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Cross-flow or vertical-axis turbines are flow energy conversion devices in which lift forces cause blades to ro-
tate around an axis perpendicular to the flow. In marine currents, rivers, and some wind energy applications,
cross-flow turbines are a promising alternative to more conventional axial-flow turbines. The performance
implications of the choice of structure used to mount turbine blades to the central shaft is examined exper-
imentally in a recirculating water flume. Turbine performance is found to be strongly dependent on choice
of mounting structure. Power loss due to rotational drag on these structures is estimated experimentally
by rotating the mounting structure without blades. Through a perturbation-theory approach, interactions
between turbine blades and mounting structures are examined. Analytical models for the power loss due to
mounting structure drag are introduced and shown to be consistent with experiments. To provide guidance
for cross-flow turbine design, the models are re-formulated in terms of non-dimensional turbine design and
operational parameters. Mounting blades solely at their mid-span is shown to decrease performance through
multiple fluid effects. Using foil cross-section struts located at the turbine blade tips is found to result in the
highest turbine performance.
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I. INTRODUCTION

Cross-flow turbines convert fluid kinetic energy to ro-
tational mechanical energy via blades rotating about an
axis perpendicular to free stream direction. These tur-
bines may be further sub-divided into those that gener-
ate torque from lift on foils (e.g., Darrieus rotors) and
those that generate torque from drag (e.g., Savonius ro-
tors). Despite historical concerns of low performance
and structural failure due to fatigue, lift-based cross-flow
turbines have experienced a resurgence of research and
commercial interest in recent years and hold promise for
urban1 and offshore2 wind applications. Modern experi-
mental and computational techniques have enabled sub-
stantial increases in power performance3 and suggestions
that optimized arrays may be able to extract more power
per area than arrays of axial-flow turbines4. Drag-based
cross-flow turbines are also an area of active research5,
but are not the focus of this investigation and recent de-
velopments (e.g., Plourde et al.6) are not discussed here.
In addition to wind applications, cross-flow turbines have
several features that make them a promising alternative
to axial-flow (horizontal-axis) turbines when operated in
marine or river currents. First, their typically rectangu-
lar form factor is well-suited for the geometry of shallow
tidal and river channels, allowing for the construction of
higher blockage ratio turbine arrays that could boost ar-
ray performance7. Second, the maximum blade velocity
of cross-flow turbines is generally lower than equivalently
sized axial-flow turbines, reducing the risk of blade cavi-
tation and potential harm to aquatic fauna through col-
lision or acoustic emissions8. Third, cross-flow turbine
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operation is either bi- or omni-directional, depending on
the axis orientation eliminating the need for active yaw
control in oscillating tidal currents.

In their simplest form, the rotor of a cross-flow turbine
consists of a set of fixed-pitch blades that rotate about
a central axis. Despite this single degree of freedom,
the cyclically varying flow encountered by the blades, in-
cluding interaction with their own wake, result in com-
plex hydrodynamics. Studies have been conducted on
the performance implications of various blade geomet-
ric parameters9–13, operating conditions14–17, and wake
interactions18. However, little has been published con-
cerning the implications of how the blades are affixed to
the central shaft of the turbine. While this concern may
seem secondary to the rotor blade geometry, the blade
support structure has the potential to heavily influence
rotor performance. First, since the support member(s)
must rotate with the rotor, they will necessarily produce
some drag opposing the direction of rotation. Second,
the support members may influence lift generation of the
rotor blades. For example, on stationary foils, end-plates
have been shown to be functionally similar to an increase
in blade span by reducing tip effects19. Blade support
structures placed near the tips of the blades may act as
end-plates, reducing lift losses due to flow from the pres-
sure surface to the suction surface around the end of the
blade. Third, on aircraft wings, winglets are employed to
reduce induced drag (drag due to lift20). Blade support
structures have the potential to provide this function.
Finally, differing blade support geometries may restrict
span-wise flow in the turbine rotor to varying degrees,
which may impact turbine performance by altering vor-
tex formation during dynamic stall.

Previous studies have individually demonstrated sev-
eral strategies for mounting the blades to the central
shaft. These include disks21,22, streamlined struts at the
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blade ends23,24, and streamlined struts at the mid-span or
other intermediate positions25,26. However, to date, few
studies have made a systematic comparison of the im-
plication of these choices. Goude, Lundin, and Leijon27

considered the influence of differing numbers of struts us-
ing a double-multiple stream tube model based on tabu-
lated values of the strut drag coefficient. Gosselin, Du-
mas, and Boureau28 used an unsteady Reynolds-averaged
Naiver-Stokes model to explore the effect of the adding
end-plates to the blade tips of a cross-flow turbine. Small
end-plate resulted in turbine performance gains, since re-
duction in tip-losses outweighed end-plate drag losses.
Rawlings et al.29 experimentally found a slight increase
in performance by applying disk and foil end-plates to
the ends of a three-bladed cross-flow turbine. Li and
Calisal30 experimentally compared a turbine with NACA
0012 struts positioned at the center-span and ends of the
blades to a more blunt profile, positioned at 1/4 span
from the ends. The increase in performance of the NACA
0012 struts was attributed to lower profile drag and a
reduction in tip losses and induced drag. Additionally,
disk and foil end-plates were tested resulting in a small
increase in performance. Bachant et al.16 experimentally
compared NACA 0021 and cylindrical struts mounted at
the mid-span of a three bladed cross-flow turbine. The
large drag on the cylindrical struts resulted in a negative
turbine efficiency at all operating conditions. Strut drag
was measured independently from turbine performance
by rotating the turbines without blades.
This study experimentally explores the impact of blade

mounting geometries on the performance of a lift-based
cross-flow turbine with two straight blades. By evaluat-
ing changes in turbine performance and drag on mount-
ing structures, as well as analytical models, we provide
a guide for selecting blade mounting geometry for cross-
flow turbine designs. These considerations are specific
to lift-based cross-flow turbines since drag-based cross-
flow turbines, such as a Savonius rotor, are configured to
maximize drag.

II. METHODS

Cross-flow turbine performance is characterized by the
tip-speed ratio (λ) and rotor mechanical efficiency (CP ),
which are given by

λ =
ωR

U∞

(1)

and

CP =
ωτ

1
2ρU

3
∞
2RH

(2)

where ω is the turbine rotation rate, R is the turbine
radius, ρ is the operating fluid density, U∞ is the free-
stream velocity, τ is the torque produced by the turbine,
and H is the turbine height.

Experiments were performed in a recirculating water
flume with a test section 75 cm wide and 47 cm deep.
The turbines were 17.2 cm in diameter and 23.4 cm high,
resulting in a constant blockage ratio of 11.4%. Since only
relative changes in turbine performance are considered,
performance is not corrected for blockage. All tests used
a turbine rotor with two, straight, NACA 0015 blades
with a chord length of 4.06 cm, resulting in a chord to
radius ratio of 0.47 and a solidity,

σ =
Nc

2πR
, (3)

of 0.15, where N is the number of turbine blades. The
blades were mounted at a preset pitch angle of 6 degrees,
leading edge rotated outwards about the quarter-chord.
Free-stream velocity measurements were made using an
acoustic Doppler velocimeter at a sample rate of 64 Hz.
The turbulence intensity (standard deviation of turbu-
lent fluctuations relative to the mean flow) was 1.5% at
the maximum flow velocity of 0.7 m/s. For a given tip-
speed ratio, the turbine angular velocity was held con-
stant by a servomotor. Electrical power generated by
the turbine, actualized as reverse current in the servo-
motor, was dissipated in a dump resistor. Angular ve-
locity control, rather than constant torque control, was
used to eliminate the confounding factor of changes in ro-
tor mass moment of inertia for different blade mounting
structures. The torque generated by the turbine rotor
was measured using a six-axis load cell between the ser-
vomotor and a fixed mounting surface (Fig. 1). Turbine
position was measured using a 218 counts per revolution
encoder. The lower end of the turbine shaft was mounted
to the flume bottom via a bearing and a second six-axis
load cell which measured parasitic bearing torque. For
each test configuration, turbine forces, torque, and posi-
tion were sampled at 1 kHz for 30 seconds.
The torque used to calculate the mechanical rotor ef-

ficiency in Eq. (2) is the torque produced by the rotor
due to fluid forcing only, τ = τfluid. When operated at
constant angular velocity, the equation of motion for the
turbine rotor is

τfluid + τbearing + τcontrol = Jω̇ = 0, (4)

where J is the mass moment of inertia of the turbine
system and ω̇ is the angular acceleration. τbearing is the
torque applied due to friction in the lower bearing, while
τcontrol is the torque applied to the turbine rotor by the
servomotor and is the sum of electrical forces and bearing
losses within the servomotor. Figure 1 illustrates these
torques and the reaction torques measured in these ex-
periments. The upper load cell measures the reaction
torque of the servomotor, τm, top, equal and opposite
τcontrol. The lower load cell measures the reaction torque
on the the lower bearing, τm, bottom, equal and opposite
to τbearing. Rearranging Eq. (4),

τ = −τbearing − τcontrol = τm, top + τm, bottom (5)
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FIG. 1. Free body diagram of the turbine experimental
setup showing torques applied to the turbine (shown counter-
clockwise) and the measured reaction torques (shown clock-
wise).

we arrive at the net fluid torque on the turbine used to
compute CP . Positive τ (torque in the direction of rota-
tion) is produced by lift on the blades while negative τ is
produced by drag on the blades and support structures.
The ten blade connection geometries tested are illus-

trated in Fig. 2 and listed in Table I. Six types of
struts with a chord length equal to the blade chord were
tested. These had either a symmetric 4-digit NACA foil,
rounded, or rectangular cross-section. For each of these,
two thicknesses were tested, t = 0.16c and 0.08c, where c
is the chord length (equal for the blades and the struts).
Additionally, three sets of 0.08c thick disks were tested.
The first had a radius equal to that of the turbine. The
second and third had radii that were expanded by a = 0.5
and 1.0 chord lengths. All mounting structures were at-
tached at the ends of the turbine blades, with the excep-
tion of a final “mid-span strut” configuration, in which
the blades were mounted to the center shaft at the mid-
span using a 0.16c thick foil.
By incrementing the tip-speed ratio, a complete per-

formance curve was generated for each mounting struc-
ture at four free-stream velocities. These corresponded
to blade chord Reynolds numbers,

Rec =
cU∞

ν
, (6)

of 18, 23, 27 and 32×103, where ν is the kinematic viscos-
ity. Losses due to drag on the mounting structures were
estimated by performing the same tip-speed ratio sweeps
with the mounting structures alone, after the method of
Bachant et al.16.
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FIG. 2. Blade mounting geometries. Strut versus disk config-
urations are at the left pane. The three strut cross-sections
are shown at the right. Struts and disks are attached to the
blade tips, with the exception of the mid-span strut (or “H”)
configuration, where the blades are mounted via a single foil
at the mid-span. Table I lists the mounting geometries tested.

Planform Cross Section Thickness

Strut Foil (NACA0008) 0.08c

Strut Foil (NACA0016) 0.16c

Strut Rounded 0.08c

Strut Rounded 0.16c

Strut Retangle 0.08c

Strut Retangle 0.16c

Mid-span strut Foil (NACA0016) 0.16c

Disk, R∗ = R 0.08c

Disk, R∗ = R+ 0.5c 0.08c

Disk, R∗ = R+ c 0.08c

TABLE I. List of mounting geometries tested. All geometries
except the mid-span strut consist of two mounting structures,
one at each end of the rotor. The Mid-span strut is a single
mounting structure located at the mid-pane of the rotor. R

∗

indicates disk mounting structure radius.

Uncertainty in the estimation of CP is due primar-
ily to the upper load cell torque and the free stream
velocity measurements. The high resolution of the an-
gular encoder and the realatively small values of lower
bearing torque mean these measurements do not con-
tribute significant uncertainty. The upper load cell (ATI
Mini45, 5 Nm calibration) had an accuracy of ± 1/1504
Nm, while the Nortek Vector had an accuracy of ± 0.5%
and a resolution of ± 0.001 m/s. The peak CP of the
smallest-radius disk mounting structure was 0.198 while
the corresponding maximum combined error due to these
instruments was 1.3× 10−4.

Over the course of the 30 second measurement period,
the number of turbine revolutions ranged from 22 at the
lowest tip-speed ratio and Reynolds number to a maxi-
mum of 101 revolutions. The cycle-to-cycle variance, as
a percent of the mean CP for each data point with an
efficiency of CP > 0.05 (to avoid taking a percentage of
near-zero values) was at most 0.38%. The median vari-
ance of all performance data points of CP > 0.05 as a
percent of each CP was 0.039%.
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FIG. 3. Peak turbine efficiency as a function of corresponding
tip-speed ratio. Color indicates Reynolds number, Eq. (6).
Legend indicates strut shape and thickness.

III. RESULTS

Figure 3 summarizes the peak performance of each
blade mounting geometry as a function of Reynolds num-
ber and tip-speed ratio. Without exception, increasing
Reynolds number increased turbine performance, as ex-
pected for transitional Reynolds numbers16. As shown in
Fig. 4 (top), for poor-performing turbines, a secondary
performance peak at λ = 1.3 dominates over the peak
near λ = 1.8-2. Previous work has demonstrated that
this low tip-speed ratio peak is due to a strong vortex-foil
interaction31. Increasing turbine performance generally
corresponds to an increase in the tip-speed ratio at which
peak efficiency occurs. At the highest Reynolds num-
ber, strut geometries with the greatest peak efficiencies
were the 0.08c thick struts with foil and rounded cross
sections (CP = 0.250 and 0.244, respectively) followed
by the 0.16c thick strut with a foil cross section (CP =
0.224). These geometries performed best at all Reynolds
numbers. The smallest disk (a = 0), thin rectangular
strut, and thick rounded strut had the next best efficiency
with similar relative performance at each Reynolds num-
ber. The expanded disks (a = 0.5c, c) and the mid-span
strut configurations had the poorest performance at each
Reynolds number.

IV. DISCUSSION

Taking a perturbation theory-like approach to the
problem similar to Li and Calisal30, the total efficiency
of the turbine may be expressed as follows

CP = CP, b+CP, m+CP, m→b+CP, b→m+CP, h.o.t. (7)

Here CP, b represents the ideal power that could be
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produced by the blades, regardless of the mounting struc-
ture or blade end condition (e.g., in the absence of tip
losses). CP, m represents the efficiency losses due to ro-
tational drag on the mounting structures in a flow undis-
turbed by the turbine blades. The next two terms repre-
sent secondary effects. CP, m→b represents the influence
of the mounting structures on blade performance. This
includes a reduction in tip-losses and induced drag and
influence on span-wise flow. CP, b→m encapsulates the ef-
fect of the blades on the drag experienced by the mount-
ing structures, primarily due to changes in the local flow
field induced by the blades. Further, higher-order terms
(CP, h.o.t.) likely exist, but are not considered in this anal-
ysis.
If secondary and higher-order effects are small enough

to be neglected, we can write

CP, b = CP − CP, m −
✘

✘
✘

✘
✘
✘✿

0
CP, secondary. (8)

As in Bachant et al.16, measurements of CP, m have been
taken directly by spinning the turbine in the flume with-
out blades. Figure 5 shows this efficiency loss for the
highest Reynolds number tested. If the approximation
that CP, secondary ≈ 0 holds, CP, b should be the same for
all turbine configurations. Figure 4 (bottom) shows the
performance curves resulting from this analysis. With
the exception of the mid-span strut turbine, the blade
performance curves are generally collapsed, though sec-
ondary effects are still responsible for some performance
variation. Excluding the mid-span strut turbine, there
is a 13% difference in the lowest and highest performing
geometries at the peak of the curves, with discrepancy in-
creasing with tip-speed ratio. The largest variation is be-
tween turbines with identical plan-form geometries (Foil,
0.16c versus Rounded 0.08c). These geometries likely
have a similar end-plate and winglet effect on the blades,
suggesting that CP, m→b should be similar. Therefore, it
is hypothesized that the most influential secondary effect
for all geometries except the mid-span strut geometry is
CP, b→m, that is, the changes in mounting structure drag
due to the flow induced by the blades. Extending the
disks beyond the radius of the turbine foils did not ap-
pear to increase blade performance. This suggests that
shielding only the inside edge of the blade (suction side)
is adequate to reduce tip losses.

A. Mid-Span Mounting Discussion

The mid-span strut turbine exhibits a much reduced
total performance, remarkable considering mounting
structure losses (CP, m) are equal to the best perform-
ing turbine (Foil, 0.08c, Fig. 5) and that this is a com-
mon geometry for small vertical-axis wind turbines (i.e.
“H-Darrieus”). When the mounting structure losses are
accounted for, the CP, b curve has a much broader peak,
far below the other turbine geometries (Fig. 4, bottom).
Since this turbine is the only geometry with free foil tips,
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FIG. 6. Blade performance (Eq. (8)) curves for the 0.08c
thick foil struts, 0.16c thick mid-span strut, and a turbine with
both. Black dashed lines show the performance of the turbine
with both mounting structure types using a reduced value of
the turbine height in the efficiency equation to account for loss
of operable blade span due to the presence of the mid-span
strut. Failure of these curves to approach the 0.08c foil curve
indicates additional sources of power loss due to the presence
of the mid-span strut.

it is likely that CP, m→b dominates. Tip-losses are ex-
pected to be large as flow is no longer blocked between
the suction and pressure sides of the blades. In addi-
tion, the free blade tips may introduce additional drag.
To examine whether tip-effects are solely responsible for
the decrease in performance of the mid-span strut tur-
bine, an additional turbine geometry was tested, where
the mounting structure included both the 0.08c thick foil
struts at the ends of the blades and the 0.16c thick foil
mid-span strut. A comparison of the foil 0.08c, mid-span
strut, and the combined turbine are given in Fig. 6. Here,
the efficiency loss due to rotational drag, CP m, has been
subtracted, leaving only the blade performance and sec-
ondary effects. Shielding the foil tips by using both types
of mounting structures increases in blade performance
over using the mid-span strut alone. However, the fail-
ure of the blade performance to match that achieved us-
ing the 0.08c foil struts alone suggests tip losses are only
partially responsible for losses due to the presence of the
mid-span mount. Since the mid-span strut attaches to
the blades on the suction side of the blades, a central
segment of the blades is unavailable for lift production.
To explore this possibility, the area used in the denomi-
nator of the rotor efficiency equation (2) is reduced from
A = 2RH to A = 2RH∗, where H∗ = H − nt, where
t is the mid-span strut thickness, and n is the number
of strut thicknesses unavailable for lift production at the
mid-span of the blades. As apparent from Fig. 6, rescal-
ing the the blade efficiency in this manner does not ac-
count for all of the difference in blade performance be-
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tween the 0.08c foil turbine and the combined turbine,
even if three strut widths on either side of the mid-span
strut are assumed to be unavailable for lift production
(black, fine dashed line).
Given the preceding analysis, it seems that another

mechanism, besides losses related to the free blade tips
and an interruption of the lifting surface, must be par-
tially responsible for the low performance of the mid-span
strut turbine design. One hypothesis stems from the fact
that the strut interrupts span-wise flow along the lifting
surface. To see how this might be detrimental, first con-
sider that the nominal (local) angle of attack on the foil
varies as a function of azimuthal blade position, θ. Ne-
glecting flow induced by the turbine rotor, the nominal
angle of attack is

αn(θ) = −tan−1

(

sin(θ)

λ+ cos(θ)

)

+ αp (9)

where αp is the pitch angle of the blade. For λ = 2, the
nominal angle of attack for the upstream portion of the
cycle (where the majority of power is generated) varies
from less than zero to over 24 degrees. This virtual pitch-
up maneuver to an angle well above the static stall angle
can result in the roll up of a leading edge vortex (LEV), a
phenomena known as dynamic stall32. The low pressure
region in the LEV results in a temporary increase in lift
above that possible with a foil at constant angle of attack.
As reviewed in Wu, Vakili, and Wu33, span-wise flow in
the vortex core helps to stabilize the LEV, resulting in
greater lift for longer duration before the vortex is shed.
This suggests the introduction of a strut into the mid-
span of the turbine blades could interrupt span-wise flow,
causing premature shedding of the LEV and a reduction
in lift.

B. Modeling Mounting Structure Drag

Analytical models for the drag on various mounting
structure geometries may be a useful design tool for pro-
viding informed design decisions with limited prototype
iteration. Here, models are compared to data collected by
rotating the mounting structures without blades. Losses
due to rotational drag of the central shaft are not in-
cluded in the models. Losses due to the central shaft are
measured separately by rotating the central shaft in the
flow without blades or mounting structures at the appro-
priate free stream velocity and rotation rate. These small
losses are then removed from mounting structure losses.
First the rectangular-planform struts (non-disk mount-

ing structures) are considered. The relative velocity per-
pendicular to a strut section at a distance r from the
rotation axis may be written as

Urel(r, θ) = ωr + U∞ cos(θ) + Uinduced, (10)

where θ is the blade position and is zero when the blade is
traveling directly upstream. Uinduced consists of any flow

r

dr

U
∞

θ

U re
l
=
 

ωr
  +

U ∞

co
s(
θ)

c

R

ω

FIG. 7. Strut drag model diagram. The free stream flow is
from left to right. Red arrows indicate the components of the
local flow velocity due to rotation and the free stream incident
on a strut section of width dr.

velocities induced by the blades and mounting structures.
This term will be neglected for simplicity in subsequent
analysis, with the assumption that the flow induced by
the mounting structures is small. The resulting velocity
vector incident on a strut is shown in Fig. 7. Taking a
blade-element approach to calculating strut losses, the
torque due to drag on a strut element of radial width dr
is

τd(r, θ) =
1

2
ρUrel(r, θ)

2 sgn(Urel)CD(Urel)Lrdr. (11)

Here L is the characteristic length used in the pertinent
drag coefficient (CD) definition (e.g., the chord length for
a foil). The sgn(Urel) term ensures the torque is applied
in the direction of the relative velocity in case reverse
flow is encountered.

At a specific azimuthal angle, θ, the total torque due
to drag on one half strut is given by

τ(θ) =
1

2
ρL

R
∫

0

Urel(r, θ)
2 sgn(Urel)CD(Urel)rdr (12)

The power loss is the mean of this value over all angles
multiplied by the rotation rate, ω, and the number of half
struts (twice the number of blades), or

Pstrut =
ωNρL

2π

2π
∫

0

R
∫

0

Urel(r, θ)
2 sgn(Urel)CD (Urel) rdrdθ.

(13)
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FIG. 8. Efficiency losses due to drag on the 0.08c struts
(symbols) for four different Reynolds numbers as measured
by rotating the struts without turbine blades. Losses from
the center shaft were measured separately and have been ac-
counted for. The 0.08c rectangle line shows predicted losses
according to Eq. (14), while the 0.08c foil lines show predicted
losses according to Eq. (15), with a modification to account
for increased drag of the blade mounting pad.

1. Rectangular Cross-Section Struts

Here the length scale used in the drag coefficient is
L = t where t is the strut thickness. Because the varia-
tion in drag coefficient with Reynolds number has been
shown to be small34, a constant value is used. A good ap-
proximation is to neglect the effect of reverse flow, since
it occurs for only a small portion of the rotation, and if
the tip-speed ratio is greater than 1, only near the center
of the turbine where Urel is small. Then the power loss
integral can be solved exactly as

Prect. =
1

4
ωNρCDtR2

(

ω2R2 + U2
∞

)

. (14)

Rectangular sections with a thickness over stream-wise
depth ratio of 5 have a drag coefficient of about CD =
1 and drag coefficient trends lower as as this ratio
increases35. The rectangular struts in this study had
width over depth ratios of 6.4 for the t = 0.16c strut and
12.8 for the t = 0.08c strut. Drag coefficients of 0.95 and
0.92 respectively were found to best fit the data, consis-
tent with expectations for an increasing thickness-over-
depth ratio. Figure 8 shows the success of this model in
predicting the power loss of the 0.08c rectangular strut,
normalized by the fluid power incident on the turbine, as
in the standard power coefficient definition. In addition,
the assumption of a Reynolds number independent drag
coefficient is supported by the independence of power loss
from the Reynolds number.
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FIG. 9. Drag coefficient versus Reynolds number for a NACA
0012 foil at zero angle of attack. Experimental data, from37–45

is compared to the XFOIL code36 at two different levels of in-
flow turbulence intensity. XFOIL is used to generate the drag
coefficients in Eq. (15). Low Reynolds number drag is shown
to be the worst-case scenario, while high Reynolds number
drag coefficients asymptote to a constant value.

2. Foil Struts

Equation (13) is applied to model the foil strut power
loss. Here the length scale used in the drag coefficient
definition is, by convention, the chord length (L = c)
and the drag coefficient is allowed to vary based on the
instantaneous Reynolds number of each radial element at
each angular position, giving

Pfoil =
ωNρc

2π

2π
∫

0

R
∫

0

Urel(r, θ)
2 sgn(Urel)CD(r, θ)rdrdθ.

(15)
Tabulated values of the drag coefficient variation with
Reynolds number were generated using the panel-method
code XFOIL36 with the turbulence intensity set to 1.5%,
the same value as the experiments. These values were
interpolated based on the local Reynolds number

Relocal(r, θ) =
cUrel(r, θ)

ν
(16)

for each blade element and angular position. XFOIL is
able to predict drag coefficients for a NACA0012 foil at
zero angle of attack within reasonable accuracy, as shown
in Fig. 9.
Because the flat blade mounting area (see Fig. 10) is

not a foil in cross section and is exposed while mea-
suring CP, m, the drag coefficient for this section of the
strut (r/R > 0.91) was increased by a constant multi-
ple over the foil drag coefficient such that CD(r, θ) =
c3CD, foil(r, θ). A constant of c3 = 1.68 was found to
best fit the 0.08c foil data. Equation (15) was numeri-
cally integrated to arrive at the total power loss. Figure 8
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Foil Section

Blade Mount

FIG. 10. A close-up of the 0.08c foil strut. The flat blade
mount pad adds additional drag when the strut is rotated
without blades.

compares this model to data, where losses due to the
center shaft have been removed. The Reynolds number
dependence of the foil losses are reflected in the analyti-
cal model.

3. Disks

Von Kármán solved the the Navier Stokes Equations
exactly for the flow over a rotating disk with a laminar
boundary layer46, with refinements later made by Spar-
row and Gregg47. A drag torque coefficient for a disk
exposed to the fluid on both sides, defined as

Cτ =
2τ

1
2ρω

2R∗5
(17)

was found to be

Cτ = 3.87 Re
−

1

2

ω . (18)

Here, Reω is the disk rotation Reynolds number, given
by

Reω =
R∗2ω

ν
, (19)

where R∗ is the disk radius. For the extended disk
mounting structures (a > 0), R∗ > R. Rott and
Lewellen48 extended the approach to include the transla-
tion of the disk, equivalent to introducing a parallel free
stream velocity, as in the case considered in these exper-
iments. In the limit of a small advance ratio, defined
as

J =
U∞

ωR∗
, (20)

the solution is identical to Von Kàrmàn’s, since the effects
on the boundary layer of the free-stream flow cancel on
advancing and retreating sides of the disk. Von Kàrmàn
also considered the case of a turbulent boundary layer on
a rotating disk in still fluid, finding

Cτ = 0.146 Re
−

1

5

ω . (21)

Equations (18) and (21) have shown good agreement with
data for disks rotating in a fluid at rest49. To determine
if the data collected in these experiments lies within the
low advance ratio limit, such that these solutions may

FIG. 11. Disk rotational drag torque coefficient, Eq. (17),
data compared to exact solutions for a disk in still fluid
with laminar and turbulent boundary layers, Eq. (18) and
Eq. (21)46.

be used, disk drag torque coefficients measured in these
experiments are compared to the exact laminar and tur-
bulent solutions in Fig. 11.
The comparison demonstrates a clear dependence on

the free stream velocity, here indicated by the free
stream-based Reynolds number,

ReU∞
=

R∗U∞

ν
, (22)

suggesting that these measurements are above the low ad-
vance ratio limit, and cannot rely on the exact solutions
alone. Besides that of Rott and Lewellin, the authors are
not aware of any research or analysis on the rotational
drag on a disk in parallel flow. Figure 11 shows that
the drag torque coefficient still approximately follows the

Re
−

1

2

ω law, suggesting the boundary layer is likely in the
laminar regime. The slight upward bend in the data with
the highest Reω may indicate the onset of transition.
To account for the influence of the free stream velocity

on the torque coefficient, a linear advance ratio term is
added to the laminar solution, such that

Cτ = 3.87 Re
−

1

2

ω + pJ, (23)

where the constant p was found to be 0.0075 through
best fit to the data. This empirical correction term was
chosen as it results in the analytical solution for the case
that the free stream velocity is zero (or as the advance
ratio tends towards infinity). The model is compared to
data in Fig. 12, where the predicted power loss has been
normalized by the fluid power incident on the turbine
rotor. Further measurements would be required to un-
derstand if this model is effective across a broader range
of Reynolds numbers.
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FIG. 12. Efficiency losses due to drag on rotating disks (sym-
bols) for four different Reynolds numbers as measured by ro-
tating the disk without turbine blades. Losses due to the
rotation of the center shaft have been removed. The lines
show predicted losses according to the drag torque predicted
by Eq. (23).

C. Dependence on Turbine Parameters

To explore dependence of mounting structure losses on
turbine parameters (e.g., number of blades), the mod-
els for strut losses are reformulated in terms of non-
dimensional turbine operational parameters. To aid com-
parison, some additional assumptions are made. The first
of these is that mounting structures are located only at
the ends of the blades. Power loss due to the mounting
structures is first normalized by the power in the free
stream flow incident on the turbine rotor area as

CP, m =
P m

1
2ρU

3
∞
2RH

. (24)

Turbine non-dimensional parameters are then substi-
tuted. For the rectangular strut model, assuming the
strut width is equal the turbine blade chord, this gives

CP, rect. = −
πt∗CDσ

4AR

λ(λ2 + 1) (25)

Here σ is the turbine solidity (Eq. (3)),

AR =
H

2R
(26)

is the turbine aspect ratio, and

t∗ =
t

c
(27)

is the thickness ratio of the rectangular strut sections.
For foil struts, if it is assumed that the local Reynolds

number is high enough that the drag coefficient is con-
stant, the result is the same as the rectangular strut ef-
ficiency loss equation without the thickness ratio due to
the difference in drag coefficient definitions:

CP, foil = −
πCDσ

4AR

λ(λ2 + 1). (28)

Reynolds number independent operation is likely for
commercial-scale turbines, so this simplification is appro-
priate. For the disk efficiency loss, it is assumed that the
disk has the same radius as the turbine blades, R∗ = R,
thus the disk advance ratio is equal to inverse of the tur-
bine tip-speed ratio, J = 1

λ
. The free stream velocity

Reynolds number is a more natural expression for the
scale of a turbine, thus the identity

Reω = λReU∞
(29)

is applied to Eq. (23). The turbine efficiency lost to disk
drag torque then becomes

CP, disk = −
π

4AR

λ2

(

3.87

√

λ

ReU∞

+ 0.0075

)

(30)

A comparison of Eq.s (25), (28), and (30) shows that
for all geometries, increasing the aspect ratio will de-
crease relative losses, since there is more rotor area per
blade mounting structure. A practical upper limit may
exist if the blade requires intermediate support for struc-
tural stability. For the rectangular and foil struts, losses
increase with turbine solidity, while for the disks they do
not. However, there is likely a limit to the validity of this
dependence on solidity, when the flow induced by a large
number of struts has a significant impact on the individ-
ual strut drag. The effect of tip-speed ratio is similar
across geometries, with the leading term of λ3 for the foil
and rectangular struts and λ

5

2 for the disks. Therefore
the choice of mounting geometry (and associated losses)
becomes increasingly important at higher tip-speed ra-
tios.

D. Scaling and Reynolds Number Effects

A natural question whether the results of this study
can generalize to larger geometries and, thus, higher
Reynolds numbers, such as those of commercial-scale tur-
bines. Though this topic warrants further exploration,
some inferences may be made. First, for the foil and disk
mounting geometries, the experimental data here rep-
resents a worst-case-scenario for normalized losses. As
shown by Fig. 9, foil drag coefficients are expected to
drop further as Reynolds number increases. Similarly,
the disk losses show an inverse power law dependence
on Reynolds number. In contrast, the drag coefficients
of rectangular cross section struts show no change with
Reynolds number, so those results would likely translate
to larger turbines directly. This is because profile drag,
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FIG. 13. Efficiency loss as a function of Reynolds number,
normalized by the efficiency loss at Rec = 3.2× 104, is shown
for the thin foil and smallest disk mounting geometries. Since
the efficiency loss slope is less negative with increase in Reyn-
olds number, these geometries may be approaching Reynolds
number independence.

relatively insensitive to Reynolds number for blunt ob-
jects, is responsible for the majority of the drag for this
mounting geometry.

There is some evidence that these experiments are be-
ginning to approach a regime of Reynolds number insen-
sitivity. Figure 13 shows normalized losses, as compared
to the highest Reynolds number measured, appear to be
asymptotic to a constant value for the thin foil and small-
est disk geometries.

E. Extraploation of Models

The presented models include terms fit to our specific
experimental data. This raises potential concerns over
extensions to other turbines and flow conditions. Here,
we discuss considerations for extrapolating each model
for mounting structure power loss. The model for the
rectangular-cross section struts is most likely to remain
predictive when applied to different scenarios since the
fit value of the drag coefficient is close to that reported
in previous work and is Reynolds number independent.
The fit value in the foil strut model concerns the drag
produced by the sharp geometry of the blade mount-
ing pads. In a fully-assembled turbine, this geometry is
merged with the blade, likely reducing the drag produced
by the mounting pad. Good estimates of foil strut losses
in a full turbine are likely possible using only the XFOIL
estimated drag coefficients. Larger uncertainty remains
for the accuracy of the disk model for higher free stream
velocity Reynolds numbers and future work should in-
clude verification or modification of this model to ensure
applicability across a wide range of turbine sizes and flow
conditions.

V. CONCLUSIONS

Ten two-bladed cross-flow turbine blade mounting ge-
ometries have been tested in a recirculating water flume
at four Reynolds numbers. The best-performing mount-
ing system consists of thin, foil-shaped struts attached at
the ends of the turbine blades. With the exception of the
mid-span strut geometry, blade performance is shown to
collapse at peak performance when losses due to strut
drag are accounted for. Tip-losses are shown to be only
partially responsible for the poor performance of the mid-
span strut turbine. It is hypothesized that interruption of
span-wise flow may cause premature shedding of a bene-
ficial leading edge vortex. Simple models for the drag on
rectangular plan-form and disk mounting geometries are
explored, and are shown to agree well with experimental
data.

We believe these results will be useful to designers of
cross-flow turbines. As such the main conclusions of this
work are presented in terms of end-plate geometry de-
sign decisions. First, supports situated at the blade ends
appear to improve performance relative to a mid-span
support. For blades supported at the mid-span, the ad-
dition of winglets or end-plates to blade tips may reduce
tip losses, but will increase drag without adding struc-
tural support. Additionally, it appears that mid-span
supports have detrimental effects in addition to blade tip
losses and rotational drag. For this reason, intermediate
span supports should be minimized on turbines with a
large axial dimension, H, as structural constraints allow,
particularly when dynamic stall is an important contrib-
utor to turbine power output. Second, for a small number
of blades, it appears that streamlined struts rather than
disks are optimal. This seems likely to be true for tur-
bines with at least three blades, as multiplying t = 0.08c
foil strut drag losses by 1.5 results in less drag than
the smallest disk mounting structures tested. If possi-
ble, a foil cross-section is optimal, but using a simple-to-
manufacture rounded rectangular strut performs nearly
as well, as long as the thickness is minimized. For tur-
bines with greater numbers of blades, it is likely that the
disk mounting structures will be the optimal mounting
geometry, as drag is independent of the number of blades.
Since disk drag increases with R∗4 and we observed no
blade performance improvement by extending disks be-
yond the blades, the disks should not extend beyond the
blades. Extension of the rectangular plan-form mounting
structures (struts) beyond the blade radius is also likely
to be detrimental. Since the suction side of the turbine
blade is already shielded, the additional drag will over-
whelm any small increase in blade performance due to
further shielding of the blade tip.

Additional mounting structure geometries such as foil
struts which incorporate small end-plates or winglets and
a curved foil-strut interface are under consideration. If
possible, strut geometries should be compared at larger
scales, in the Reynolds number independent regime. Dif-
ferences in performance when the inflow is not perpen-
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dicular to the axis of rotation should be considered, since
the disk and strut geometries will likely respond differ-
ently to axial flow. Flow measurements inside the tur-
bine rotor could be used to verify the additional sources
of mid-span strut losses identified in this study.
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“Annex iv 2016 state of the science report: Environmental ef-
fects of marine renewable energy development around the world,”
Ocean Energy Systems (2016).

9T. J. Carrigan, B. H. Dennis, Z. X. Han, and B. P. Wang, “Aero-
dynamic shape optimization of a vertical-axis wind turbine using
differential evolution,” ISRN Renewable Energy 2012 (2012).

10M. R. Castelli and E. Benini, “Effect of blade inclination angle
on a darrieus wind turbine,” Journal of turbomachinery 134,
031016 (2012).

11C.-C. Chen and C.-H. Kuo, “Effects of pitch angle and blade cam-
ber on flow characteristics and performance of small-size darrieus
vawt,” Journal of Visualization 16, 65–74 (2013).

12C. Consul, R. Willden, E. Ferrer, and M. McCulloch, “Influence
of solidity on the performance of a cross-flow turbine,” in 8th

European Wave and Tidal Energy Conference. Uppsala, Sweden

(2009).
13R. Gosselin, G. Dumas, and M. Boudreau, “Parametric study of
h-darrieus vertical-axis turbines using urans simulations,” 21st
Annual Conference of the CFD Society of Canada (2013).

14L. A. Danao, J. Edwards, O. Eboibi, and R. Howell, “A nu-
merical investigation into the effects of fluctuating wind on the

performance of a small scale vertical axis wind turbine,” Engi-
neering Letters 21, 149–157 (2013).

15D. Malcolm, “Dynamic response of a darrieus rotor wind turbine
subject to turbulent flow,” Engineering Structures 10, 125–134
(1988).

16P. Bachant, M. Wosnik, B. Gunawan, and V. S. Neary, “Exper-
imental study of a reference model vertical-axis cross-flow tur-
bine,” PloS one 11, e0163799 (2016).

17L. Battisti, L. Zanne, S. DellâAnna, V. Dossena, G. Persico, and
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