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ABSTRACT: Small pressure gradients generated by boundary flow-topography interactions cause 
advective pore water flows in permeable sediments. Advective pore water exchange enhances the flux 
of solutes between the sediment and the overlying water, thus generating conditions for an increased 
utilisation of oxygen. We compared a less permeable (k = 5 X 10-l2 m2) with a permeable sediment (k = 

5 X 10-" m') typical for coastal and shelf sediments. Total oxygen utilisation (TOU) in incubated sedi- 
ment cores was measured in 10 laboratory experiments using recirculating flow tanks (33 runs). TOU 
was a function of flow velocity in permeable sediment where advective pore water flow occurred. TOU 
increased with the increasing volume of sediment flushed with oxygenated water. We found that 
TOU increased by 91 2 23% in coarse sand when flow increased from 3 to 14 cm S-' (38 mounds m-', 
height 10 to 30 mm, flow measured 8 cm above the sediment). Additlon of fresh algal material caused 
a stronger stimulation of TOU in the coarse sand than in the fine sand (4 additional flume runs). After 
the addition, intensive oxygen consumption reduced the oxygen penetration depth in the advectively 
flushed zone of the coarse sediment. However, counteracting this process, advectlve flow maintained 

an oxic sediment volume still larger than that in the less permeable sediment. Flow-enhanced oxygen 
utilisation is potentially effective in permeable beds of coastal and shelf regions, in contrast to the 
situation in cohesive sediments limited by predominantly diffusive oxygen supply. 
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INTRODUCTION 

The flux of oxygen across the sediment-water inter- 

face accounts for almost the entire remineralisation in 

deep sea oligotrophic environments (Aller 1990, Rut- 

gers van der Loeff 1990). In coastal and shelf sedi- 

ments, other respiratory pathways like denitrification, 

and iron, manganese, and sulphate reduction con- 

tribute considerably to the oxidation of carbon (Jsr- 

gensen & Revsbech 1989, Thamdrup et al. 1994). 

Within the sediments, the reoxidation of the reduced 

end products occurs to a large extent via oxygen (Can- 

field et al. 1993, Thamdrup et al. 1994). The total flux of 

oxygen into the sediment (total oxygen utilisation, 

TOU) depends on the 02-concentration in the water, 

the sedimentary organic carbon content available for 

bacterial metabolism, the concentration of reduced 

chemical species in the sediment reflecting bacterial 

activity, and animals present in the sediment. 

The sedimentary oxygen uptake is limited by the 

rate of oxygen transport across the sediment-water 

interface. Generally, 3 different transport modes may 

be distinguished: molecular diffusion depending on 

the existence of concentration gradients, biopumping 

(irrigation) of oxygenated water by macrofauna 

through their burrows, and advective pore water flow 

driven by differential pressure gradients at the sedi- 

ment-water interface. 

Molecular diffusion dominates transport at the 

sediment surface, in cohesive sediments, in microbial 

mats and at burrow walls (Aller 1983, Jsrgensen & 

Revsbech 1985, Revsbech & Jsrgensen 1986), with a 

diffusive boundary layer often controlling the flux 

(Gundersen & Jsrgensen 1990, Jsrgensen & Des 

Marais 1990, Glud et  al. 1994). 
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Irrigation facilitates flux of solutes across burrow 

walls, thus affecting solute distribution below the sedi- 

ment surface (Aller 1983, Kristensen et al. 1985, Forster 

& Graf 1992, Marinelli 1994). 

Advective transport occurs when biogenic or physi- 

cal sediment roughness impedes boundary layer flow 

at the sediment-water interface. Advective pore water 

flow in the sediment depends on boundary layer flow 

velocity, on the abundance and shape of topography 

structures, and the permeability of the sediment (Huet- 

tel & Gust 1992, Ziebis et al. 1996). 

In the presence of irrigation, the relative contribution 

of diffusive oxygen flux across the sediment-water 

interface to the total amount of oxygen supplied 

decreases (Lindeboom et al. 1985, Rasmussen & Jsr- 

gensen 1992, Glud et al. 1994, Forster & Graf 1995). 

Furthermore, TOU increases after sedimentation of 

fresh algal material (Hansen & Blackburn 1992, van 

Duyl et al. 1992). 

In this study, we examined the effect of unidirec- 

tional flow on total oxygen utilisation in natural perme- 

able sediments with surface topography. By comparing 

the measurements of TOU from a highly permeable 

medium grain sand to those of a fine silty sand with 

lower permeability, we investigated the magnitude of 

the stimulation of TOU by pressure-driven advective 

pore water flow. 

METHODS 

Experimental setting. Experiments were conducted 

in 2 identical flumes (channel length 200 cm, width 

30 cm, depth 10 cm) recirculating 160 1 of sea water. A 

schematic of the flume design is given in Hu.ette1 et al. 

(1996a). A natural sediment core with a volume of 

36 dmycore size 60 X 30 X 20 cm, l X W X h) was placed 

within each flume channel. A 1 cm thick layer of sedi- 

ment covered the acrylic sheet between the collimators 

at  the up- and downstream end of the channel and the 

sediment core. Water depth was 10 cm. The propeller- 

driven free flow vel.ocity was calibrated against the 

voltage of the motor using neutrally buoyant swimmers 

at  the water surface (r = 0.987, n = 18) and corre- 

sponded well to flow sensor measurements (Huettel et 

al. 199613). Free flow velocities were set between 2 and 

14 cm S-'. At these velocities, the open channel flow in 

our flumes was turbulent, with Reynolds numbers 

ranging from 5000 to 30000 (Giles 1976). Temperature 

was controlled and regulated through an external 

cooling unit and oxygen concentration in the water 

was monitored with an oxygen electrode (WTW 90). 

Sediments were collected from 2 locations (Table 1) 

and left to equilibrate for 6 wk. Sand from the 

nearshore subl~ttoral off Giglio Island, Italy, in the 

Mediterranean Sea (Ziebis et al. 1996), below referred 

to as 'coarse' permeable sediment, was used in experi- 

ments performed in Flume 1. Flume 2 contained the 

less permeable sediment from an intertidal sand flat at 

Sahlenburg, Germany, at the North Sea, referred to as 

'fine' sediment. An overview of the experiments per- 

formed in the 2 flumes is given in TabIe 2. 

Sea water was collected at the North Sea tidal flats, 

filtered for removal of planktonic algae, and salinity 

adjusted to 35%0 by addition of artificial sea salt, if 

needed (compare Table 3).  

Oxygen profiles were measured using micro-manip- 

ulator operated microelectrodes equipped with a 

guard electrode (Revsbech 1989) with a stirring sensi- 

tivity < l  %. A 2-point calibration was made between 

the anoxic sediment layer and the overlying water. The 

steepest slope of the concentration gradient (1.1M mm-') 

at the sediment-water interface and the penetration 

depth of oxygen were used for comparison of profiles 

at the smooth sediment surfaces. 

Permeabilities of both sediments were measured 

with a constant head permeameter (Means & Parcher 

1964) using cores taken from the flumes after the 

experiments. We calculated sand grain surface area for 

both types of sedlment from data of gram size distribu- 

tion according to the Wentworth scale (<63, <125, 

~ 2 5 0 ,  4 0 0 ,  <1000, and 21000 pm) by dry sieving and 

assuming spherical geometry. Water content and loss 

on ignition (C,,,) were determined from samples dried 

at 60°C for 24 h and heated at 550°C overnight. 

The macrofauna in the Mediterranean sediment was 

dominated by a thalassinidean shrimp (Calljanassa 
truncata, 22 ind. m-') and the North Sea sediment 

Table 1 Characteristics of the fine and coarse sandy sediment used in this study. Grain size distribution is given with the first, 

second and third weight quartile 

Sediment type 

Onyln 

Porosity Gram size d~stribut~on (pm) Permeability C,,g 

Q I Q2 ( 2 . 3  m"'% dry wt) 

Silty fine sand 

Sahlenburg, Germany, North Sea 0.4 130 200 320 5 X 10-'* 1.2 

Coarse sand 

Giglio Island, Italy, Mediterranean Sea 0.4 270 350 450 5 X 10-" 
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by polychaetes (Heteromastus filiformis, Scoloplos 

armiger] .  Sediment cores were allowed to equilibrate 

for 4 wk in the flumes at in situ temperatures in the 

dark (20 -t 1 and 12 * 1°C, respectively). During this 

period, the shrimps produced a distinct topography 

('natural topography') on the sediment surface com- 

posed of mounds (22 m-', height 1 to 3 cm) and funnels 

(44 m-', depth 1 cm). Infauna in the intertidal North 

Table 2. Experiments carried out in this study. Two identical flumes containing 1 sediment type each were used, both with and 
w~thout  (controls) topography structures 

Flume 1 Flume 2 

Coarse Fine 
Giglio sedlment North Sea sediment 

Dye penetration experiments 

1 run with topography 1 run with topography 

Total oxygen uptake (TOU) 

Expt 1.1, 5 runs with natural topography 
Expt 1.2, 7 runs with natural topography 
Expt 1.3, 8 runs wlth artificial topography Expt 2.3,  5 runs wlth artificial topography 
Expt 1.4, 4 runs with smooth surface (control) Expt 2.4, 4 runs with smooth surface (control) 

Total oxygen uptake after addition of algae 

Expt 1.5, 1 run with artificial topography Expt 2.5, 1 run with artificial topography 
Expt 1.6, 1 run with acryllc sheet, control 
Expt 1.7, 1 run with smooth surface (control) 

rable 3.  Experimental conditions for the measurement of total oxygen utilisation, including number of runs in each experiment, 
the range of free flow velocities In the runs performed, mass of particulate organic carbon (POC) added, temperature, salinity, 

and abundance, dimensions, and type (A: artificial; N: natural) of surface topography structures present 

No. runs Flow velocities POC added Temp. ("C)/ Topography 
(cm S - ' )  (mm01 C m 9 Sallnity (PSU) Height Diameter Type Abundance 

(mm1 (mm) (m-2) 

Total oxygen uptake 
Flume 1, coarse 

With topography 
Expt 1.1 

Expt 1.2 
Expt 1.3 

Smooth control 
Expt 1.4 

Flume 2, fine 

With topography 
Expt 2 . 3  

Smooth control 
Expt 2.4 

Algae additions 

Flume 1, coarse 
With topography 

Expt 1.5 

Control 
Expt 1.6 

1 6 /  34 10.5 

16 / 34 Acrylic sheet 

16 / 34 - 
Smooth control 

Expt 1.7 

Flume 2, fine 

With topography 
Expt 2.5 1 8 60 16 / 34 9.0 55 A 33 
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Sea sediment did not produce topography structures of 

significant height or abundance. Therefore we con- 

structed artificial structures of defined abundance and 

geometry by gently pouring sediment from a syringe 

onto the surface of the sediment ('artificial topogra- 

phy', for dimensions see Table 3).  

Dye experiments. The contribution of advective pore 

water flow to sediment-water exchange was investi- 

gated using inert dye (Rhodamine WT, DuPont, 

Delaware, USA). Two flume experiments, one with 

'impermeable' and one with 'permeable' sediment, 

were set up with otherwise identical flow conditions 

(5.2 * 0.8 cm S- ')  and topography. In these experi- 

ments, a sediment ripple aligned perpendicular to the 

flow and extending across the whole width of the core 

represented the surface topography. The dimensions 

were such that the cross-section visible at the transpar- 

ent walls of the flume (height 14 mm, base length 

85 mm) was directly comparable to that of the mounds 

used in the oxygen utilisation experiments (see below). 

Velocity and penetration depth (precision * 1 mm) of 

the red solute front in the 2 sediments was calculated 

from enlarged photographs taken through the trans- 

parent side walls of the flumes at 1 h intervals over a 

period of 12 h. 

We calculated sediment volumes (V,) affected by 

stained pore water flow for mounds of 14 mm height 

and an abundance of 24 mounds m-'. We assumed the 

geometry of 2 rotational ellipses up- and downstream 

of a mound [Fig. I ;  V, = 0.5V = (2/3)rrab2, with the 

volume (V) of the ellipses, the half-axes (a), and thus 

the longitudinal rotation axes ( 2 4  oriented along the 

axes of the flume, and the axes (b)  equal to the pene- 

Fig. 1. Penetrat~on depth of Rhodamine WT dye In coarse (-) 

and fine sandy sediment (---) due to advection and diffu- 
sion. (flow 5 cm S-'; experimental duration 12 h). Images are 
superimposed for comparison. Graph shows penetration of 
the dye front in the smooth surface (0) (average of 8 mea- 
surements pooled from fine and coarse sediment) and at an 
upstream position at the topography [for fine (U) and coarse 
( A )  sediment]. See 'Methods' for details. Shaded areas show 
rotational half-ellipses used for calculation of sediment vol- 
umes and grain surfaces affected by stained pore water flow 

tration depth of the dye]. Due to the error associated 

with the measured distances (*0.1 cm) the result is 

affected by 3 %. 

TOU measurements. The effect of flow on TOU in 

the 2 sediment types was investigated by increasing 

the flow velocity between consecutive runs of 6 exper- 

iments (Expts 1.1 to 1.4, 2.3 and 2.4; Table 2).  Each 

experiment included 4 to 8 runs. A 12 h period was 

allowed to elapse between the changing of the flow 

velocity at the end of one run and the start of TOU 

measurements in the next one. 

Prior to each TOU measurement, the water was kept 

above 90% air saturation by bubbling with air. The 

flumes were closed with acrylic lids and water was 

added until no air was left in the system. Light pene- 

tration into the flumes was prevented to avoid inter- 

fering photosynthetic activity. The decline in oxygen 

concentration over a 4 h period which began 2 h after 

sealing of the flume was used to calculate TOU. Typi- 

cally the concentration declined from, e.g., 190.9 to 

183.4 pM within 4 h. 

Based on the temperature variations and the accu- 

racy of the sensor readings, we assigned an accuracy 

of 1.5 mm01 oxygen m-' d-I to TOU values reported. 

We measured the oxygen consumption of the flume 

system including collimators, acrylic walls, etc., in a 

control run with the sediment core covered by a thin 

acrylic sheet in order to prevent oxygen supply to the 

sediment. In this case, the oxygen consumption was 

3 mm01 oxygen m'2 d-'.  

With the coarse sediment we  conducted 2 experi- 

ments (Expts 1.1 and 1.2) with topography structures 

constructed by the infauna and 1 experiment (Expt 1.3) 
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with artificial topography. Control experiments with 

smooth sediment surfaces ('smooth control') were per- 

formed without topography and without macrofauna 

present (Expts 1.4 and 2.4). The rnacrofauna was 

removed by sieving (coarse sediment only). To elimi- 

nate the topography, the sediment surfaces were care- 

fully smoothed with an acrylic sheet (roughness height 

2 0.3 mm). Finally, in order to compare the effect of 

sediment permeability in the presence of topography, 

artificial mounds were built on the fine sediment 

(Expt 2.3). 

In order to test the response of the 2 sediment types 

to an addition of particulate organic carbon (POC), we 

conducted 4 experiments (Expts 1.5 to 1.7 and 2.5) at a 

constant flow velocity of 8 cm S-' and with the same 

salinity and temperature in both flumes (34%0 and, 

16"C, Table 3).  A suspension of living planktonic algae 

(Dunaliella sp., not washed) from a batch culture was 

added to the flumes and TOU measured over the fol- 

lowing 6 d.  

In Expt 1.6, the smoothed coarse sediment core was 

covered with an acrylic sheet, which made the deposi- 

tion of algae on the sediment impossible and served as 

a measure of algal oxygen consumption in the water. 

In Expt 1.7, we measured the TOU response to the 

deposition of POC on a smooth surface of the coarse 

sediment. In parallel experiments (Expts 1.5 and 2.5), 

both sediment types with the same artificial topogra- 

phy (Table 3) were subjected to identical additions of 

algae in order to directly compare the effects of topog- 

raphy on POC degradation. The impact of advective 

pore water flow was assessed from oxygen micropro- 

files determined prior to and after Expts 1.5 and 2.5. 

We measured chlorophyll a (chl a) content (5 repli- 

cates; Jeffrey & Humphrey 1975) and the C:N ratio 

(Carlo-Erba Model 1500) in 0.4 pm filtrates from water 

samples to assess the amount of algal material in sus- 

pension (Expts 1.5 to 1.7 and 2.5, Table 3). A C:N ratio 

of 15 found in our fresh algae suspensions was used to 

convert chl a measurements to carbon-equivalents. 

RESULTS 

Sediment type and advective water flow 

The 2 sandy sediments used for the comparison had 

similar water and organic carbon contents, but differed 

in grain size distribution and permeability (Table 1). 

Calculated grain surface areas were 208 cm2 cm-3 wet 

sediment in the fine North Sea sand and 115 cm2 cm-3 

in the coarse Giglio sand. 

The experiments with Rhodamine WT dye demon- 

strated advective transport of water in the coarse sedi- 

ment. Intrusion of stained water is depicted in Fig. 1 by 

Table 4 .  Sediment volumes and corresponding total sand 
grain surfaces affected by advection and diffusion in the 2 

sediment types (all numbers given for surfaces with 24 

mounds of 14 mm helght per m') based on intrusion of dye 
after 12 h of flow at  5 cm S-'  

Sediment affected by dye  intrusion 
Fine Course 

Diffusive Advective Diffusive Advective 

Volume 6100 68 7200 2187 

(cm3 m-2) 

Grain surface 127 0.7 83 25 

(m2 m-2) 

a superimposed image derived from the view through 

the acrylic wall in 2 tracer experiments. In the more 

permeable coarse sediment, the red colour had pene- 

trated to a maximum of 32 mm in the upstream region 

of the topography structure after 12 h of exposure to a 

free flow of 5.2 * 0.8 cm S-' (n = 11). In the smooth areas 

of the coarse bed, transport of dye reached a depth of 

7.2 * 1.2 mm (n = 4). Accordingly, the calculation of 

sediment volume affected by advective flow was 

2187 cm3 relative to a sediment volume of 7200 cm3 

stained predominantly due to diffusion (at 24 mounds 

m-') (Table 4 ) .  Upwelling of reduced clear pore water 

from below was marked by the discontinuous distribu- 

tion of dye on the topography. 

In the fine-grained sand, penetration of dye was 

slightly higher upstream of the topography (6.9 mm) as 

compared to the smooth surface areas (6.1 r 0.6 mm, 

n = 6) after 12 h at a flow of 5.2 cm S-'. Here the sedi- 

ment volume affected by advective flow was 68 cm" 

m-', which is considerably less than the volume stained 

predominantly by diffusive transport of dye. 

Total oxygen utilisation 

The results of the 33 flume runs are summarised in 

Fig. 2. TOU increased with boundary flow velocity in 

the permeable sediment when surface topography was 

present. Slopes of the regression lines in all 3 cases are 

significantly different from zero (Student's t-test: 

Expt 1.1, r = 0 . 8 4 2 , p = O . l ; E x p t  1 . 2 , r = 0 . 6 5 2 , p = 0 . 1 ;  

Expt 1.3, r = 0.879, p = 0.005). The increase of TOU 

with flow for a 10 cm S-' velocity increment amounted 

to 63, 55, and 167 % in Expts 1.1, 1.2, and 1.3 respec- 

tively. On average, TOU increased by 91 + 23% (r = 

0.782, pooled data, n = 20). There was a difference in 

topography structure between runs with coarse sedi- 

ment and natural topography (Expts 1.1 and 1.2) on 

the one hand and those with artificial topography 

(Expt 1.3) on the other hand. Burrowing activity of the 
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Fig. 2. Total oxygen utilisation (TOU) as a function of flow 
velocity in sediment cores with different permeabilities and 
surface topographies. The column on the left includes exper- 
iments where advective transport of pore water makes TOU a 
variable of flow. On the right sediments show no flow-depen- 
dency, either because topography structures are lacking or 
the sediment permeability is too low to show effects of flow 

on TOU. Error bars show k1.5 mm01 rn-'d-' 

jnfaunal organisms added mounds in the latter experi- 

ment (Table 3), some of considerably larger dimen- 

sions than the artificial ones. Comparing the intercepts 

of regression lines, a higher value at 0-flow velocity 

was observed in Expt 1.4, after removal of the macro- 

organisms and mixing of the sediment during sieving, 

than in Expts l . l  to 1.3. 

There was no detectable flow effect on TOU In the 

smooth control experiment using coarse sand. The fine 

sediment core exhibited no dependence of TOU on 

flow, either with or without topography added. 

Oxygen penetrating into the smooth sediment sur- 

faces predominantly by diffusion reached a depth of 

4 . 2  to 4 .4  mm on average. The oxygen microprofiles 

measured at  3 different flow velocities did not show a 

significant dependence on flow velocity in either sedi- 

ment type (Table 5, Fig 3). Though oxygen penetra- 

tion depths were similar, oxygen concentrations were 

higher in the upper millimetre below the sediment- 

water interface of the coarse sand compared to the fine 

sediment. Concentration gradients and penetration 

depths of oxygen are given in Table 5. 

At a constant flow velocity of 8 cm S- '  and with POC 

addition, oxygen penetration depth in the coarse sedi- 

ment decreased by 5 mm in the upstream region of the 

mounds within 6 d, from 19 to 14 mm (Fig. 4a). In the 

fine sand, oxygen penetration decreased by only 1 mm 

to 6 mm in the corresponding locations (Fig. 4c). No 

significant changes were recorded in the smooth sur- 

face control oxygen profiles of either sediment type 

(Fig. 4b, d).  

TOU increased in each of the experiments (Fig. 5). 

An addition of POC to the flume without deposition on 

the sediment surface (control Expt 1.6, sediment cov- 

ered with an acrylic sheet) lead to a short response 

lasting 3 d only. Oxygen consumption in the water, 

presumably by algal respiration, increased TOU by a 

total of 6 mm01 O2 m-'. In contrast, algae settling on a 

smooth sediment surface (Expt 1.7) caused an increase 

in O2 utilisation lasting 4  d with a total of 23  mm01 

O2 m-'. 

normalised oxygen concentration 

Fig. 3. Comparison of the oxygen profiles in smooth surface of 
coarse ( X ,  hatched area) and fine (0, outlined area) sediments 
at a flow velocity of 10 cm S-' (Expts 1.4 and 2.4). Seven 
concentration profiles are given for each sediment type. For 
better companson, concentrations are normalised to the over- 
lying water 02-concentration, which was >go'% alr saturation 

in each case. Horizontal lines indicate the position of the 
sediment-water interface withln t 3 0 0  pm, as determined 
independently by visual inspection and by the first decline in 
concentratlons by more than 5% of the values In the water 

column 
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Table 5. Steepest oxygen concentration gradient (kSD) and penetration depth of of the additional TOU is 30 mm01 O2 
oxygen (*SD) at  smooth sediment surfaces of fine and coarse sand. The values m-2 in the f ine and 50 mmol o2 m-2 in 
are  given for 3 different flow conditions and a s  average values of all oxygen 
microprofiles measured; n = number of measurements. Dye penetration depths 

the coarse sediment. 

at smooth sediment surfaces measured after 12 h at a flow velocity of 5 cm S. '  are 

given for comparison (see Fig 1) 

Flow velocities Average 

3 cm S-' 6 cm S-' 10 cm S- '  

DISCUSSION 

Flow plays a major role in control- 

I Dye penetration (mm) 

Coarse 

Gradient (PM mm-' )  0.95 i 0.18 0.85 * 0.20 1.15 i 0.11 1.05 i 0.30 

Penetration (mm) 4.2 i 0.6 5.3 * 1.1 3.8 * 0.5 4.4 * 1.0 

n 6 5 7 18 

I matter in cohesive sedirnents is lirn- 

ling flux of oxygen and other solutes 

across the sediment-water interface 

(Pamatmat 1971, Bowmann & Delfino 

1980). The transformation of organic 

ical mechanisms enhancing solute 

Fine 
Gradient (PM mm-') 1.09 i 0.27 1.18 * 0.15 1 30 * 0.28 1 18 * 0.26 

Penetration (mm) 4.6 i 0.3 4.1 * 0.4 3 .9k0 .9  4.2 * 0.7 

n 5 5 7 17 

Dye penetration (mm) 6.1 + 0.6 

In Expts 1.5 and 2.5, the algae settled within 5 d, as fluxes across the sediment-water interface thus 

ited by diffusion as the dominant 

transport process of acceptors 

available for the remineralisation of 

organic matter by bacteria (Froelich et  

al. 1979). Biological and hydrodynam- 

traced by declining chl a concentrations in the water increase the potential for mineralisation (Aller 1980, 

column, equivalent to an organic matter addition of Huettel & Gust 1992, Webster & Taylor 1992, Forster 8.1 

60 mm01 C m-'. This material initiated a TOU increase Graf 1995). 

which lasted longer than the 6 d period allotted for mea- Ziebis et al. (1996) investigated the distribution of 

surements. A minimum estimate from the data in Fig. 5 oxygen in the same coarse sediment in relation to the 

oxygen (pmol/l) 

0 50 100 150 200 250 
I , , , ,  I , , . ,  I , , . , I  

... .. .. . . . . . . . 

3 coarse, + topography @ 

oxygen (pmol/l) 

0 50 100 150 200 250 

20 1 coarse, smooth control I 
0 50 100 150 200 250 0 50 100 150 200 250 

-5 ~ " ' ' ~ ~ ~ " ~ ~ ~ ~ 1 ' ~ ~ ~ 1 ~ ~ ~ ~  -5 ~ ' ~ ' ' ~ ~ ~ ~ ' ~ ~ ~ ' 1 ~ ~ ' ~ 1 ~ ' ~ ~ ~  

Fig. 4 Penetration of oxygen in coarse g 
(a ,  b; Expt 1.5) and fine (c, d ;  Expt 2.5) 

sandy sediment at  selected sites 

before (+) and 6 d after (e) addition of g 10 
particulate organic carbon. The pro- .- 
files in (a) and (c) ('topography') were 

C 

taken at the site of maximum penetra- 15:  
.- 

tion depth of oxygen upstream of U 

l 0  - 

15 - 

fine, smooth control @ the mound; those in (b)  and (d) are g 20 f 
from smooth control areas in the same 

flume 25 

fine, a 20 

1 25 
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control (1.6) fine + top. (2.5) 

30 rnrnol m -2 

U 

coarse smooth (1.7) coarse + top. (1 -5) 

50 rnrnol m -2 

days days 

F I ~ .  5. Time courses of TOU after addition of particulate 
organic carbon (POC) at Day 0. Readings were taken once a 
day with an accuracy of + 1.5 mm01 O2 m-' d", as indicated by 
the dimension of the squares. (---) Level of TOU assumed 
without POC addition. Additional TOU due to POC is calcu- 
lated by integrating the area between both lines (given in 
mm01 O2 m-2 in each graph). Expt 1.6 (control): sedlrnent cov- 
ered with acrylic at t = 0 in order to prevent deposition of 
algae on the sediment; Expt 1.7: deposition of algae on the 
smooth surface of the coarse sand; Expt 2.5: effect of deposi- 
tion of algae on the fine sediment; Expt 1.5: combined effect 
of advective oxygen transport and POC input in permeable 

coarse sand 

mechanism driving pore water flow. They demon- 

strated dramatic changes of oxygen penetration depth 

with changing flow velocity. The present study focused 

on the combined effect of surface topography interact- 

ing with boundary layer flow on the utilisation of oxy- 

gen (TOU). 

The advective flow 

A linear increase of TOU was observed in the per- 

meable sediment with surface topography present 

and flow velocities varying between 2 and 14 cm S-' 

(Fig 2) This increase is a result of a combined effect of 

permeability and topography. 

Permeability differed by 1 order of magnitude 

between the coarse and the fine sediment. The effect 

of permeability on advective flow is apparent in the 

comparison of fine and coarse sediments of regions 

adjacent to the topography structure (Fig. 1). The 

higher permeability of the coarse sand (k = 5 X 10-" 

m2) facilitated flushing of pore space in the vicinity of 

the topography (Figs. 1 & 4). Water penetrated 32 mm 

deep into the sediment, reaching sediment grain sur- 

faces that were left anoxic at the corresponding depth 

in the fine sediment. Judging from our experiments 

with flow of 5 cm S-', 30% more particle surface area 

was exposed to dye due to advection in the coarse sand 

than in the fine sand. 

In contrast, for both coarse and fine sediment with a 

smooth surface, an increase in stained sediment with 

increasing flow speed was not detectable. In a smooth 

sediment surface, dye penetration depth after 12 h 

agreed with average 02-penetration in steady-state 

profiles for both sediment types (Table 5). Here, no 

effect of permeability can be seen in our data. With a 

permeability of k = 5 X 10-l2 m2 the fine sediment 

allowed for only little stained water intrusion in the 

upstream region of the topography structure (Fig. l ) ,  

which is documented in a 1 mm increase in dye pene- 

tration depth. 

A calculation of the particle surface areas yields 

127 m2 m-' in the surface layer of the fine sandy sedi- 

ment stained by dye (6.1 mm penetration depth, 

208 cm2 particle surface area per cm%vet sediment). 

The corresponding value in the coarse sand was 83 m2 

m-' if no flow effects were present, assuming a dye 

penetration of 7.2 mm throughout the entire sediment 

surface (7.2 X 115 cm2 cm-3). This indicates that there 

are potentially more bacteria present in the stained 

fine sand volumes, since most bacteria in sediments 

adhere to sediment particle surfaces (Meyer-Reil 

1986). 

However, due to topography-flow interaction, in a 

coarse permeable sediment the total grain surface in 

contact with oxic water from the sediment-water inter- 

face increases with flow, an effect not seen in the fine 

sediment. Exposed particle surface area in the coarse 

sand increased from 83 m2 m-2 at an assumed 0 cm S-' 

to 108 m2 m-2 (83 m2 + 25 m2 in advection areas) at a 

flow of 5 cm S-', if calculated for mounds of 14 mm 

height and an abundance of 24 m-2. At higher flow 

velocities or with more pronounced topography pre- 

sent, more particle surface area with associated bacte- 

ria is supplied with oxygen in a permeable bed than in 

a fine-grained sediment where diffusion is the limiting 

transport for oxygen from the overlying water. 

We conclude that the sediment volume affected by 

advective pore water flows is negligible in the fine 

sediment. Pronounced advective transport can be ob- 

served in permeable sands, with the sediment volume 

and grain surface affected by advection increasing 

with fIow velocity and topography present. 

Processes increasing TOU 

Flow influences the thickness of the diffusive bound- 

ary layer (DBL) of the sediment surface, malung it a 
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rate-limiting step in the interfacial transport of oxygen 

(Morse 1974, Gundersen & Jorgensen 1990, Jorgensen 

& Des Marais 1990). This effect is most pronounced in 

organic rich sediments where concentration gradients 

at  the interface are steep. 

In our oxygen microprofile measurements at  the 

smooth sediment surfaces, the DBL could not be 

resolved with the spatial resolution used. We therefore 

could not detect a n  increase in oxygen gradient with 

flow velocity (Table 5),  which indicates that these 

smooth surface areas did not contribute to the 

observed positive relation of TOU and flow above 

coarse sand in Expts 1.1, 1.2, and 1.3. In any case, we 

consider the effect of DBL depression on TOU minor in 

the relatively organically poor sands used. 

There are,  however, indications that the oxygen dis- 

tribution a t  the smooth surface of the coarse sediment 

is different from that in fine sand. In Fig. 3,  oxygen pro- 

files taken from the coarse sediment show a slower 

decline of concentration with depth within the first mil- 

limetre of the sediment compared to the fine sediment 

profiles. Microprofiles of this sigmoidal shape reveal 

advective transport in the uppermost sediment layer 

(Revsbech et al. 1980), suggesting that flow in our 

flume systems potentially affected oxygen distribution 

even at  the smooth surface of this coarse sediment. The 

extent to which oxygen flux a t  this surface is possibly 

enhanced due to flow is below the resolution of our 

TOU measurements. This issue awaits further investi- 

gation. 

In contrast to the situation at  the smooth surface, 

boundary flow significantly increases the volume of 

oxic sediment in the vicinity of surface topography as  

demonstrated by Ziebis et  al. (1996). Those authors 

measured the distribution of oxygen in the advective 

flow zone of a mound and reported a n  additional oxic 

volume of 98 cm3 in the coarse sediment generated by 

a single mound (height 10 mm, flow velocity 10 cm S-'). 

Adopting this number as the average effect of mounds 

in our experiments, we can calculate the increase in 

oxic sediment volume through flow and relate this vol- 

ume to the oxic surface layer of 4.4 mm thickness pre- 

sent without flow. The estimated oxic volume increase, 

thus, lies between 49% (98 X 22/4400) and 85 % (98 X 

38/4400) with 22 to 38 mounds m-2 present. The 

observed increase of 55 to 167 % in TOU in the coarse 

sediment experiments is in the same range as the sed- 

iment volume flushed by oxic water through the 

advective flow. Deviations in size from the 10 mm stan- 

dard mound assumed in the estimate above may 

account for the differences in the percentages, since 

sediment volume affected by advective flow increases 

exponentially with size of the mounds (Huettel & Gust 

1992). In our experiments, natural topography con- 

structed by Callianassa truncata consisted of mounds 

of approxin~ately 1 to 3 cm height and 3 to 6 cm diam- 

eter and funnels of 1 to 2 cm diameter and 1 cm depth.  

In the fine sediment, an  equivalent estimate yields 

an  oxic volunle increase 20.5  %, impossible to detect in 

our TOU measurements. 

Other oxygen consuming processes included in the 

coarse sediment experiment with natural topography 

(Expts 1 . l ,  1.2, and 1.3) were irrigation and respiration 

by the shrimp. We did not measure these. However, 

their contribution to TOU is a function of the metabo- 

lism of the organisms themselves. Therefore a linearly 

increasing relation with flow velocity is not to be 

expected. Such a relation could be observed in the 

case of relict burrows flushed by boundary velocity in- 

duced secondary flows (Ray & Aller 1985) or in the case 

of a fauna1 irrigation activity stimulated by boundary 

layer flow, a mechanism which to our knowledge has 

not been reported so far. TOU increased a s  a function 

of the abundance of mounds (Expts 1.1 and 1.2 vs 

Expt 1.3) with the same number of organisms present 

in all experiments. This further supports the conclusion 

that advective flushing of sediment interstices rather 

than irrigation was responsible for the positive relation 

of flow and TOU. 

Reduced sediment expelled from the burrow may 

have contributed to the scatter observed in the TOU 

data of both sediment types. However, burrowing 

activity can neither explain the observed linear 

increase in TOU with flow velocity nor differences 

between fine and coarse sediment. 

TOU was in the range of 30 mm01 O2 m-' d-' for all 

measurements performed in the fine sediment core. In 

the coarse sediment TOU was lower (intercept a t  zero 

flow around 10 mm01 O2 m-' d-l). This observation is in 

agreement with a lower activity generally associated 

with low organic carbon content in sandy environ- 

ments (Keil e t  al. 1994). 

TOU in the coarse sediment control Expt 1.4, how- 

ever, showed a higher level (20 mm01 O2 m-2 d-') after 

complete mixing of the sediment in order to remove 

the macrofauna. This mixing destroyed the stratifica- 

tion of bacterial distribution within the sediment and 

altered microbial activity. It also brought reduced sed- 

iment layers in contact with former surface sediment 

and possibly facilitated the oxidation of minerals, for 

instance FeS2, in the oxic layer. After a week of equili- 

bration, TOU was measured and remained constant for 

5 d at a high level, reflecting a new steady state of 

microbial processes. An important result is that oxygen 

flux was not a function of flow velocity. 

In addition to increasing the oxic sediment volume, 

the advective flows depicted in Fig. 1 also enlarge the 

interface between oxic and  anoxic sediment and chan- 

nel a flow of reduced pore water upwards to the sedi- 

ment surface (Huettel et  al. 199613, Ziebis et  al. 1996). 
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The latter mixes with the recirculating water of the 

flume, and an unknown amount of oxygen, equivalent 

to the reduced solute content of the upwelling water, is 

utilised. Presumably the contribution of upwelling 

pore water was of mlnor importance in our experimen- 

tal set-up, with relatively little anaerobic activity at low 

sediment carbon content. This is also indicated by the 

agreement between the sediment volume flushed and 

the TOU increase. Processes at  oxic-anoxic interfaces 

and effects of upwelling reduced pore water may be 

more pronounced in sediments rich in organic carbon. 

Within the limits of accuracy, the TOU increase 

observed in the coarse sediment experiments is related 

to the oxic volume enlargement of sediment at the 

topography structures This result is in agreement with 

oxygen consumption being a 0-order process with 

respect to oxygen at concentrations above 10 yM (Hao 

et al. 1983, Rasmussen & Jerrgensen 1992). With TOU 

dependent on advective interfacial pore water flow, 

1 more mechanism for enhanced 02-uptake is pre- 

sented. The result indicates that in situ oxygen utilisa- 

tion data from sandy beds have to be interpreted in 

context with the flow conditions and topography main- 

tained during the measurements. 

Effects of fresh carbon input 

Oxygen is consumed at higher rates In sediments 

that are rich in degradable organic material and after 

sedimentation events (Graf et  al. 1983, Hansen & 

Blackburn 1992). In our TOU experiments, we 

assumed the organic matter to be associated with par- 

ticle surfaces in both sediment types, that is, a distrib- 

ution as a monolayer on the particles (Mayer et al. 

1985, 1988). However, in most cases of high fresh car- 

bon input, dissolved organic carbon and organically 

rich large particles are dominant in the pool of carbon, 

and a fixed relation of organic carbon to particle sur- 

face area does not exist (Mayer 1989). 

The experiments showed that oxic respiration in the 

flumes is enhanced when POC deposits on the sedi- 

ment. A minor increase in oxygen consumption owing 

to the presence of algae in the flume water (6 mm01 O2 

m-2) is maintained for a short time only and cannot ac- 

count for the TOU responses obtained in the subse- 

quent experiments. POC deposited on the smooth sur- 

face of the coarse sediment (Expt 1.7) was available for 

aerobic processes with a predominantly diffusive sup- 

ply of oxygen and caused 23 mm01 O2 m-' of additional 

TOU. A similar value was obtained in fine sediment 

with topography present (Expt 2.5, 30 mm01 O2 m-2), 

but the highest additional consumption of oxygen 

clearly resulted in the combination of POC addition and 

advective oxygen supply (Expt 1.5, 50 mm01 O2 m-2). 

Increased oxygen utilisation may reflect decomposi- 

tion of a certain percentage of the carbon input and is 

calculated assuming complete aerobic respiration and 

a respiratory ratio of 0.85 (moles of CO, evolved per 

mole O2 consumed; Schmidt-Nielsen 1983). Additional 

oxygen utilised in our experiments thus corresponds to 

? l  % in the coarse and 43% the fine sediment of the 

carbon added to the flumes. This indicates that partic- 

ulate carbon is remineralized quite effectively under 

flow conditions and more so in the coarse sediment. 

Monitoring oxygen uptake in an algae addition exper- 

iment, Hansen & Blackburn (1992) found an equivalent 

of less than 20 O/o of the carbon added within 5 d. 

The amount of POC added (60 mm01 C m-2) is 

roughly equivalent to twice the daily export produc- 

tion to the sediment in the North Sea, which was given 

as 38 mm01 C m-2 yr-' by Wollast (1991) (170 g C m-' 

yr-l). Sed~mentation events in the field and additions in 

bloom simulation experiments often involve much 

higher masses of carbon than our addition. Hansen & 

Blackburn (1992) added algae equivalent to 686 mm01 

C m-2 to incubated sediment cores, triggering a 

response in increased oxygen uptake lasting 13 d. 

From an addition experiment with Phaeocystis spp. 

equivalent to 2000 mm01 C m-2, van Duyl et al. (1992, 

1993) reported 10 d of increased bacterial production. 

Graf et al. (1983) observed a bloom of 960 mm01 C m-' 

settling in the field and a response in heat production 

in the sediment indicating complete ut~lisation of that 

bloom material within 13 d.  

In view of the relatively small additions, the duration 

of responses found in our addition experiments fits rea- 

sonably well. There is a further increase in TOU after 

6 d in the coarse sediment such that the ratio of addi- 

tional oxygen utilisation in the coarse over the fine sed- 

iment (50/30 mm01 O2 m-2) would have been even 

higher after some more days. 

When particulate carbon in the form of algae de- 

posits on the sediment, cells release exudates and open 

by lysis or due to meiofauna feeding in the sand 

(Jensen 1987). Organic material, or components 

thereof, deposited on the sediment surface is also 

found in the sediment below (Graf 1992, Sun et al. 

1994). Deposition of algae is increased in the vicinity of 

roughness elements (Yager et al. 1993) and advective 

pore water flow carries POC into the interstices at the 

sites of maximum oxygen penetration (Huettel et al. 

1996b). 

Intense oxygen respiration decreased the oxic sedi- 

ment volume in our experiments, as reflected in 02- 

microprofiles (Fig 4).  However, advective transport of 

oxygen remained constant throughout the experi- 

ments at 8 cm S - '  and oxygen was supplied at a rate 

sufficient to sustain an oxic sediment layer thicker than 

in the control area. A decrease in oxic volume after 
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POC input implies that the rate of utilisation of oxygen 

per unit volume was stimulated to an even higher 

degree by advective transport in the presence of easily 

degradable carbon. 

This is also evident in the comparison of coarse sedi- 

ment with and without advective flow. Additional TOU 

in the coarse sediment was twice as high with topogra- 

phy and larger oxic sediment volume than without 

advection at the sn~ooth sediment surface (Expt 1.5, 

50 mm01 O2 m-2; Expt 1.7, 23 mm01 O2 m-2). The data 

show that permeable sediments do have a high poten- 

tial for aerobic oxygen utilisation. 

Implications for the field 

The predonlinant regions where advective transport 

of pore water oxygen potentially increases TOU are 

well-sorted sands with a low fine sand fraction in the 

intertidal and subtidal areas of the shelves. In shallow 

waters, permeable sediments, wave action, and cur- 

rents contribute to flushing of the pore space (Riedl et 

al. 1972, Webster 1992, Webster & Taylor 1992). Rip- 

ples of several centimetres in height develop on sandy 

grounds to tens of meters of water depth (Jenness & 

Duineveld 1985) and to >l00 m depth due to heavy 

storms (Bedford & Abdelrhman 1987). Abundant bio- 

genic topography structures ranging from 20 to 

120 m-' are reported from many shelf and coastal sea 

beds (Cadee 1976, Suchanek 1985, Huettel 1988, Wit- 

baard & Duineveld 1989, Griffis & Suchanek 1993, 

Ziebis et al. 1996). 

Our experiments demonstrate that advective pore 

water flow is effective in stimulating sedimentary total 

oxygen utilisation with potential effects on nutrient 

and pollutant cycling (Kersten et al. 1988, Walsh 1991). 

When comparing our findings with the field, caution is 

warranted since the active mechanisms produce an 

overall effect on TOU which depends on a number of 

variables, among others abundance and type of topog- 

raphy, sediment permeability, and the carbon avail- 

able for mineralisation. This paper probably describes 

minimum effects on TOU, since flushing of pore space 

increases with boundary layer flow velocity (Huettel & 

Gust 1992), and velocities in our experiments were at 

the lower end of the possible range. 

As indicated by the carbon addition experiment, 

advective transport enhances TOU even more when 

easily degradable organic carbon is available. A sub- 

stantial portion of fresh carbon deposition is observed 

in episodic events, particularly in shallow marine envi- 

ronments (Smetacek et al. 1978, Graf et al. 1983, Walsh 

1991, Graf 1992). The impact of boundary layer flow on 

remineralisation of carbon may therefore be more pro- 

nounced following sedimentation events. Moreover, 

organically poor sands apparently have a higher 

capacity for mineralisation than previously thought 

(Shurn & Sundby 1996). In these sediments, the com- 

bined effects of fresh carbon supply and advective oxy- 

gen transport provide a mechanism by which carbon 

utilisation is enhanced. 
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