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The present analysis concentrates on the boundary layer flow of Maxwell fluid over
a stretching sheet with variable thickness. Cattaneo-Christov heat flux model is used
instead of classical Fourier’s law to explore the heat transfer characteristics with
variable thermal conductivity. Suitable transformations are employed to achieve the
nonlinearordinarydifferentialequations.Convergent seriessolutionsof themomentum
and energy equations are obtained. Behavior of various pertinent parameters on the ve-
locity and temperature distributions are analyzed and discussed. C 2015 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons
Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4929523]

INTRODUCTION

Transfer of heat is an important phenomenon in the nature which exists due to temperature
difference between two bodies or within the same body. Characteristics of heat transfer have been
explored by Fourier’s law1 of heat conduction in the last two centuries. However this model is not
adequate in the sense that any initial disturbance is felt instantly throughout the whole substance. To
overcome this difficulty Cattaneo2 added a thermal relaxation time in the classical Fourier’s of heat
conduction which allows the transport of heat via propagation of thermal waves with finite speed.
After that Christov3 modified the Cattaneo law by thermal relaxation time along with Oldroyd’s
upper-convected derivatives in order to achieve the material-invariant formulation. Straughan4 stud-
ied Cattaneo-Christov model with thermal convection. Tibulle and Zampoli5 provided the unique-
ness of Cattaneo-Christov heat flux model for flow of incompressible fluids. Han et al.6 presented
boundary layer stretched flow of Maxwell fluid with Cattaneo-Christov heat flux model. Mustafa7

explored the characteristics of Cattaneo-Christov heat flux in the rotating flow of Maxwell fluid over
a linear stretching sheet.

The analysis of boundary layer stretched flow accompanied with heat transfer has gained
the interest of researchers and scientists due to their widespread applications in many areas of
manufacturing, industrial, metallurgical and engineering phenomena. Moving surface into a cool-
ing medium is a mathematical tool for the process of heat treatment. During this process metals
are heated and cooled in a specific order so that to keep the metal away from molten state. The
objective of heat treating process is to make a metal stronger, harder and resistant. Heat treating
process is also used to make a metal softer and more ductile. Few applications here comprise of
polymer extrusion, glass blowing, crystal growth, paper production, drawing plastic films, annealing
and tinning of copper wires, manufacturing artificial fibers, boundary layer along a liquid film in
condensation processes and aerodynamic extrusion of plastic sheets etc. In many manufacturing
processes, the raw material passes through the die for the extrusion in liquefied state under high
temperature. Unsteady boundary layer flow over a permeable stretching sheet with non-uniform
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heat source/sink is investigated by Zheng et al.8 Rashidi et al.9 examined the thermal magnetohy-
drodynamic (MHD) flow of nanofluid induced by stretching sheet. Su et al.10 analyzed magneto-
hydrodynamic mixed convection flow past a permeable stretching wedge with Ohmic heating and
thermal radiation. Turkyilmazoglu11 investigated three-dimensional magnetohydrodynamic flow of
viscoelastic fluid over a stretching sheet with different aspects. Magnetohydrodynamic flow past
a shrinking surface with velocity slip and temperature jump is studied by Zheng et al.12 Hayat
et al.13 studied the boundary layer stagnation point flow of Jeffrey fluid over a stretching sheet with
convective boundary condition. Zheng et al.14 examined unsteady radiative mixed convection flow
of Maxwell fluid over a permeable stretching plate with slip and non-uniform heat/source effects.
Mukhopadhyay et al.15 explored the solutal stratification effect in the boundary layer flow of viscous
fluid over a permeable stretching sheet. Hayat et al.16 analyzed the stagnation point flow of an
Oldroyd-B fluid ina thermally stratified medium. Sheikholeslami and Ganji17 explored the charac-
teristics of nanofluid in a rotating system with stretching sheet. Although most of the researchers
investigated the boundary layer flow over stretching sheets in different configurations but such flow
over a stretched sheet with variable thickness is not investigated properly. Variable thickness of the
sheet is useful in the mechanical, civil, marine and aeronautical structures and designs. The use of
variable thickness helps to reduce the weight of structural elements and improve the utilization of
the material. Fang et al.18 studied the boundary layer flow of viscous fluid induced by stretching
sheet with variable thickness. Analysis of slip velocity in the boundary layer flow over a nonlinearly
stretching sheet with variable thickness is presented by Khader and Megahed.19 Characteristics of
heat transfer in the flow of nanofluid over a nonlinear stretching sheet with variable thickness are
explored by Wahed et al.20

The main objective of present analysis is to describe the rheological characteristics of upper-
convected Maxwell fluid and Cattaneo-Christov heat flux model in flow over a stretching sheet
with variable thickness. Thermal conductivity of the material is assumed variable. Non-similar
analytic solutions are obtained by applying homotopic technique.21–26 Impacts of various pertinent
parameters are the velocity and temperature distributions are computed and discussed.

MATHEMATICAL FORMULATION

Consider the incompressible boundary layer flow of Maxwell fluid over a stretching sheet with
variable thickness. Unlike the Fourier law of heat conduction Cattaneo-Christov heat flux model
is employed to analyze the characteristics of heat transfer. Thermal conductivity of the fluid is
assumed variable. Cartesian coordinates are chosen in such a way that x-axis is along the sheet
while y-axis is normal to it (see Fig. 1). The conservation laws of mass, linear momentum and

FIG. 1. Physical flow model.
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energy are expressed as follows:6

∂u
∂x
+
∂v

∂ y
= 0, (1)

u
∂u
∂x
+ v

∂u
∂ y
= ν

∂2u
∂ y2 − λ1

(
u2 ∂

2u
∂x2 + v

2 ∂
2u

∂ y2 + 2uv
∂2u
∂x∂ y

)
, (2)

ρcpv.∇T = −∇.q. (3)

The new flux model is known as “Cattaneo-Christov heat flux model” and it has the following
form:3

q + λ2

(
∂q
∂t
+ v.∇q − q.∇v + (∇.v) q

)
= −k (T)∇T, (4)

Where λ2 is the relaxation time of heat flux, k (T) is the variable thermal conductivity which de-
pends linearly on temperature. It is noted that for λ2 = 0 Eq. (4) reduces to classical Fourier’s law.
As it is assumed that fluid is incompressible therefore Eq. (4) takes the form

q + λ2

(
∂q
∂t
+ v.∇q − q.∇v

)
= −k (T)∇T, (5)

Comparing Eqs. (3) and (5) and then eliminating q, we get the energy conservation law correspond-
ing to Cattaneo-Christov heat flux model as follows:

u
∂T
∂x
+ v

∂T
∂ y
+ λ2

(
u
∂u
∂x

∂T
∂x
+ v

∂v

∂ y

∂T
∂x
+ u

∂v

∂x
∂T
∂ y
+ v

∂u
∂ y

∂T
∂x
+ 2uv

∂2T
∂x∂ y

+ u2∂
2T
∂x2 + v

2 ∂
2T
∂ y2

)
=

1
ρcp

∂

∂ y

(
k (T) ∂T

∂ y

)
, (6)

The subjected boundary conditions are:16

u = uw (x) = U0(x + b)n, v = 0, T = Tw at y = A(x + b) 1−n
2 ,

u → 0, T → T∞ as y → ∞. (7)

In the above expressions u and v denote the velocity components in the x− and y− directions
respectively, λ1 is the relaxation time, uw is the stretching velocity, ν is the kinematic viscosity, b
is dimensional constant, n is the velocity power index, ρ is the density, cp is the specific heat, T is
the fluid temperature and T∞ is the ambient fluid temperature. Where k (T) is the variable thermal
conductivity which is defined as follows:

k (T) = k∞ (1 + εθ) , (8)

where k∞ is the thermal conductivity of the ambient fluid, θ is the dimensionless temperature
and ε is a small scalar parameter which shows the influence of temperature on variable thermal
conductivity.

Considering the following transformations16

ψ =


2

n + 1
νU0(x + b)n+1F (η) , η =


n + 1

2
U0

ν
(x + b)n−1y, u = U0(x + b)nF ′ (η) ,

v = −


n + 1
2

νU0(x + b)n−1

F (η) + η n − 1

n + 1
F ′ (η)


, Θ (η) = T − Tw

Tw − T∞
, (9)

incompressibility condition is satisfied automatically and Eqs. (2), (6), and (7) are reduced to

F ′′′ + FF ′′ − 2n
1 + n

F ′2 + β
(
(3n − 1) FF ′F ′′ − 2n (n − 1)

n + 1
F ′3 + η

n − 1
2

F ′2F ′′ − n + 1
2

F2F ′′′
)
= 0, (10)

(1 + εΘ) Θ′′ + εΘ′2 + Pr FΘ′ + Pr γ
(

n − 3
2

FF ′Θ′ − n + 1
2

F2
Θ
′′
)
= 0, (11)
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FIG. 2. }-curves for f and θ.

FIG. 3. Effect of β on f ′.

F (α) = α (1 − n)
(1 + n) , F ′ (α) = 1, Θ (α) = 1,

F ′ (∞) → 0, Θ (∞) → 0, (12)

Where α = A


n+1
2

U0
ν

denotes the plate surface. We define F (η) = f (η − α) = f (ξ) which reduces
the nondimensionlized governing equations and associated boundary conditions as follows:

f ′′′ + f f ′′ − 2n
1 + n

f ′2 + β
(
(3n − 1) f f ′ f ′′ − 2n (n − 1)

n + 1
f ′3 + η

n − 1
2

f ′2 f ′′ − n + 1
2

f 2 f ′′′
)
= 0,

(13)

(1 + εθ) θ ′′ + εθ ′2 + Pr f θ ′ + Pr γ
(

n − 3
2

f f ′θ ′ − n + 1
2

f 2θ ′′
)
= 0, (14)

f (0) = α (1 − n)
(1 + n) , f ′ (0) = 1, θ (0) = 1,
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FIG. 4. Effect of α on f ′.

FIG. 5. Effect of n on f ′.

f ′ (∞) → 0, θ (∞) → 0, (15)

where β is the Deborah number in terms of relaxation time, Pr is the Prandtl number and γ is the
thermal relaxation parameter. These quantities are expressed as follows:

Pr =
µcp
k
, β = λ1U0(x + b)n−1, γ = λ2U0(x + b)n−1. (16)

It is noted that for n = 1, the problem reduces to flat plate with same thickness. Also it is noted that
for n = 1 and ε = 0, the problem reduces as discussed by Han et al.6

HOMOTOPIC SOLUTIONS

Homotopy analysis method was first proposed by Liao17 in 1992 which is used for the construc-
tion of series solution of highly nonlinear problems. To proceed with such method, it is essential
to define the initial guesses ( f0, θ0) and linear operators (L f ,Lθ) for the momentum and energy
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FIG. 6. Effect of β on θ.

FIG. 7. Effect of α on θ.

equations which are expressed in the forms

f0(η) = α 1 − n
1 + n

+ 1 − exp(−η), θ0(η) = exp(−η), (17)

L f ( f ) = d3 f
dη3 −

df
dη
, Lθ (θ) = d2θ

dη2 − θ, (18)

with

L f [A1 + A2 exp(η) + A3 exp(−η)] = 0, (19)

Lθ [A4 exp(η) + A5 exp(−η)] = 0, (20)

where Ai(i = 1, 2, . . . , 5) are the arbitrary constants. The zeroth and mth order deformation prob-
lems are:
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FIG. 8. Effect of ε on θ.

ZEROTH-ORDER PROBLEM

(1 − p)L f [ f̂ (η, p) − f0(η)] = p} fN f


f̂ (η, p) , (21)

(1 − p)Lθ[θ̂(η, p) − θ0(η)] = p}θNθ


θ̂(η, p), f̂ (η, p) , (22)

f̂ (0; p) = α 1 − n
1 + n

, f̂ ′(0; p) = 1, f̂ ′(∞; p) → 0, θ̂(0; p) = 0, θ̂(∞; p) → 0, (23)

N f


f̂ (η; p) = ∂3 f̂ (η, p)

∂η3 + β

*.....
,

(3n − 1) f̂ (η; p) ∂ f̂ (η; p)
∂η

∂2 f̂ (η; p)
∂η2 − 2n (n − 1)

n + 1

(
∂ f̂ (η; p)
∂η

)3

+η
n − 1

2

(
∂ f̂ (η; p)
∂η

)2
∂2 f̂ (η; p)
∂η2 − n + 1

2
f̂ 2(η; p) ∂

3 f̂ (η; p)
∂η3

+/////
-

− 2n
n + 1

(
∂ f̂ (η, p)
∂η

)2

+ f̂ (η, p) ∂
2 f̂ (η, p)
∂η2 , (24)

Nθ


θ̂(η; p), f̂ (η; p) = �

1 + εθ̂(η; p)� ∂
2θ̂(η; p)
∂η2 + ε

(
∂θ̂(η; p)
∂η

)2

+Pr f̂ (η, p) ∂θ̂(η; p)
∂η

+ Pr γ
*.....
,

n − 3
2

f̂ (η; p) ∂ f̂ (η; p)
∂η

∂θ̂(η; p)
∂η

−n + 1
2

(
∂ f̂ (η; p)
∂η

)2
∂2θ̂(η; p)
∂η2

+/////
-

, (25)

Where p ∈ [0,1] is embedding parameter and } f and }θ are the non-zero auxiliary parameters.

MTH-ORDER DEFORMATION PROBLEMS

L f [ fm (η) − χm fm−1 (η)] = } fR f
m (η) , (26)

Lθ [θm (η) − χmθm−1 (η)] = }θRθ
m (η) , (27)

fm(0) = 0, f ′m(0) = 0, f ′m(∞) = 0, θm(0) = 0, θm(∞) = 0, (28)
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FIG. 9. Effect of γ on θ.

R f
m (η) = f ′′′m−1 +

m−1
k=0

(
fm−1−k f ′′k −

2n
1 + n

f ′m−1−k f ′k

)
+ β

*....
,

m−1
k=0

fm−1−k

k
l=0

*....
,

(3n − 1) f ′k−l f ′′l

−n + 1
2

fk−l f ′′′l

+////
-

+////
-

+β *
,

m−1
k=0

f ′m−1−k

k
l=0

(
η
(n − 1)

2
f ′k−l f ′′l −

2n (n − 1)
n + 1

f ′k−l f ′l

)
+
-
, (29)

Rθ
m (η) = θ ′′m−1 + ε

m−1
k=0

θm−1−kθ
′′
k + ε

m−1
k=0

θ ′m−1−kθ
′
k + Pr

m−1
k=0

fm−1−kθ
′
k

+Pr γ *
,

m−1
k=0

fm−1−k

k
l=0

(
n − 3

2
f ′k−lθ

′
l −

n + 1
2

fk−lθ ′′l

)
+
-
, (30)

χm =



0, m ≤ 1
1, m > 1

. (31)

For p = 0 and p = 1 , we can write

f̂ (η; 0) = f0(η), f̂ (η; 1) = f (η), (32)

θ̂(η; 0) = θ0(η), θ̂(η; 1) = θ(η), (33)

and with the variation of p from 0 to 1, f (η; p) and
⌢
θ (η; p) vary from the initial solutions f0 (η)

and θ0(η) to the final solutions f (η) and θ(η) respectively. By Taylor’s series we have

f (η; p) = f0 (η) +
∞

m=1

fm (η) pm, fm (η) = 1
m!

∂m f (η; p)
∂pm

�����p=0
, (34)

⌢
θ (η; p) = θ0 (η) +

∞
m=1

θm (η) pm, θm (η) = 1
m!

∂m
⌢
θ (η; p)
∂pm

�����p=0
, (35)

The value of auxiliary parameter is chosen in such a way that the series (34) to (35) converge at
p = 1 i.e.

f (η) = f0 (η) +
∞

m=1

fm (η) , (36)
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FIG. 10. Effect of Pr on θ.

θ (η) = θ0 (η) +
∞

m=1

θm (η) , (37)

The general solutions ( fm, θm) of Eqs. (26) and (27) in terms of special solutions ( f ∗m, θ
∗
m) are given

by

fm (η) = f ∗m (η) + A1 + A2eη + A3e−η, (38)

θm (η) = θ∗m (η) + A4eη + A5e−η, (39)

where the constants Ai (i = 1, 2, . . . , 5) through the boundary conditions (28) have the values

A2 = A4 = 0, A3 =
∂ f ∗m (η)
∂η

�����η=0
, A1 = −A3 − f ∗m (0) , A5 = − θ∗m (0) . (40)

CONVERGENCE ANALYSIS

To develop the series solutions by homotopy analysis technique it is also essential to check
their convergence. Convergence region is the region parallel to }-axis. Therefore we have plotted the
}-curves in the Fig. 2. It is found that the admissible ranges of the auxiliary parameters } f and }θ are
−1.5 ≤ } f ≤ −0.5 and −1.3 ≤ }θ ≤ −0.3.

DISCUSSION

Description of various pertinent parameters on the velocity and temperature distributions is the
main objective of this section. Impact of Deborah number (in terms of relaxation time) β on veloc-
ity distribution is illustrated in Fig. 3. It is noted that velocity distribution shows decreasing behavior
corresponding to higher values of Deborah number. In fact Deborah number is the ratio of relaxa-
tion to observation times. So with increase in Deborah number relaxation time also increases which
provides more resistance to the fluid motion. Therefore velocity profile decreases. Behavior of wall
thickness parameter α on the velocity profile is sketched in Fig. 4. Higher values of wall thickness
parameter result in the reduction of velocity profile and momentum boundary layer thickness for
n < 1. As we increase the wall thickness parameter for n < 1, stretching velocity decreases which
results in reduction of velocity profile. Analysis of power index non velocity distribution is sketched
in Fig. 5. It is noted that velocity distribution shows increasing behavior corresponding to higher
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FIG. 11. Effect of n on θ.

TABLE I. Convergence of series solutions for different order of approximations when γ = 0.2,n = 1.5, β = 0.2, ε = 0.1,Pr=
1.2 and α = 0.5.

Order of approximations −f ′′(0) θ′(0)
1 1.0493 0.7904
5 1.0849 0.5691
9 1.0861 0.5454
15 1.0861 0.5422
20 1.0861 0.5422
25 1.0861 0.5422

values of n. In fact stretching velocity increases as we increase the values of n which produces more
deformation in the fluid. Hence velocity distribution increases. Characteristics of Deborah number
β on temperature distribution is displayed in Fig. 6. Temperature distribution increases for larger
values of Deborah number. Because higher Deborah number corresponds to larger relaxation time
which provides resistance to the fluid motion and as a result more heat is produced. Therefore
temperature distribution increases. Behavior of wall thickness parameter α on temperature profile
is shown in Fig. 7. It is concluded that temperature distribution as well as thermal boundary layer
thickness decrease for higher wall thickness parameter. It is due the fact that as we increase the
wall thickness parameter less heat is transferred from sheet to the fluid. Hence temperature profile
decreases. Fig. 8 discloses the behavior of thermal conductivity parameter ε on temperature pro-
file. Higher values of thermal conductivity parameter result in enhancement of temperature profile.
Physically, as we increase the thermal conductivity parameter, thermal conductivity of the fluid
increases. So more heat is transferred from sheet to the fluid and consequently temperature profile
increases. Impact of thermal relaxation parameter γ on temperature distribution is illustrated in
Fig. 9. Temperature distribution is a decreasing function of thermal relaxation parameter. Further
it is also analyzed that thermal boundary layer thickness decreases. It is due to fact that as we
increase the thermal relaxation parameter, particles of the material require more time to transfer heat
to its neighboring particles. In other words we can say that for higher values of thermal relaxation
parameter material shows a non-conducting behavior which is responsible in reduction of temper-
ature distribution. Further it is also noted that for γ = 0 heat transfers promptly throughout the
material. Therefore temperature distribution is higher for γ = 0 i.e., for Fourier’s law as compared
to Cattaneo-Christov heat flux model. Analysis of Prandtl number Pr on temperature profile is
displayed in Fig. 10. Higher values of Prandtl number result in the reduction of temperature profile
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as well as thermal boundary layer thickness. Prandtl number is the ratio of momentum to thermal
diffusivities. So higher prandtl number corresponds to lower thermal diffusivity which is responsible
in reduction of temperature profile. Influence of power index n on temperature distribution is shown
in Fig. 11. Temperature distribution increases for higher values of n. Further it is also noted that
thermal boundary layer thickness increases.

Table I shows the convergence of the series solutions for different order of approximations. It is
noted that 9th and 15th order of approximations are sufficient for the convergence of momentum and
energy equations respectively.

CLOSING REMARKS

We have investigated the characteristics of forced convection boundary layer flow of Maxwell
fluid induced by stretching sheet with variable thickness. Cattaneo-Christov heat flux model is
imposed to disclose the heat transfer characteristics of variable thermal conductivity vis- coelastic
fluid. The main observations are summarized as follows:

• Higher values of Deborah number result in the reduction of velocity and momentum boundary
layer thickness.

• Velocity distribution shows decreasing behavior for larger values of wall thickness parameter
when n < 1.

• Temperature distribution is higher in the case of Fourier’s law as compared to Cattaneo-
Christov heat flux model.

• Variable conductivity parameter results in enhancement of temperature distribution.
• Velocity and temperature distributions enhance for larger values of n.
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