
Impact of Cache Architecture and Interface on Performance and Area of

FPGA-Based Processor/Parallel-Accelerator Systems

Jongsok Choi∗, Kevin Nam∗, Andrew Canis∗, Jason Anderson∗,

Stephen Brown∗, and Tomasz Czajkowski†

∗ECE Department, University of Toronto, Toronto, ON, Canada
†Altera Toronto Technology Centre, Toronto, ON, Canada

Abstract—We describe new multi-ported cache designs suit-
able for use in FPGA-based processor/parallel-accelerator sys-
tems, and evaluate their impact on application performance
and area. The baseline system comprises a MIPS soft processor
and custom hardware accelerators with a shared memory
architecture: on-FPGA L1 cache backed by off-chip DDR2
SDRAM. Within this general system model, we evaluate tradi-
tional cache design parameters (cache size, line size, associativ-
ity). In the parallel accelerator context, we examine the impact
of the cache design and its interface. Specifically, we look
at how the number of cache ports affects performance when
multiple hardware accelerators operate (and access memory) in
parallel, and evaluate two different hardware implementations
of multi-ported caches using: 1) multi-pumping, and 2) a
recently-published approach based on the concept of a live-
value table. Results show that application performance depends
strongly on the cache interface and architecture: for a system
with 6 accelerators, depending on the cache design, speed-
up swings from 0.73× to 6.14×, on average, relative to a
baseline sequential system (with a single accelerator and a
direct-mapped, 2KB cache with 32B lines). Considering both
performance and area, the best architecture is found to be a
4-port multi-pump direct-mapped cache with a 16KB cache
size and a 128B line size.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) have recently
been garnering attention for their successful use in comput-
ing applications, where they implement custom hardware
accelerators specially tailored to a particular application.
Indeed, recent work has shown that implementing compu-
tations using FPGA hardware has the potential to bring
orders of magnitude improvement in energy-efficiency and
throughput (e.g. [12]) vs. realizing computations in software
running on a conventional processor. In general, such FPGA-
based computing systems include a processor, which per-
forms a portion of the work in software, as well as one or
more FPGA-based accelerators, which perform the compute-
and/or energy-intensive portions of the work. The processor
may be a high-performance Intel or AMD x86 processor
running on a connected host PC, or alternately, in the case
of embedded systems, a soft processor is often used, imple-
mented on the same FPGA as the accelerators. This paper
deals with a key aspect of such embedded processor/parallel-
accelerator systems – the memory architecture design.

While a variety of different memory architectures are
possible in processor/accelerator systems, a commonly-used
approach is one where data shared between the processor
and accelerators resides in a shared memory hierarchy com-
prised of a cache and main memory. The advantage of such

a model is its simplicity, as cache coherency mechanisms are
not required. The disadvantage is the potential for contention
when multiple accelerators and/or the processor access
memory concurrently. Despite this potential limitation, we
use the shared memory model as the basis of our initial
investigation, with our results being applicable (in future)
to multi-cache scenarios. In our work, data shared among
the processor and parallel accelerators is accessed through
a shared L1 cache, implemented using on-FPGA memory,
and backed by off-chip DDR2 SDRAM. Non-shared local
data within a single accelerator is implemented within the
accelerator itself using on-FPGA RAMs. We explore the
following question: given multiple parallel FPGA-based
accelerators that access a shared L1 cache memory, how
should the cache and its interface be architected to maximize
application performance?

We consider the impact of three traditional cache param-
eters on performance: 1) cache size; 2) line size; and, 3) as-
sociativity. While such parameters have been investigated in
standard processors, an FPGA-based cache implementation
presents unique challenges. For example, set associativity is
typically realized using multiple memory banks with multi-
plexers to select (based on cache tags) which bank contains
the correct data. Multiplexers are costly to implement in
FPGAs, potentially making the area/performance trade-offs
of associativity different in FPGAs vs. custom chips. Beyond
traditional cache parameters, we also consider the hardware
design of the FPGA-based cache and its interface.

Dual-ported memory blocks in commercial FPGAs allow
a natural implementation of an L1 cache when a single
accelerator is present: the processor is given exclusive access
to one port, and the accelerator given exclusive access to
the second port. With more than two parallel accelerators,
the potential for memory contention exists. We explore
the extent to which such contention can be mitigated via
the cache interface. The accelerators can share a memory
port with arbitration between concurrent accesses happening
outside the memory – in our case, using the Altera Avalon
Interface [3]. Alternatively, a multi-ported memory can
be used. We consider both approaches in this work, and
evaluate two multi-ported cache implementations: 1) multi-
pumping, where the underlying cache memory operates
at a multiple of the system frequency, allowing multiple
memory reads/writes to happen in a single system cycle; and
2) an alternative multi-porting approach recently proposed
in [18], comprising the use of multiple RAM banks and
a small memory, called the live-value table, that tracks
which RAM bank holds the most-recently-written value for

2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4699-5/12 $26.00 © 2012 IEEE

DOI 10.1109/FCCM.2012.13

17

a memory address. The two porting schemes offer different
performance/area trade-offs.

This paper makes the following contributions:

• Parameterized multi-ported cache memory designs for
FPGAs based on two different approaches to multi-
porting. Verilog parameters allow easy modification
of traditional cache attributes such as cache size, line
size and associativity. The designs are open source and
freely downloadable (www.legup.org).

• The multi-ported caches do not require memory par-
titioning and allow single-cycle concurrent accesses to
all regions of the cache. To the authors’ knowledge, this
is the first of its kind to be implemented on an FPGA.

• An analysis of the impact of traditional cache pa-
rameters on application performance in FPGA-based
processor/parallel-accelerator systems.

• An analysis of performance and area trade-offs in multi-
ported cache memory design for processor/accelerator
systems. To the authors’ knowledge, this is the first
study of its kind.

• A demonstration of the effectiveness of deploying
multiple accelerators, operating in parallel, to improve
application performance vs. the single accelerator case.

We conduct our research using the LegUp open source
high-level synthesis (HLS) tool [8] from the University
of Toronto. We target the Altera DE4 board, containing
a Stratix IV 40nm FPGA [13], and show that application
performance depends strongly on the cache design and its
interface.

The remainder of this paper is organized as follows:
Section II presents background and related work. Section III
provides an overview of the targeted system. The multi-
ported cache designs are described in Section IV. Section V
outlines the set of memory architectures explored in this
study – 160 in total. An experimental study is described in
Section VI. Section VII concludes and offers suggestions for
future work.

II. BACKGROUND

A. Memory Architecture in FPGA-Based Computing

A recent work by Cong et al. proposes memory partition-
ing as a way of dealing with memory contention imposed by
multiple parallel accelerators [11]. The idea is to partition
the global memory space based on the regions of memory
accessed by each accelerator. Each partition is then imple-
mented as a separate memory bank, with the objective being
to minimize the number of accelerators that need concurrent
access a particular bank. The partitioning approach yields
good results when accelerators operate on separate memory
regions – i.e. for applications with memory parallelism.
Ang et al. likewise describes a multi-ported cache, where
independent sub-caches correspond to separate partitions
of the global address space [6]. The techniques described
in our paper, however, are independent of the accelerator
memory access patterns and thus are orthogonal to the
memory partitioning approach. Combining our techniques
with memory partitioning is an area for future research.
We believe the cache designs evaluated in this paper are
also compatible with the recently-proposed CoRAM and

LEAP memory architectures [9], [1], both of which provide
a memory abstraction for use in FPGA-based computing,
and a generic well-defined API/model for managing data
transfers between off-FPGA and on-FPGA memory.

Another interesting recent work is the CHiMPS HLS
project which uses multiple caches [19]. Each cache corre-
sponds to a particular region of global memory, based on an
analysis of a program’s access patterns. In CHiMPS, the re-
gions of memory that are “covered” by different caches may
overlap, and in such cases, cache coherency is maintained by
flushing. One can consider the CHiMPS’ memory handling
to be that of memory partitioning, permitting duplication.
Aside from cache size, [19] does not consider other cache
parameters (e.g. line size) as in the current work.

Altera’s C2H tool targets a hybrid/processor accelerator
system with a cache, however, only the processor has
access to the cache (the accelerator can only access off-chip
memory), and as such, the cache must be flushed before the
accelerator is activated if the two are to share memory [2].

The idea of implementing a parameterizable cache on an
FPGA has been proposed in several prior works (e.g. [20],
[22]). However, the prior efforts only evaluated single-
ported caches in isolation; that is, outside of the parallel
accelerator scenario and without a comprehensive multi-
benchmark study. Other works (e.g. [15], [10]) have consid-
ered implementing configurable caches in the ASIC domain,
which presents different trade-offs than FPGAs.

B. LegUp High-Level Synthesis

In this study, the LegUp high-level synthesis tool is used
to automatically synthesize C benchmark programs to hybrid
processor/parallel-accelerator systems [8]. With LegUp, one
can specify that certain C functions (and their descendants)
in a program be synthesized to hardware accelerators, with
the balance of the program running in software on a MIPS
soft processor [21]. The original versions of the HW-
designated functions are replaced by wrapper functions in
the software; the wrappers invoke and send/receive data
to/from the corresponding accelerators via the Altera Avalon
interconnect.

III. SYSTEM ARCHITECTURE OVERVIEW

Our default system architecture is shown in Fig. 1. It
is composed of a MIPS soft processor with one or more
hardware accelerators, supported by memory components,
including the on-chip dual-port data cache and the off-
chip DDR2 SDRAM. Note also that accelerators may have
local memory for data not shared with other modules in
the system. An instruction cache is instantiated within the
MIPS processor as it is only accessed by the processor. The
components are connected to each other over the Avalon
Interface in a point-to-point manner. This interconnection
network is generated by Altera’s SOPC Builder tool [4].
The point-to-point connections allow multiple independent
transfers to occur simultaneously, which is not feasible
with a bus topology. Communication between two compo-
nents occur via memory-mapped addresses. For example,
the MIPS processor communicates with an accelerator by
writing to the address associated with the accelerator. When
multiple components are connected to a single component,

18

!"#$%#&'()**'&
+,&-.,&)%

/(()0)&,1'&

2234%

$23/!

+,&-.,&)%

/(()0)&,1'&

+,&-.,&)%

/(()0)&,1'&

56789:;%

2,1,%8,(9)

!"#$%&'(&)*+,%&&*,)

<'(,0%

!)=

<'(,0%

!)=

Figure 1. Default system architecture.

such as the on-chip data cache, a round-robin arbiter is
automatically created by SOPC Builder.

The solid arrows in Fig. 1 represent the communication
links between the processor and accelerators. These links
are used by the processor to send arguments to accelerators,
invoke accelerators, query an accelerator’s “done” status, and
retrieve returned data, if applicable. Two modes of execution
exist in our system: sequential and parallel. In sequential
mode, either the processor or a single accelerator execute at
a given time, but not both. Thus, once the processor starts
an accelerator, it is stalled until the accelerator finishes. In
parallel mode, the processor and multiple accelerators can
execute concurrently. The processor first invokes a set of
parallel accelerators, then continues to execute without being
stalled. The processor may perform other computations,
or may check if the accelerators are done by polling on
addresses assigned to the accelerators.

The dotted arrows represent communication links between
the processor/accelerators and the shared memory hierarchy.
The data cache comprises on-chip dual-port block RAMs
and memory controllers. On a read, if it is a cache hit, the
data is returned to the requester in a single cycle. On a
miss, the memory controller bursts to fetch a cache line
from off-chip DDR2 SDRAM. In our system, this takes
24 cycles for a single burst of 256 bits when there is no
contention from other accesses. Depending on the cache line
size, the number of bursts is varied. On a burst, after an
initial delay of 23 cycles, each additional cycle returns 256
bits of data, continuing until a cache line is filled. As with
many L1 caches, we employ a write-through cache owing
to its simplicity1.

Note that our approach is not that of a single monolithic
memory hierarchy. Each accelerator has its own local mem-
ory for data that is not shared with the processor or other
accelerators. This allows single cycle memory access for all
local memories.

IV. MULTI-PORTED CACHE DESIGNS

Current commercial FPGAs contain block RAMs hav-
ing up to two ports, leading to our default architecture
where the processor accesses one port of the RAM and
an accelerator accesses the other port. A separate memory
controller controls each port. One port is always reserved

1Write-through caches do not require bookkeeping to track which cache
lines are dirty.

for the processor, as the processor requires different control
signals from the accelerators. Hence, with more than one
accelerator, multiple accelerators share the second port as
in Fig. 1. This architecture is suitable in two scenarios:
1) sequential execution, where only the processor or a
single accelerator is executing at a given time; 2) parallel
execution either with a small number of accelerators, or for
compute-intensive applications, where accelerators do not
access memory often.

For memory-intensive applications, with many accelera-
tors operating in parallel, a dual-ported cache architecture
may result in poor performance, as accelerators contend
for one port of the cache, leading to the accelerators being
stalled most of the time. For increased memory bandwidth,
we investigate two types of multi-ported caches, both of
which allow multiple concurrent accesses to all regions of
the cache in every cycle.

A. Live-Value Table Approach

The first multi-ported cache is based on the work by
LaForest et al. [18]. The original work in [18] replicates
memory blocks for each read and write port, while keeping
read and write as separate ports, and uses a live-value table
(LVT) to indicate which of the replicated memories holds
the most recent value for a given memory address. Each
write port has its own memory bank containing R memories,
where R is the number of read ports. On a write, the writing
port writes to all memories in its bank, and also writes
its port number to the corresponding memory address in
the LVT, indicating that it is the most-recent writer to the
address. Read ports connect to one memory block in each
write-port bank. On a read, the reading port reads from
all of its connected memories, and looks up the memory
address in the LVT, which returns the previously-written
port number. This is used to select the most-recently-written
value from one of the connected memories. The LVT is
implemented with registers, as multiple ports can read and
write from different memory locations at the same time. The
original work was intended for register files in processors
with separate read and write ports, and uses a simple dual-
port memory, where one port is reserved for writes and the
other port is reserved for reads. With this architecture, the
total memory consumed is α × the original memory size,
where α is equal to the number of write ports × the number
of read ports.

In the case of caches, the number of read and write ports
is equal, and with n read/write ports, the cache size would
grow by n2. However, in our system, the read and write
ports do not need to be separate. A read and a write port
can be combined into a single read/write port, since an
accelerator can only read or write at a given time, but not do
both. One true dual-ported memory can therefore be used
for two read/write ports, instead of using 2 simple dual-
ported memories with 2 read ports and 2 write ports. This
reduces the total memory consumption to less than half of
that in [18]. A 4-ported cache using the new architecture
is shown in Fig. 2, where each M represents a true dual-
ported memory, and MC represents a memory controller.
For clarity, only the output (read) lines are shown from each
memory block. The input (write) lines are connected from

19

M1

M3

M5

Port1 Port2

Port3

LVT

M2

M4

M6

Port4

M1

M5

Port1Port1 Port2Port2

Port3Port3

LVT

M2

M6

M2

M4

M6

M3M3

M6

Port4Port4

MC2

MC4MC3

MC1
Proc

Accel 2

Accel 1

Accel 3

Cache Memory

Figure 2. LVT-based 4-ported cache.

each port to the same memory blocks as shown by the arrows
(without the multiplexer). A memory controller is connected
to each port of the memory, which is subsequently connected
to either the processor or an accelerator.

In our variant of the LVT memory approach, it is required
that any two ports have one memory block in common. For
example, in Fig. 2, port 1 shares memory blocks M1, M3
and M4, with ports 2, 3, and 4, respectively. This allows
data written by port 1 to be read by all other ports. On a
write, a port writes to all of the memory blocks that it is
connected to, which is n-1 blocks. As in the original LVT
memory implementation, the port also writes to the LVT
to indicate it has updated a memory location most recently.
On a read, a port reads from all connected RAM blocks and
selects the data according to the port number read from the
LVT. Compared to the previous work which caused memory
to grow by n2

× with n ports, our LVT variant scales as:

New cache size =
n × (n - 1)

2
× original cache size (1)

The 4-port cache in Fig. 2 replicates memory size by 6×,
whereas the approach in [18] replicates memory size by
16×. The output multiplexer, which selects between the
memory blocks is also reduced from an n-to-1 multiplexer
to an (n-1)-to-1 multiplexer.

This new multi-ported cache based on the LVT approach
is referred to as the LVT cache in this paper. This can
be compared to multi-cache architectures, where multiple
caches are distributed, with each cache connected to a
processor or an accelerator, and a cache coherency scheme
is implemented to keep the memory synchronized. The main
advantage of the LVT cache architecture is that it offers a
shared memory space, which acts as one combined piece
of memory, thus no cache coherency scheme is needed,
avoiding area and latency costs for synchronization. This
multi-ported cache allows all ports to access coherent data
concurrently every cycle.

Note that since the cache line sizes can be large, the LVT
cannot keep track of every byte in the cache. Hence the
LVT works on a cache line granularity, to keep track of
which cache line was the most recently updated. This can
cause cache line write conflicts, when two ports attempt to
write to the same cache line in the same cycle, even if they
are writing to different bytes in the line. To resolve this,

Dual-port RAM

CLK 1X

CLK 2X

MC1
Proc

Accel 2

Accel 1

Accel 3
MC3

Memory

MC2

MC4

Cache

Figure 3. 4-ported cache with double-pumping.

an arbiter is implemented, which serializes the writes to the
same cache line from multiple ports. This is only for cache
writes to the same cache line. Any reads from the same line
or writes to independent cache lines can occur concurrently.

B. Multi-Pumping

Modern FPGAs, such as the Altera Stratix IV, have
memory blocks which can operate at over 500 MHz [5]
– a speed which is often much faster than the speed of
the overall system. We use this advantage to create another
type of multi-ported cache, using dual-ported memories
clocked at twice the system speed – a well-known technique
called memory multi-pumping. In one clock cycle of the
system clock, the double-pumped dual-ported memories
can perform 4 memory accesses, which from the system’s
perspective, is equivalent to having a 4-ported memory. This
architecture is shown in Fig. 3. Four concurrent accesses
are broken down into two sets of two accesses. The first
set of accesses is presented to the RAM immediately, while
the second set is stored in registers. In the second-half of a
system cycle, the results of the first set of accesses are stored
in registers, while the second set of accesses is presented to
the RAM. At the end of a complete system cycle, both sets
of accesses are complete. In essence, by running the RAM
at 2× the system clock frequency, multi-pumping mimics
the presence of a RAM with 2× as many ports as there are
actually present in the hardware.

The advantage of this approach is that it does not increase
memory consumption. It uses the same amount of memory
as a single dual-ported cache with extra control logic and
registers to steer the data in and out of the RAMs. The
limitation, however, is that the system needs to run slow
enough so that the memory can run at multiples of the
system clock. This constraint usually makes it difficult to run
the memories at more than twice the system clock. In addi-
tion to its reduced memory consumption, the multi-pumping
cache bears other advantages over the LVT approach. Since
memory blocks are not replicated, no extra logic is required
to keep track of which memory block holds the most recent
value, thus eliminating the LVT table. This in turn allows us
to make use of byte enable signals to only write to the bytes
of interest, instead of writing the entire cache line. Thus,
this approach does not have the cache line write conflicts,
described previously. Even if two ports are writing to the
same cache line, no arbitration is needed unless they are
writing to the same bytes.

The multi-pumping cache uses less logic and memory

20

P A

Dual-port Cache

Off-chip memory

Port1 Port2

a) Sequential Dual-port

P

Dual-port Cache

Off-chip memory

Port2

b) Parallel Dual-port

A1 A2 A3 A4 A5 A6

P

Multi-port/Multi-pump

Cache

Off-chip memory

Port1 Port2

A1 A2 A3 A4 A5 A6

Port3 Port4

P

Multi-port Cache

Off-chip memory

P1

A1 A2 A3 A4 A5 A6

Port1

P3P2 P4 P7P5 P6

c) Parallel 4-port using LVT/MP d) Parallel 7-port using LVT

Figure 4. Architectures evaluated in this work.

resources than the LVT cache, which often leads to higher
Fmax (shown in Section VI), with the caveat that multi-
pumping cannot be scaled to more than 4-ports in our
system. The multi-ported cache based on the multi-pumping
approach is referred to as the MP cache for the rest of this
paper.

V. SYSTEM ARCHITECTURES EXPLORED

Using the LVT and MP caches, we investigated 5 different
systems, shown in Fig. 4, where P denotes the processor,
and A denotes an accelerator. Fig. 4(a) shows our default
architecture, where a single accelerator executes sequentially
to perform all of the work in the program while the processor
is stalled. Fig. 4(b) illustrates the same cache architecture as
Fig. 4(a), but with multiple accelerators which execute in
parallel. With one of the ports designated for the processor,
all of the accelerators arbitrate for the second port (via
Avalon). Fig. 4(c) shows a 4-ported cache architecture, using
either an LVT or an MP cache, with two accelerators sharing
one port of the cache – Avalon arbitrates between the two
accelerators that share a port. Fig. 4(d) shows an architecture
where the processor and each accelerator has its own port to
the cache. This has the highest possible memory bandwidth,
since no contention exists to the cache and all of the cores
can access memory at the same time. Contention still exists
to access off-chip memory. Only the LVT cache can be used
for the architecture in Fig. 4(d), as the MP memory with
its surrounding control logic cannot run at more than 2×

the system clock. For the parallel cases, 6 accelerators were
chosen to evaluate performance variations with different
cache architectures, ranging from high memory contention
to no memory contention to access the cache.

For each of the 5 different systems, we explore a variety of
cache configurations, shown in Table I. Four different cache
sizes are investigated, and for each cache size, 4 different
line sizes are studied. For each cache and line size, we lastly
investigate direct-mapped (one-way) caches vs. 2-way set-
associative caches. Hence, we evaluate a total of 5×4×4×

2 = 160 different memory architectures across 9 parallel
benchmarks (c.f. Section VI).

Table I
CACHE CONFIGURATIONS EVALUATED.

Cache Size Cache line size / # of Cache lines

2KB 32B/64 64B/32 128B/16 256B/8
4KB 32B/128 64B/64 128B/32 256B/16
8KB 32B/256 64B/128 128B/64 256B/32
16KB 32B/512 64B/256 128B/128 256B/64

Associativity Direct-mapped 2-way Set-associativity

VI. EXPERIMENTAL STUDY

A. Benchmarks

The 9 parallel benchmarks used in this study are all
memory-intensive data-parallel programs, meaning that no
two accelerators write to the same memory address, but
may read from the same address. Each benchmark includes
predefined inputs and golden outputs, with the computed
result checked against each golden output at the end of the
program.

• The array addition benchmark sums the total of 6
arrays, each with 10,000-integer elements.

• The box filter is a commonly-used kernel in image
processing. It has the effect of smoothing an image,
by using a 3 × 3 filter to eliminate any out-of-place
pixel values.

• The dot product benchmark does pairwise multipli-
cation of each element in two 6,000-element integer
arrays and calculates the total sum.

• The GSM×6 benchmark is adopted from the CHStone
benchmark [16] and performs 6 linear predictive coding
analyses of a global system for mobile communications.

• The histogram benchmark takes an input of 36,000
integers between 1 to 100, and accumulates them into
5 equally-sized bins.

• The line of sight benchmark uses the Bresenhams line
algorithm [7] to determine whether each pixel in a 2-
dimensional grid is visible from the source.

• The matrix multiply benchmark multiplies a 100 × 6

matrix with a 6× 100 matrix.
• The matrix transpose benchmark transposes a 1024×6

matrix.
• The perfect hash benchmark hashes 24,000 integers

between 0 and 500,000,000 and creates a perfect hash
table.

Note that for all of benchmarks the input data is sized to
be equally divisible by 6, as 6 parallel accelerators are used,
with each accelerator performing an equal amount of work.
This can easily be changed to handle different numbers of
accelerators.

Each benchmark was first simulated on each type of sys-
tem architecture for each cache-size/line-size/associativity
using a ModelSim functional simulation. The total num-
ber of execution cycles was extracted from the ModelSim
simulation, using an accurate simulation model for the off-
chip DDR2 SDRAM on the Altera DE4 board. Following
cycle-accurate simulation, each benchmark was synthesized
to Altera Stratix IV with Quartus II (ver. 10.1SP1) to obtain
area and critical path delay (Fmax) numbers. For Fmax,
we use slow 900mV 85 deg. C timing models. Execution

21

Table II
BASELINE SYSTEM RESULTS.

Time Cycles Fmax Area Memory

2,028.3 µs 259,216 127.8 MHz 13,460 ALMs 301,693 bits

time for each benchmark is computed as the product of
execution cycles and post-routed clock period. Exploring
all benchmarks and architectures required a total of 1,440
ModelSim simulation and Quartus synthesis runs, which was
done using SciNet, a top-500 supercomputer [14].

B. Results

Figs. 5, 6 and 7 show average execution time (speed-
up), cycle count (speed-up) and Fmax, respectively, relative
to a baseline system which employs a single accelerator
running sequentially using a 1-way (direct-mapped) 2KB
cache with a 32-byte line size. The geometric mean results
for the baseline system (across all benchmarks) are shown
in Table II.

Beginning with Fig. 5, observe that larger cache sizes
generally provide higher speed-ups, as expected. We see a
clear trend in the figure: two clusters of speed-up curves –
one cluster clearly above the other. The cluster of six curves
with the higher speed-ups corresponds to the three multi-port
cache designs considered (each direct-mapped or 2-way set
associative). The best speed-ups of 6.14× and 6.0× occur
for the parallel 7-port LVT 1-way and the parallel 4-port
MP 1-way, respectively. From the bottom cluster of curves,
it is evident that, even with 6 accelerators, using a dual-port
cache and relying on the Avalon interconnect for arbitration
provides poor speed-up results (even slower than sequential
execution in some cases!).

Observe in Fig. 5 that performance varies widely as line
sizes are increased. In general, performance increases up to
64-byte line size for cache sizes of 2 and 4 KBs, and 128-
byte line size for cache sizes of 8 and 16 KBs. For a given
cache size, as line size increases, the total number of lines
are reduced. With a smaller number of cache lines, a greater
number of memory addresses map to the same cache line,
making the line more likely to be evicted for a new cache
line. Miss rate actually goes up if the line size is too large
relative to the cache size [17]. With multiple accelerators
accessing memory, this can cause cache thrashing to occur,
where the same set of cache lines are evicted and retrieved
continuously, causing excessive off-chip memory accesses.
Larger lines sizes also lead to longer fetch cycles. Indeed,
smaller line sizes perform better for smaller caches as shown
in Fig. 6. This effect is mitigated with 2-way set-associative
caches, and also as cache sizes themselves become bigger.
In Fig. 6, 4-port MP is overlapped with 4-port LVT for both
1-way and 2-way, with 4-MP showing slightly better results
due to cache write conflicts, discussed previously. Sequential
systems show less sensitivity to cache size and line size, as
only one accelerator is accessing memory sequentially.

Fig. 7 shows the impact of multiplexers on Fmax. The
most drastic decrease in Fmax occurs for 2-way systems,
as they require the most multiplexing logic. A 2-way set-
associative cache instantiates two different sets of memories,

with multiplexers on the inputs and outputs to select between
the two sets. In the case of multi-ported memories, extra
multiplexers and/or replicated memory blocks exist within
each set. As expected, the 7-port LVT cache shows the
greatest decrease in Fmax as it uses the highest number of
replicated memories with the largest output MUX. This is
followed by the 4-port LVT and MP caches. On average,
parallel dual-port systems show lower Fmax than sequential
and 4-ported systems since 6 accelerators connect to 1 port
of the cache, creating a larger MUX (6-to-1) than other
multi-ported systems. Accelerators generated by LegUp HLS
for some benchmarks, such as matrix multiply, exhibited
long combinational paths to the cache, which in combination
with the 6-to-1 MUX, cause a significant impact on Fmax.
In general, Fmax is also decreases with increasing line sizes
as larger MUXes are required to select specific data from
longer lines.

Turning to area (# of ALMs) in Fig. 8, all of the 2-
way systems consume more area than their respective 1-
way systems, as expected2. Among all systems, the 7-ported
architecture has the largest size, with the most MUXes,
followed by the 4-ported LVT architecture. This has more
area than the 4-ported MP architecture due to its LVT table,
as well as output MUXes to select between its replicated
memory blocks. All of the parallel systems consume more
area than sequential systems due to their having multiple
accelerators. Area also increases with increasing line size
due to bigger MUXes.

In terms of memory consumption, shown in Fig. 9, the
7-port LVT 2-way consumes the most memory bits, owing
to its replicated memories. Note that the graph illustrates the
total memory consumption of the system, which include the
data cache, instruction cache, local accelerator memories, as
well as any memory consumed by other components such
as the DDR2 controller, and dividers. The reason that the
memory consumption decreases slightly with increasing line
sizes is due to the tags and the valid bit, which is stored as
part of the each line in addition to the data. Hence for a
given cache size, the total number of lines are reduced with
bigger line sizes, reducing tag/valid-bit overhead.

Note that 7-port LVT 2-way, 7-port LVT 1-way, and 4-
port LVT 2-way have missing data points in the figures, as
they cannot fit within the Stratix IV on the DE4 board for
larger line sizes. This is due to the structure of the Stratix IV
M9K memory blocks, that can store 9,216 bits. Each M9K
block in true dual-port mode can operate with 18-bit-wide
words. A total of 1,280 M9K blocks are available on the
Stratix IV [5]. Thus, a 256 byte line size with tags/valid
bit consumes 115 M9K blocks. For a 7-ported LVT 1-way
cache, where the memory blocks are replicated by 21× (see
Eqn. 1), this totals 2,415 M9K blocks, exceeding the number
available. Despite the fact that a 7-port LVT 1-way cache
using a 256B line size only consumes a small fraction of the
total available memory bits on the device, it cannot fit due
to the architecture of the dual-ported M9K blocks. Similar
conditions arise for 7-port LVT 2-way, and 4-port LVT 2-
way architectures with large line sizes.

2The area results represent the complete system including the processor
and accelerators.

22

0

1

2

3

4

5

6

7

32B 64B 128B 256B 32B 64B 128B 256B 32B 64B 128B 256B 32B 64B 128B 256B

2KB 4KB 8KB 16KB

S
p

e
e

d
 u

p
 o

v
e

r
b

a
se

li
n

e

Cache line size / Cache total size

Sequential 1-way

Sequential 2-way

Parallel Dual-port 1-way

Parallel Dual-port 2-way

Parallel 4-port MP 1-way

Parallel 4-port MP 2-way

Parallel 4-port LVT 1-way

Parallel 4-port LVT 2-way

Parallel 7-port LVT 1-way

Parallel 7-port LVT 2-way

Figure 5. Execution time (geometric mean).

0

1

2

3

4

5

6

7

8

32B 64B 128B 256B 32B 64B 128B 256B 32B 64B 128B 256B 32B 64B 128B 256B

2KB 4KB 8KB 16KB

S
p

e
e

d
 u

p
 o

ve
r

b
a

se
li

n
e

Figure 6. Execution cycles (geometric mean).

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

32B 64B 128B 256B 32B 64B 128B 256B 32B 64B 128B 256B 32B 64B 128B 256B

2KB 4KB 8KB 16KB

F
m

a
x

v
s

b
a

se
li

n
e

Figure 7. Fmax (geometric mean).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

32B 64B 128B 256B 32B 64B 128B 256B 32B 64B 128B 256B 32B 64B 128B 256B

2KB 4KB 8KB 16KB

A
re

a
 v

s
b

a
se

li
n

e

Figure 8. Area in Stratix IV ALMs (geometric mean).

0

2

4

6

8

10

12

32B 64B 128B 256B 32B 64B 128B 256B 32B 64B 128B 256B 32B 64B 128B 256B

2KB 4KB 8KB 16KB

M
e

m
o

ry
 u

se
d

 v
s

b
a

se
li

n
e

Figure 9. Memory consumption (geometric mean).

Table III shows the performance of each benchmark in
4 cases: 1) The worst result for the benchmark listed in
the top line; 2) the best result for the benchmark shown
in the second line; 3) the result for the benchmark using
the cache architecture which yields the best performance
in geomean results over all benchmarks: the 7-port LVT 1-
way cache with 16KB cache and 64-byte line size, shown
in the third line; and lastly, 4) the result with the cache
architecture which yields the second best performance in
geomean results: the 4-port MP 1-way cache with 16KB
cache and 128-byte line size. The data in Table III only
includes parallel 6-accelerator architectures; i.e. the gains
shown are isolated to be due to memory changes and are
not due to parallelization. The ‘Cache Arch.’ column is orga-
nized as type of portedness/cache size/line size/associativity.
For example, 2-port/2KB/256B/1 indicates a Parallel Dual-
port 1-way cache architecture with a 2KB cache and a 256-
byte line size. The ‘Time’ column shows the execution time

in µs, with the number in the brackets indicating the speed-
up compared to the worst-case.

The dot product benchmark shows the biggest improve-
ment, with 29.4× speed-up between its best and worst cases.
This is due to the cache line thrashing effect, described pre-
viously. The GSM×6 benchmark shows the least sensitivity
to the cache design, with the gap between the best and worst
being 2.6×. Further analysis showed the GSM benchmark
to be the least memory intensive among all benchmarks. It
is interesting to note, however, that the biggest cache size
does not always yield the best results, as shown by the box
filter, dot product, GSM×6, and the histogram benchmarks.
Moreover, observe that no single cache architecture is best
for all benchmarks.

In summary, the 7-LVT/16KB/64B/1 architecture shows
comparable results to each best case on a per-benchmark
basis. However, with much less area and memory con-
sumption, the 4-MP/16KB/128B/1 architecture also exhibits

23

Table III
INDIVIDUAL BENCHMARK RESULTS.

Benchmark Cache Arch. Time Cycles Fmax

Add 2-Port/2KB/256B/1 10,596 (1) 1,438,565 135.8
4-MP/16KB/256B/1 443 (23.9) 61,229 138.1
7-LVT/16KB/64B/1 524 (20.2) 66,868 127.6
4-MP/16KB/128B/1 507 (20.9) 67,682 133.58

Box Filter 2-Port/2KB/256B/1 11,635 (1) 1,082,204 93.0
4-MP/4KB/64B/2 947 (12.3) 114,785 121.2

7-LVT/16KB/64B/1 1,066 (10.9) 118,446 111.1
4-MP/16KB/128B/1 1,181 (9.86) 128,775 109.08

Dot Product 2-Port/2KB/256B/1 2,901 (1) 390,864 134.7
7-LVT/8KB/128B/1 99 (29.4) 11,167 113.2
7-LVT/16KB/64B/1 100 (29.1) 12,837 128.6
4-MP/16KB/128B/1 104 (27.8) 13,851 132.73

GSM×6 2-Port/4KB/32B/2 246 (1) 21,903 89.0
4-MP/4KB/32B/1 94 (2.6) 10,493 111.5

7-LVT/16KB/64B/1 108 (2.3) 9,626 89.1
4-MP/16KB/128B/1 105 (2.4) 10,119 96.61

Histogram 2-Port/4KB/32B/2 1,465 (1) 187,882 128.3
4-LVT/2KB/128B/1 476 (3.1) 64,545 135.6
7-LVT/16KB/64B/1 560 (2.6) 63,459 113.3
4-MP/16KB/128B/1 539 (2.7) 64,545 119.76

Line of Sight 2-Port/2KB/256B/1 6,139 (1) 597,016 97.3
7-LVT/16KB/64B/1 376 (16.3) 43,658 116.0
7-LVT/16KB/64B/1 376 (16.3) 43,658 116.0
4-MP/16KB/128B/1 394 (15.6) 44,934 114.2

Matrix Mult 2-Port/2KB/256B/1 836 (1) 68,803 82.3
7-LVT/16KB/128B/1 55 (15.2) 5,521 100.4
7-LVT/16KB/64B/1 58 (14.3) 5,983 102.7
4-MP/16KB/128B/1 62 (13.4) 6,161 98.6

Matrix Trans 2-Port/4KB/256B/2 1,790 (1) 217,357 121.4
4-LVT/16KB/128B/1 178 (10.1) 22,623 127.4
7-LVT/16KB/64B/1 228 (7.8) 25,505 111.7
4-MP/16KB/128B/1 188 (9.5) 22,623 120.5

Perfect Hash 2-Port/2KB/256B/1 19,732 (1) 2,740,215 138.9
4-MP/16KB/64B/2 2,451 (8.1) 332,281 135.6
7-LVT/16KB/64B/1 2,799 (7.1) 357,306 127.7
4-MP/16KB/128B/1 3,621 (5.5) 464,224 128.2

competitive results to the 7-LVT/16KB/64B/1 architecture,
sometimes performing better depending on the benchmark.
Recall that multi-pumping does not require the cache to be
replicated and does not use the LVT which requires bigger
MUXes, making the total area approximately half, with a
cache size 21× smaller than the 7-LVT (see Figs. 8 and 9).
Thus, if the designer were forced into choosing a memory
architecture without knowledge of an application’s specific
access patterns, the 4-MP/16KB/128B/1 architecture appears
to be a good choice.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we explored a wide range of cache archi-
tectures in the context of FPGA-based processor/parallel-
accelerator platform. We introduced two types of shared
multi-ported caches which do not require memory parti-
tioning and allow single-cycle concurrent accesses to all
regions of the cache. The multi-pumping cache uses less
logic and does not increase memory consumption, which is
suitable for memory/area-constrained designs. With enough
resources, the LVT cache can allow a larger number of ports
for maximum memory bandwidth. While our results with
traditional cache parameters conform to other research in

the computer architecture domain, an FPGA implementa-
tion poses challenges which are unique to the platform.
Specifically, multiplexers, which are required to implement
different cache line sizes, associativity, and portedness are
expensive in FPGAs and significantly impact performance
results. On the other hand, high-speed on-chip block RAMs
which can often run much faster than their surrounding
system offer a differentiating advantage compared to other
computing platforms – they make multi-pumping a viable
approach in FPGAs. We conclude that the best architecture
from a performance angle, considering all aspects of total
execution time, area, and memory consumption, is the 4-
port multi-pump direct-mapped cache with a 16KB cache
size and a 128 byte line size. We believe this architecture to
be the best choice for systems which run under 200 MHz.

Future work includes combining the memory architectures
analyzed here with the work on memory partitioning in
HLS (e.g. as described in [11]). We are also interested
in analyzing these architectures from an energy-efficiency
perspective.

REFERENCES

[1] M. Adler, K. Fleming, A. Parashar, M. Pellauer, and J. Emer. LEAP

scratchpads: automatic memory and cache management for reconfigurable

logic. In ACM Int’l Symp. on FPGAs, pages 25–28, 2011.
[2] Altera, Corp., San Jose, CA. Nios II C2H Compiler User Guide, 2009.
[3] Altera, Corp., San Jose, CA. Avalon Interface Specification, 2010.
[4] Altera, Corp., San Jose, CA. SOPC Builder User Guide, 2010.
[5] Altera, Corp., San Jose, CA. TriMatrix Embedded Memory Blocks in Stratix

IV Devices, 2011.
[6] S.-S. Ang, G. Constantinides, P. Cheung, and W. Luk. A flexible multi-

port caching scheme for reconfigurable platforms. In Applied Reconfigurable

Computing, pages 205–216, 2006.
[7] J. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems

Journal, 4, 1965.
[8] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson,

S. Brown, and T. Czajkowski. LegUp: High-level synthesis for FPGA-based

processor/accelerator systems. In ACM Int’l Symp. on FPGAs, pages 33–36,

2011.
[9] E. Chung, J. Hoe, and K. Mai. CoRAM: an in-fabric memory architecture

for FPGA-based computing. In ACM Int’l Symnp. on FPGAs, pages 97–106,

2011.
[10] J. Cong, K. Gururaj, Hui Huang, Chunyue Liu, G. Reinman, and Yi Zou. An

energy-efficient adaptive hybrid cache. In IEEE Int’l Symp. on Low-Power

Electronics and Design, pages 67–72, 2011.
[11] J. Cong, W. Jiang, B. Liu, and Y. Zou. Automatic memory partitioning and

scheduling for throughput and power optimization. ACM Trans. Des. Autom.

Electron. Syst., 16, April 2011.
[12] J. Cong and Y. Zou. FPGA-based hardware acceleration of lithographic aerial

image simulation. ACM Trans. Reconfigurable Technol. Syst., 2(3):1–29, 2009.
[13] DE4, Altera Corp, San Jose, CA. DE4 Development and Education Board,

2012.
[14] C. Loken et al. SciNet: Lessons learned from building a power-efficient top-20

system and data centre. Journal of Physics: Conference Series, 256, 2010.
[15] A. Gordon-Ross, F. Vahid, and N.D. Dutt. Fast configurable-cache tuning with

a unified second-level cache. IEEE Trans. on VLSI, pages 80–91, 2009.
[16] Y. Hara, H. Tomiyama, S. Honda, and H. Takada. Proposal and quantitative

analysis of the CHStone benchmark program suite for practical C-based high-

level synthesis. Journal of Information Processing, 17:242–254, 2009.
[17] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann, 2006.
[18] C.E. LaForest and J.G. Steffan. Efficient multi-ported memories for FPGAs.

In ACM Int’l Symp. on FPGAs, pages 41–50, 2010.
[19] A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles, P. Sun-

dararajan, and R. Wittig. Performance and power of cache-based reconfigurable

computing. In Int’l Symp. on Computer Architecture, pages 395–405, 2009.
[20] A. Santana Gil, J. Benavides Benitez, M. Hernandez Calvino, and E Her-

ruzo Gomez. Reconfigurable cache implemented on an FPGA. In IEEE Int’l

Conf. on Reconfigurable Computing, pages 250–255, 2010.
[21] University of Cambridge. The Tiger ”MIPS” processor

(http://www.cl.cam.ac.uk/teaching/ 0910/ECAD+Arch/mips.html)., 2010.
[22] P. Yiannacouras and J. Rose. A parameterized automatic cache generator for

FPGAs. In IEEE Int’l Conf. on Field-Programmable Technology, pages 324–

327, 2003.

24

