), Food Safety
Commission of Japan (FSCJ), World Health Organization (WHO), etc.). According to the WHO,
more than 200 diseases are transmitted by food and the vast majority of the population will contract
a foodborne disease at some point in their lifetime. For example, in the U.S. 48 million people
(one in six) suffer a foodborne disease each year. Of these, 128,000 are hospitalized and 3000 die from
such diseases [1,2]. Moreover, the real numbers are higher as many cases of foodborne disease go
undetected and are not recorded as such, due to the difficulty in establishing a causal relationship
between food contamination and illness or death. This highlights the importance of making sure
that the food we consume is not contaminated with potentially harmful elements at any point along
the food chain. Because food can become contaminated at any point along the global supply chain
during production, distribution, and preparation–consumption, each individual along this chain,
from producer to consumer, has a role to play in ensuring that the food we eat does not cause disease.
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Furthermore, if we are to prevent such disease, we must gain a deeper understanding of the origin of
foodborne illness and the way to control it.

The origin of foodborne illness could be bacteria, virus, parasite, mold, contaminants, metals,
allergens, pesticides, natural toxins, etc., that can contaminate food and cause disease. In general,
most food poisoning is caused by bacteria, viruses, and parasites as opposed to toxic substances.
Nonetheless, there are cases of food poisoning that can be linked to chemical or natural toxins.
From among these toxins, the FDA and EFSA pay particular attention to aflatoxins, mycotoxins,
histamine, etc. Of these, it is worth noting that histamine, a biogenic amine, is present in most foods
but in greater abundance in fish and fishery products. This biogenic amine is the main component in
“scombrid poisoning” or “histamine poisoning” since these intoxications are related to the consumption
of fish of the Scombridae and Scomberesocidae families (tuna, mackerel, bonito, bluefish, etc.) containing
high levels of histamine. These species contain high levels of the free amino acid histidine in their
muscle tissue, which is decarboxylated to histamine. However, other non scombroid species also
contain high levels of free histamine in their muscle tissue [3,4], which is why this illness came to be
known as “histamine poisoning”. There have been recent cases involving vacuum-packed salmon.
The most common symptoms of histamine poisoning are due to the effects it has on different systems
(cardiovascular, gastrointestinal, respiratory, etc.) producing low blood pressure, skin irritation,
headaches, edemas, and rashes typical of allergic reactions [5,6]. Furthermore, histamine plays a role
in the health problem known as histaminosis or histamine intolerance associated with the increase
of histamine in plasma [4]. It is also important to point out that histamine is a mediator of allergic
disorders. Biogenic amines are released by mast cell degranulation (in response to an allergic reaction)
and the consumption of foods containing histamine can have the same effect. Since food allergy
symptoms are similar to those of histamine poisoning (food intolerance), physicians occasionally make
a faulty diagnosis. For all these reasons, histamine is the biogenic amine (BA) causing major concerns
in clinical and food chemistry. However, we would note that apparently histamine is not the only
agent causing scombroid poisoning [7–12]. Other amines, such as putrescine and cadaverine, are also
associated with this illness, although both seem to have much lower pharmacological activity on their
own but enhance the toxicity of histamine and decrease the catabolism of this amine when they interact
with amine oxidases, thus favoring intestinal absorption and hindering histamine detoxification [13,14].

Another important biogenic amine related to food poisoning is tyramine. In this case, intoxication
is known as the “cheese reaction” as it is associated with the consumption of foods with high
concentrations of tyramine, mainly associated with the consumption of cheese [10,14–17]. However,
high levels of tyramine have also been observed in meat and meat products [14,18–21]. As in
the case of histamine, this illness came to be known as “tyramine reaction” because of the main
compound involved. Typical symptoms of tyramine poisoning are migraines, headaches, and increased
blood pressure, since tyramine sparks the release of noradrenaline from the sympathetic nervous
system [5,6,10].

Other Bas, such as spermidine or spermine, have also been associated with food allergies [6,22,23].
Tyramine and β-phenylethylamine are suspected of triggering hypertensive crises in certain patients
and of producing dietary-induced migraines. Although tryptamine has toxic effects on humans
(causing blood pressure to increase, thus leading to hypertension), the maximum amount of tryptamine
permitted in sausages is not regulated in some countries [23]. It is worth noting an additional
toxicological risk associated with BAs, mainly secondary BAs (putrescine and cadaverine), which are
involved in other kinds of food poisoning, such as the formation of nitrosamines, that are believed to
be cancer causing compounds [24,25]. This risk is greatest in meat products with high biogenic amine
levels and which contain nitrite and nitrate salts used as curing agents, and also with heat treated
products, as these factors favor interaction between BAs and nitrites to form nitrosamines [25,26].
However, under normal circumstances, the human body possesses detoxification systems to take care
of these BAs, mainly in the intestine through the action of monoamine oxidase (MAO; CE 1.4.3.4),
diamine oxidase (DAO; CE 1.4.3.6), and polyamine oxidase (PAO; CE 1.5.3.11). However, in certain
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cases this mechanism can be hindered by a variety of factors or circumstances, and BAs could
accumulate in the body and cause serious toxicological problems and a high risk of poisoning [4,14].
Factors that could alter the detoxification mechanism include the consumption of amine oxidase
inhibitors (mono and diamine oxidase inhibitors (MAOI/DAOI)), alcohol, immune deficiency of
the consumer, gastrointestinal disorders, large amounts of BA, for example in the case of spoiled or
fermented foods, etc. [5,13,27]. When calculating BA intake, one must consider that foods are not
typically consumed in isolation but rather in the context of a meal where several foods are eaten
simultaneously (meat, fish, cheese, wine, vegetables, etc.). Therefore, the aggregate amount of BA
consumed would be the sum of all the amines from the different foods rather than one food considered
individually. The potential toxicological effect would be the sum of the amines in all of the different
foods, the synergies between them, and the other personal factors mentioned above. The role of
various substances that enhance the toxicity of BA and the existence of synergic effects have been
demonstrated. For example, in Europe approximately 20% of the population regularly takes MAOI
and/or DAOI antidepressant drugs. In such circumstances, not even low amounts of biogenic amines
can be metabolized efficiently, the result being increased sensitivity to BAs [14]. Some authors [28,29]
have suggested that ripened meat products (“chorizo”, “salchichón”, “salami”, etc.) contain enough
tyramine to poison people taking MAOI even with low levels of tyramine (in the 6–9 mg/kg range).
The consumption of 100 g of any of these products would interact with MAOI, while in the absence
of MAOI none of these processed meats would be toxic if ingested in normal amounts, always
depending of course on individual susceptibility. A new generation of MAOI has been developed
that diminishes this sensitivity. The ingestion of even small amounts of tyramine has been known
to cause severe migraines with intracranial hemorrhaging in patients treated with classic MAOIs,
while tyramine between 50 and 150 mg is better tolerated by patients treated with a new generation
of MAOIs, i.e., the so-called RIMA (reversible MAO-A inhibitor) [4,30]. The market is currently
offering pharmaceutical preparations based on the DAO enzyme for the treatment of migraines whose
fundamental function is to mitigate deficiencies of this enzyme (DAO), thus favoring the metabolism
of histamine. It is very difficult to establish toxicity parameters for BAs considering the number of
factors that affect their toxicity.

2. Biogenic Amines and Quality Control of Food Products

It is important to control and monitor biogenic amines not only for toxicological and health
reasons as mentioned above, but also because they may play an important role as quality and/or
acceptability indicators in some foods, and managing this quality is also a way to guarantee and ensure
food safety. Food quality refers to main characteristics having to do with safety, nutrition, availability,
convenience, integrity, and freshness [31].

BAs have been frequently employed as quality indexes in various foods (meat, fish, wines,
etc.) to signal their degree of freshness and/or deterioration and also to control the processing and
development of food and beverages. Individual BAs, such as histamine, tyramine, cadaverine, or a
combination of various amines (putrescine–cadaverine, spermidine–spermine, etc.), have likewise
been used as a quality index [19,26,32–40]. Also, different BA-based quality indexes have been
proposed, such as the traditional one developed by Miet and Karmas [32] used as an indicator of the
decomposition of fish. This index is based on the increase in putrescine, cadaverine, and histamine
levels and the decrease in spermidine and spermine levels throughout the fish storage process.
Scores of 0 and 1 are indicative of good quality fish, between 1 and 10 are tolerable, and a score
of over 10 indicates decomposition of the product. However, in the case of other foods, such as
cheese, meat, and meat products, this index has not yielded good results mainly because it does
not include levels of tyramine, the main biogenic amine in these products. An alternative biogenic
amine index (BAI) has been proposed for meat that consists of the sum of putrescine, cadaverine,
histamine, and tyramine [40,41]. Hernández-Jover et al. [41] also suggested quality ranges for the
index: BAI <5 mg/kg indicating good quality fresh meat, between 5 and 20 mg/kg for acceptable
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meat but with signs of initial spoilage, between 20 and 50 mg/kg for low quality meat, and >50 mg/kg
for spoiled meat. However, the usefulness of BAs as a quality index depends on many factors,
mainly concerning the nature of the product (fresh, canned, modified atmosphere, fermented, etc.).
For example, BA indexes have proven to be more satisfactory in fresh meat and meat products and
heat-treated products than in fermented products [40]. This is at least partly because biogenic amine
concentrations vary much more in fermented products than in fresh and cooked meat products owing
to the number of different factors involved in their processing (ripening, maturation, starter, additives,
etc.) [13,14,20,21,42–44]. Therefore, establishing a biogenic amine index that reliably predicts product
quality is no simple matter. It is important to note that sometimes foods with toxic levels of BAs,
such as histamine or tyramine often appear organoleptically “normal”. This could be the case of tuna,
salmon, or fermented chorizo where unacceptable and toxic levels of histamine are undetectable prior
to consumption and therefore consumers are unable to reject products based on sensorial parameters.
This is another important reason to control these compounds.

3. Biogenic Amines in Food

Biogenic amines are compounds that are commonly found in food and beverages such as meat,
fish, cheese, vegetables, wine, etc. The most important BAs found in food are histamine, tyramine,
putrescine, cadaverine, β-phenylethylamine, agmatine, tryptamine, serotonin (SRT), spermidine,
and spermine. These dietary amines are classified according to their chemical structure as aromatic
amines (histamine, tyramine, serotonin, phenylethylamine, and tryptamine), aliphatic diamines
(putrescine and cadaverine), and aliphatic polyamines (agmatine, spermidine, and spermine) [33,45].
In terms of origin or synthesis, they are classified as polyamines when they are endogenous and formed
naturally by animals, plants, and microorganisms, which play an important role in physiological
functions (neurotransmitter, psychoactive, vasoactive, regulating gene expression, cell growth and
differentiation, gastric secretions, immune response, inflammatory processes, etc.), and biogenic
amines, when formed mainly by the decarboxylation of free amino acids (FAAs) from the action of
decarboxylase enzymes, which are mainly of microbial origin (Figure 1).

BA formation is influenced by numerous factors (Figure 1) that can be divided into three
groups: raw materials (composition, pH, ion strength, etc.), microorganisms (decarboxylase activity
is attributed chiefly to Enterobacteriaceae, Pseudomonadaceae, Micrococcaceae, lactic acid bacteria, etc.),
and processing and storage conditions (fresh, cured, fermented, refrigerated, modified atmosphere,
etc.) [9,14,17,43,46–48]. These factors do not act in isolation but rather have combined effects that
determine the final concentration of BAs in food. Therefore, to ensure food quality from the perspective
of BAs, it is vital to use suitable raw materials to limit the presence of BAs in the end product and
hence assure better quality. It should be noted that these BAs are thermostable. In other words,
once these biogenic amines are produced they are very difficult to destroy by subsequent processing
(pasteurization, cooking, etc.) meaning that if they are present in the raw material or product, they will
still be present in the final product.

In the case of factors such as microorganisms, it is necessary to control not only the microbial
load in the product but also the type of microbiota constituting that load (bacterial species and
strain), that in turn depends on factors associated with the raw material and processing and storage
conditions [40]. These conditions directly or indirectly affect substrate and enzyme concentrations and
determine the presence of other compounds or conditions that modulate (favor or not) decarboxylase
activity (pH, temperature, co-factors, etc.). Therefore, there are many factors to be considered,
especially in connection with the technology applied (thermal treatments, additives, fermentation,
refrigeration, packaging, etc.). Hence, suitable raw materials are not enough to limit BA formation.
Processing conditions must also be optimized as they are responsible for the specific profile of
the biogenic amine in the different products. For example, fermentation generally promotes BAs,
and in fact, this is the group of meat products with the greatest amount and diversity of these
compounds. This has to do with several factors, such as the raw material, temperature of the medium
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(assuring conditions favorable to starter growth), the presence and concentration of additives (sugar,
salt, antimicrobial agents, etc.), the microorganisms present, etc. The large quantities of microorganisms
in these products, accompanied by proteolysis, gives rise to high concentrations of the amino acids
constituting the nutrients required by the bacteria and the substrate on which decarboxylase enzymes
work. In some cases, the presence of BAs in fermented products has been attributed to the poor quality
of raw materials and defective processing.

Figure 1. Formation of biogenic amines and factors influencing their formation. FAAs are free
amino acids.

The storage temperature of final products is also one of the critical factors in the formation of
BAs. Freezing temperatures inhibit microbial growth and therefore the production of biogenic amines.
In contrast, higher chilled storage temperatures (>5 ◦C in fresh meat or fish) or poor temperature control
foster the growth of microorganisms in products, which results in an increase in proteolysis in muscle
tissue and an increase in decarboxylase enzymes and activity. Hence, low storage temperatures can
make for improved quality and longer shelf-life of products. However, an increase in BAs is also related
to processing and packaging conditions (modified atmosphere, vacuum, high hydrostatic pressure,
irradiation, cooking products, etc.) that have an important influence on microbial flora. Controlling all
of these factors improves the quality and shelf-life of food [14,34,48–50]. Today’s lifestyle and global
markets have led to the massive consumption of food and with this the development of new production
and conservation systems and a complex food chain, that in many cases requires a deeper knowledge
of how these foods are handled and forces us to face new challenges and problems in supplying
safe foods.
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4. Legislation Concerning Biogenic Amines in Food and Beverages

While it is very difficult to establish BA toxicity ranges owing to the many factors involved as
described in the foregoing, given the dual importance of BAs (quality and health implications), efforts
are being made to control BAs in food products and all countries have enacted legislation in this
respect [4]. However, specific legislation only covers histamine in fishery products and no criteria have
been established for other BAs or other food products, such as meat, dairy, or other products, despite
the presence of important levels of BA in all types of food and the potential health risk in certain sectors
of society where these products are consumed. However, in general the same legislation applicable to
fish is applied to these products [19,22,40,44,51,52]. European Commission Regulations (2073/2005,
144/2007, 365/2010) set food safety criteria for histamine in fish. This legislation applies to particular
fish species within the Scombridae, Clupeidae, Eugraulidae, Coryphenidae, Pomatomidae, and Scomberesocidae
families throughout their shelf life with a sampling plan comprising nine units, two of which may be
between 100–200 mg/kg of histamine and none above the limit of 200 mg/kg. This legislation also
covers histamine levels in the processing (brine, enzyme maturation, curing, etc.) of these species with
a sampling plan comprising nine units, two of which may be between 200–400 mg/kg of histamine
and none above the limit of 400 mg/kg. The Australian and New Zealand standard codex feature
similar levels between 100 mg/kg and none may exceed the limit of 200 mg/kg. In the U.S. the Food
and Drug Administration [3] has set histamine limits in food in general at 50 mg/kg. This legislation
is more advanced than its counterpart in the EU insofar as it applies to all food products.

Notwithstanding the difficulties and limitations in determining the real risk of toxicity for
consumers posed by BAs in food, we should be aware that this legislation has its limitations. It is
designed for one single biogenic amine (histamine) that, while admittedly one of the most important
amines from a toxicological point of view, is not the only cause of toxicity. Limits should also be
established for other amines, particularly tyramine, that have toxic effects, while also bearing in
mind the other factors contributing to toxicity such as toxicity enhancers (individual susceptibility,
consumption of MAOI, synergies resulting from the consumption of different foods during the same
meal, etc.), with a view to establishing more restrictive legislation in certain cases. Although these
aspects are truly difficult to address, they should be studied and included in future regulations to
guarantee food safety and consumer health.

5. Analytical Determination of Biogenic Amines

As noted above, from the point of view of food safety and to assess the potential toxic effect of
BAs, it is important to control and determine which BAs should be addressed. A number of swift
and accurate analytical methods have been developed to determine BA levels in different foods and
they were collected in various reviews [36,53–58]. These methods range from the more traditional
colorimetric and fluorometric methods focused mainly on determining histamine individually,
as is also the case with fast commercial kits based on the Elisa enzyme immunoassay to detect
histamine in fish, to methods allowing for the simultaneous determination of several BAs (preferable)
using chromatography methods such as: gas chromatography (CG) and gas chromatographic–mass
spectrometry, high-performance liquid chromatography (HPLC), HPLC-tandem mass spectrometry,
flow injection analysis (FIA), capillary electrophoresis, etc. (Table 1). Of all of these methods, HPLC
is the most popular and frequently reported for the separation and quantification of BAs. This is the
specific analytical method in European Commission (EC) [4]. This procedure offers high resolution,
sensitivity, and versatility, and sample treatments are generally simple. Moreover, it offers the
advantage of analyzing several BAs simultaneously. The HPLC method involves the first phase
of BA extraction from the products and a second phase of determination. The extraction of BA
is conducted using different solvents, such as hydrochloric acid, trichloroacetic acid, perchloric
acid, methanol, etc., for the extraction procedure depending on the type of matrix (Table 1).
The complexity of these matrices is a critical consideration for the adequate recovery of all BAs
and to prevent interference with other compounds in the samples. This phase is also necessary in
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many other methods (Table 1). Chromatographic determination by HPLC is generally used pre-
and post-column with reverse phase or ion exchange columns. Depending on the type of column
employed, different derivate reagents are used to increase the sensitivity of the determination since
BAs have low volatility and lack chromophores. The reagents commonly used in the literature
are: dansyl chloride, ortho-ophtaldehyde (OPA), benzoyl chloride, p-phenyldiazonium sulfonate,
3-(4-fluorobenzoyl)-2-quinolinecarboxaldehyde, methanesulfonic acid, etc. Of these, OPA and dansyl
chloride are the ones most widely used. The type of derivatization reagent used has implications for
detection systems: UV/Vis, diode array, and fluorescence detector (Table 1). Important advances in
analytical methods have paved the way for the use of more routine methods, such as flow injection
analysis (FIA), which has been successfully used to determine BAs. This methodology offers a number
of advantages, such as easy control of the chemical reaction, rapid reaction in the system, all reagent
additions are performed automatically, etc. Moreover, FIA methods have been extensively used in
combination with mass spectroscopy and with immobilized enzymes and electrodes or reactors using
several different enzymes (amine oxidase, peroxidase, histaminase, etc.) to determine BAs in various
elements by means of amperiometry or chemiluminescence. This has marked a major step forward in
biosensor-assisted FIA determination of BAs [53].
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Table 1. Methods and conditions for the determination of biogenic amines in food samples.

Analyte Method/
Equipment Sample Extraction

Solvents
Separation
Technique

Derivatization
Reagents

Detection
System

Time of
Analysis

(min)
LOD Ref

HIS Fluorometric Seafood, meats, cheeses,
sauerkraut, etc. MeOH — OPA PF — 0.02 mg/100 g [59]

HIS Fluorometric Fish (fresh, dry, salted,
frozen, brine, etc.) MeOH Ion exchange

resin OPA PF — – [60]

HIS Colorimetric Fish (tuna, mackerel), NaCl solution — p-phenyldiazonium
sulfonate UV/vis — 1 mg/100 g [61]

HIS ELISA
immunoassay Fish, wine — — UV/vis 10 – [62]

HIS, Tyr, Cad, Put,
Phe, Trp, Spd, Spm TLC Cod, squid, MRS, TSB TCA — Dansyl chloride PF —

5 ng–10 ng
(1 mg/L per 10 µL

spotted)
[63,64]

HIS, Cad, Put, Spm IEC Tuna fish MSA, HCL,
PCA, PB IonPac CS17 MSA EDC 20 0.15–0.50 mg/kg [65]

HIS, Tyr, Cad, Put,
Spd HPLC Milk (cow, goat) PCA ODS2-C18 Benzoyl Chloride UV/vis 13 0.03–1.30 mg/L [66]

His, Tyr, Phe, Try,
Cad, Put Spm Spd HPLC Sausages, cheese PCA,

HCL Eclipse XDB-C18

Dansyl chloride,
Fluorenylmethoxy-
carbonyl chloride,
Benzoyl chloride,
Dansyl chloride

UV/vis 25–50 0.03–0.38 mg/kg, [67]

HIS, Tyr, Cad, Put,
Phe, Trp, Spd, Spm

HPLC or
UHPLC

Meat, beer, wine, rice,
mushroom, sausage,

juice, oil, peanut butter,
fish, shrimp sauce, etc.

PCA
TCA
HCL

ODS2-C-18,
Nova-Pak C18,

Zorbax XDB C18
Dansyl chloride UV/vis 6–30 0.01–0.10 mg/kg

4.43–6.96 µg/L [68–71]

HIS, Tyr, Cad, Put,
Phe, Spd, Spm, Ser,

Met, Etm

HPLC or
UHPLC

Wines, meat, beverages,
coffee TCA

Phenomenex
Luna 5u RP-18

Kromasil
Dansyl chloride DAD 35 0.5 mg/kg [72,73]

Trp, Phe, Put, Cad,
HIS, Tyr, Spm, Spd HPLC Chicken carcasses PCA C18 Dansyl chloride FLD 32 0.05–25 µg/mL [74]

HIS, Met, Etm, Tyr,
Phe, Put, Cad HPLC Wine — Nova-Pak C18 OPA FLD 42 0.006–0.057 mg/L [62]

HIS, Tyr, Cad, Put,
Phe, Agm, Trp, Spd,

Spm

HPLC or
UHPLC

Meat, fish, squid,
prawn

TCA
PCA

Cation
exchange-Capcell

Pak MG-C18
OPA FLD 25–55 0.05–0.2 mg/L

0.2–2.0 µg/L [75–77]
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Table 1. Cont.

Analyte Method/
Equipment Sample Extraction

Solvents
Separation
Technique

Derivatization
Reagents

Detection
System

Time of
Analysis

(min)
LOD Ref

Met, Etm, HIS, Tym,
Trp, Phe, Put, Cad HPLC Canned tuna fish TCA Inertsil ODS-3 Naphthalene-2,3-

dicarboxaldehyde FLD 50 2.5–330 mg/kg [78]

HIS, Tyr, Phe, Ser, Trp,
Oct, Dopa, Cad, Put,

Agm, Spd, Spm
HPLC

Wine, cider, spinach
hazelnut, banana,

potato, milk, chocolate,
meat

PCA Nova-Pak C18 OPA FLD 55–60
0.03–0.06 mg/L
0.07–0.2 mg/L
≤1.5 mg/kg

[41,79,80]

HIS, Tyr, Phe, Ser, Trp,
Oct, Dopa, Cad, Put,

Agm, Spd, Spm
UHPLC Wine, fish, cheese,

sausage PCA Acquity BEH C18 OPA FLD 7 0.2–0.3 mg/L [81]

Put, HIS, Cad, Phe,
Tyr, Spd, Spm HPLC- Beer, cheese, fish,

sausage, shrimp TCA Hypersil BDS C18 EAC FLD 6 0.27–0.69 ng/mL [82]

HIS, Tyr, Cad, Put,
Phe, Agm, Trp, Spd,
Spm, Ser, Oct, Dopa

HPLC Wines — A Zorbax C18 NQS DAD 45 0.2–3 mg/L, [83]

Met, HIS, Put, Cad,
Tyr, Spm, Spd, Trip,

Phe, Etm
HPLC Wine, beer PVP Inertsil ODS-3

column Dansyl chloride DAD–APCI-MS 35 0.008–40.0 mg/L [84]

His, Tyr, Spd, Spm,
Cad, Put, Agm HPLC Fish, cheese, meat,

vegetable
HCL, TCA,

MeOH
LiChrospher RP

18, OPA FLD–DAD 20 0.5–8.5 mg/kg [85]

HIS, Cad, Agm, Tyr,
Put, Phe HPLC Beer, wines BB Gemini C-18 p-toluenesulfonyl

chloride MS 22 0.023–12 µg/dm3 [86]

HIS, Tyr, Phe HPLC Cheese HCL Luna C18 — MS 11 0.05–0.25 mg/kg [87]

Cad, Put, HIS GC Cheese, fish — OV-225 Perfluoropropionyl
derivatives ECD 20 <1.1 µg/g [88]

Etm, HIS, Put, Spm,
Trp, Tyr, Phe, Met,

Prp
GC Wine

MeOH,
CHCl3

(DLLME)

ZB-5MS capillary
column IBCF, PCF MS–MS 25 <4.1 µg/L. [89]

Cad, Put HIS GC Apple juice DLLME CC-DB-5 — MS 8 0.06–2.20 µg/L [90]

Put, Cad, HIS, Phe,
Tyr GC Alcoholic beverages Toluene CC-HP-5MS Isobutyl

chloroformate MS 12 1–10 µg/L [91]

HIS FIA Mackerel, mahi-mahi MeOH — OPA FLD — 0.8–6 mg/kg [92,93]

HIS FIA Cider, wine — Anion exchange
mini-column OPA FLD — 30–101 µg/L [94]

HIS, Tyr, Put, Cad,
Agm, Spm FIA Tuna Water Electrode-Biosensor

(AO, HmDH) OPA APMD — 100 pmol [95,96]
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Table 1. Cont.

Analyte Method/
Equipment Sample Extraction

Solvents
Separation
Technique

Derivatization
Reagents

Detection
System

Time of
Analysis

(min)
LOD Ref

HIS, Phe CE–FIA Standard solutions Water — — MS 22 0.018–0.09 µg/mL [97]

Put, Cad, Spm, Spd,
Trp, Tyr, HIS CE Sauerkraut PCA Silica capillary Benzoyl chloride UV/vis 35 0.2–0.7 mg/L [98]

HIS, Tyr, Phe, Put,
Cad, Spm, Spd CE Soy sauce, fish, wine TCA Silica capillary FBQCA LIFD 14 0.4–10 nM [99]

Put, Cad, Spd, Spm CE Fresh milk PCA Ag/AgCl
electrode — APMD 27 100–400 nM [100]

Put, HIS, Try, Phe,
Spd CE Oyster PCA capillary column-

Ag/AgCl — ECHL 30 9.2 × 10−4–9.6 ×
10−2 µg/mL

[101]

HIS, Tyr CE Meat, cheese, fish,
vegetable

HCL, MeOH,
TCA — — DAD 9 2–6 mg/kg [85]

Spm, Spd, Put, Cad,
HIS, Phe, Trp, Tyr CE Beer, wine — Electrophoretic

separation — MS 10 1–2 µg/L [102]

Agm: agmatine, AO: amine oxidase, APMD: amperometric detection, BB: borate-buffer, Cad: cadaverine, CC: capillary column, CE: capillary electrophoresis, CHCl3: chloroform,
CHMD: chemiluminescence detector, DAD: diode-array detector, DAD–APCI-MS: diode array detection–atmospheric pressure chemical ionization mass spectrometry system, DLLME:
dispersive liquid microextraction, DOPA: dopamine, EAC: ethyl-acridine-sulfonyl chloride, EB: electrode-biosensor, ECD: electron capture detector, ECHL: electrochemiluminescence,
EDC: electrochemical detector-conductivity, Etm: ethylamine, FBQCA: 3-(4-fluorobenzoyl)-2-quinolinecarboxaldehyde, FLD: fluorescence detection, HCL: chloridric acid, HIS: histamine,
HmDH: histamine dehydrogenase, HPLC: high-performance liquid chromatography or high pressure liquid chromatography, HS-SPME: head space solid phase microextraction;
IBCF: isobutyl choloroformate; IBUT: isobutylamine, IEC: ion-exchange chromatography, LIFD: laser-induced fluorescence detection, LLE: liquid-liquid extraction; LOD: limits of
the detection, MAS: methanesulfonic acid, MeOH: methanol, Met: methylamine, MRS: Man, Rogosa and Sharpe Broth, MSA: methanesulphonic acid, MS: mass spectrometry,
NQS: 1,2-naphthoquinone-4-sulfonate, Oct: octopamine, OPA: o-phthaldialdehyde, PB: phosphate buffer, PCA: percloric acid, PCF: propyl chloroformate, PF: photofluorometer, Phe:
β-phenylethylamine, Put: putrescine, PVP: polyvinylpyrrolidone, Ser: serotonin, Spd: spermidine, Spm: spermine, TCA: tricloroacetic acid, TLC: thin layer chromatography, Trp:
tryptamine, TSB: tryptic soy broth, Tyr: tyramine, UHPLC: ultra-high performance liquid chromatography, UV: ultraviolet.
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6. Conclusions

There are many reasons to prevent the accumulation of biogenic amines in food products,
mainly related to their utility as food quality indicators and their potential implications for consumer
health. Controlling these compounds implies a deep understanding of the formation, monitoring,
and reduction of biogenic amines during the processing and storage of food, and even of the
effects of biogenic amines in consumers after the digestion of foods containing different levels
of these compounds. Moreover, it is important to have quick, reliable, and precise analytical
techniques to determine not only histamine and tyramine levels individually, but also to analyze
other biogenic amines (putrescine, cadaverine, β-phenylethylamine, etc.) with implications for health
and metabolic processes.

Such control of biogenic amines would benefit public authorities, industry, and consumers as
it would help put higher quality products with fewer health implications on the market. However,
guaranteeing the quality and safety of food requires a commitment not only from public institutions
but also from production sectors, commercial processors, and ultimately from consumers who must
play an important and active role in achieving food safety.

7. Future Trends and Perspectives

There are many lines of research looking into BAs in food and there are also many possibilities
to be explored with regard to this subject from the technological, microbiological, analytical,
and toxicological points of view.

Work should focus on determining the real risk of toxicity for consumers posed by BAs in food and
should not be limited to a single amine or food product but should rather cover all the amines involved
and in all foods consumed. Attention should also be given to the other factors contributing to toxicity,
such as toxicity enhancers (individual susceptibility, consumption of MAOI, synergies resulting from
the consumption of foods, etc.). Although these aspects are truly difficult to address, they should be
studied and included in future regulations to guarantee food safety and consumer health.

Another important reason to control these compounds is the fact that often foods with toxic levels
of BAs, such as histamine or tyramine, appear organoleptically ‘normal’ and consumers are unable to
reject products based on sensorial parameters.

Moreover, today’s market is trending towards the development of new products with new
ingredients and new processing technologies, which create new conditions that could either favor or
reduce the formation of biogenic amines. This is the case, for example, of the effect of decarboxylase
enzymes responsible for their formation and the factors that modulate this activity. Therefore the
implications of these new factors must be taken into account in new projects.

Important research efforts should continue in the field of analysis and determination of these
BAs, always focused on the simultaneous determination of all of them, and on the different matrices,
in order to solve the problems of extraction and interference of complex matrices. Also, advances need
to be made in the search for more accurate, swift, simple, and unified determination methods that can
easily be transferred to laboratories, industry, and the public administration.

Consequently, all research efforts should focus on the overarching goal of food safety and on
providing the authorities with the tools they need to conduct swift checks of these compounds to
reduce risk to consumers.
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16. Linares, D.M.; Martĺn, M.C.; Ladero, V.; Alvarez, M.A.; Fernández, M. Biogenic amines in dairy products.

Crit. Rev. Food Sci. Nutr. 2011, 51, 691–703. [CrossRef] [PubMed]
17. Benkerroum, N. Biogenic Amines in Dairy Products: Origin, Incidence, and Control Means. Compr. Rev. Food

Sci. Food Saf. 2016, 15, 801–826. [CrossRef]
18. Rice, S.L.; Eitenmiller, R.R.; Koehler, P.E. Biologically active amines in food: A review. J. Milk Food Technol.

1976, 39, 353–358. [CrossRef]
19. Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Biogenic Amine Sources

in Cooked Cured Shoulder Pork. J. Agric. Food Chem. 1996, 44, 3097–3101. [CrossRef]
20. Suzzi, G.; Gardini, F. Biogenic amines in dry fermented sausages: A review. Int. J. Food Microbiol. 2003, 88,

41–54. [CrossRef]
21. Stadnik, J.; Dolatowski, Z.J. Biogenic amines in meat and fermented meat products. Acta Sci. Pol.

Technol. Aliment 2010, 9, 251–263.
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