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Impact of Channel Errors on Decentralized
Detection Performance of Wireless Sensor Networks:
A Study of Binary Modulations, Rayleigh-Fading and

Nonfading Channels, and Fusion-Combiners
Venkateshwara R. Kanchumarthy, Ramanarayanan Viswanathan, Fellow, IEEE, and Madhulika Madishetty

Abstract—We provide new results on the performance of wire-
less sensor networks in which a number of identical sensor nodes
transmit their binary decisions, regarding a binary hypothesis, to a
fusion center (FC) by means of a modulation scheme. Each link be-
tween a sensor and the fusion center is modeled independent and
identically distibuted (i.i.d.) either as slow Rayleigh-fading or as
nonfading. The FC employs a counting rule (CR) or another com-
bining scheme to make a final decision. Main results obtained are
the following: 1) in slow fading, a) the correctness of using an av-
erage bit error rate of a link, averaged with respect to the fading
distribution, for assessing the performance of a CR and b) with
proper choice of threshold, ON/OFF keying (OOK), in addition to
energy saving, exhibits asymptotic (large number of sensors) per-
formance comparable to that of FSK; and 2) for a large number of
sensors, a) for slow fading and a counting rule, given a minimum
sensor-to-fusion link SNR, we determine a minimum sensor deci-
sion quality, in order to achieve zero asymptotic errors and b) for
Rayleigh-fading and nonfading channels and PSK (FSK) modu-
lation, using a large deviation theory, we derive asymptotic error
exponents of counting rule, maximal ratio (square law), and equal
gain combiners.

Index Terms—Asymptotic error, counting rule, equal gain
combiner, FSK, large deviations, maximal ratio combiner, PSK,
Rayleigh-fading, square law combiner, wireless sensor networks.

I. INTRODUCTION

PERFORMANCES of decentralized detection (DD) sys-
tems employing a set of geographically separated sensors

have been investigated for the past couple of decades [1]–[5].
Tsitsiklis had established fundamental results on the optimal
decision rules for processing at the sensors and at the fusion
center [1], [2]. In these earlier studies, the transmission links
from sensors to a fusion center (FC) were assumed to be error
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free. However, because of recent interest in wireless sensor
networks (WSN), many authors have analyzed the performance
of these DD systems in which transmissions from sensors to
FC are subject to channel fading and noise [6]–[20]. Because a
WSN may contain a large number of sensors, a number of these
studies deal with asymptotic (infinite number of sensors) issues
[6]–[15]. In a power constrained WSN, Chamberland and Veer-
avalli have shown that fading reduces the overall performance,
but the quality of sensor observations has a greater impact
on the overall probability of error than fading [7]. In [8] and
[9], the same authors show that for independent and identical
Gaussian or exponentially distributed sensor observations,
identical binary-threshold processing at all the sensors yields
asymptotically optimal results. Under power and bandwidth
constraints and the transmission of local sensor observations
using analog relay amplifier processing, Jayaweera shows that
in the case of detection of deterministic signals, it is better to
combine many not-so-good local decisions than relying on one
(or a few) very-good local decision(s) [10], [12]. Assuming
a type-based random access between sensors and the fusion
center and a network power constraint, Liu and Sayeed [13],
Mergen et al. [14], and Anandkumar and Tong [15] have
studied asymptotic error exponents. A general principle in
these approaches is reporting of the counts that occurred in
each interval of a quantizer by each sensor, which also allows
for noncoherent detection at the fusion center [15].

The performance of a wireless sensor DD system depends on
many factors such as decision fusion rules [16], channel error
control coding, sensor quality, etc. Chen et al. [17] and Niu
et al. [18] have formulated the parallel fusion problem with a
fading channel layer and derived the optimal likelihood ratio
(LR) based fusion rule, along with three other suboptimal fusion
rules. Performance analysis was carried out only for the case
of a finite number of sensors. If sufficient error control coding
makes a sensor link to be highly reliable, then the earlier analysis
of DD systems with error-free links would be applicable. How-
ever, fusion of binary decisions transmitted over fading channels
that employ no error control codes may have important appli-
cations in low-cost and low-power WSN. Moreover, if only a
counting rule based on decisions received at the FC is consid-
ered, then the previous analyses of decentralized detection in
error free sensor links can be applied simply by replacing the
distributions of sensor decisions with the corresponding distri-
butions of sensor decisions received at the FC. But, we consider
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other fusion strategies mentioned above, as well as square law
combining, all of which require a new analysis that takes into
account specific channel model, modulation, and fusion rule.
In this paper we provide new results on the binary-hypothesis
detection performance of a WSN, when each link between a
sensor and the fusion center is modeled as either independent
and identically distributed (i.i.d.) slow Rayleigh-fading or a non-
fading binary modulated signal received in AWGN. The sen-
sors quantize their observations to binary decisions and transmit
them using a basic binary modulation scheme such as, FSK,
PSK or ON/OFF keying (OOK). FSK or OOK is more suitable
in a fading channel because of the applicability of noncoherent
detection, which does not require the tracking of carrier phase
at the FC. While phase tracking may be difficult to achieve in
a fading channel, the PSK modulation may still be achievable
under certain conditions (PSK was the only modulation consid-
ered in [17]). The FC combines the received signals in order to
make a final decision on the presence or absence of a phenom-
enon of interest (POI). Our discussions in the paper differ from
existing literature in two aspects: 1) results show how signif-
icantly the link condition could affect the probability of false
alarm of a sensor/fusion decision, when observed at the fusion
center and 2) previous analyses of asymptotic (large number
of sensors) error exponents for the Neyman–Pearson criterion
were based on Stein’s lemma, which is applicable only to op-
timal likelihood ratio tests. Since suboptimal fusion rules are
also considered in this paper, the theory of large deviation of
the sample mean is employed to arrive at the error exponents.
Moreover, the variation of miss error exponent as a function
of false alarm error exponent is studied, as both errors are al-
lowed to approach zero asymptotically. Since it is not possible
to predict large sensor-network performance, based on the per-
formance analysis for a small, finite number of sensors carried
out in [17], such an analysis is meaningful.1

The paper is organized as follows. In Section II we evaluate
the effect of channel errors on the reliability of a sensor decision
at the fusion center. For a counting rule (CR), the variations of
false alarm and detection probabilities at the fusion center, as a
function of channel signal-to-noise ratio (SNR), are studied. In
Section III, for various other combining schemes, using a theory
of large deviation, we evaluate the rates at which the asymptotic
probabilities of errors of a final decision approach zero. Both
slow Rayleigh-fading and nonfading cases are considered. Con-
clusions from this study are presented in Section IV.

II. EFFECT OF CHANNEL ERRORS ON THE RELIABILITY OF

DECISION AT THE FUSION CENTER

Consider a wireless sensor network consisting of sensors,
which is deployed to assess the presence or absence of a phe-
nomenon of interest (POI) in a geographical area of interest.
Sensor gathers information pertaining to the POI and makes
a decision ( for deciding the presence of POI and

otherwise) and sends its binary decision to a fusion

1We agree with a reviewer’s comment that the optimality results in [17], cor-
responding to vanishingly small and unboundedly large average SNRs, are valid
for any number of sensors, finite or infinite. However, only an asymptotic (infi-
nite number of sensors) error exponent analysis can determine the relative per-
formances of various combiners, for any given average SNR.

center through an unreliable communication channel or link.
We assume identical binary quantizers, existence of noninter-
fering and identical parallel links between the sensors and the
fusion center, and conditioned on the hypothesis, i.i.d. observa-
tions across the sensors. Therefore, conditioned on the hypoth-
esis, the sensors have identical and independent distributions for
their decisions. Let denote the decision of the th sensor, as
received at the fusion center. Hence, the following probabilities

( absent), ( ab-
sent), ( present), (
present) are all independent of . Assuming that the link error
event is statistically independent of the decision made by the
sensor, the false alarm probability of the received decision from
the th sensor is described by the following equation:

(1)

where is the probability of bit error of the th link,
when the th sensor transmits bit “1” (“0”). For symmetric chan-
nels, so that (1) simplifies to

(2)

The probability of detection of the received decision, can
be obtained from (1) by replacing with . For symmetric
channels

(3)

Let the link bit error, (if it is greater than 1/2, then
the decision rule of the receiver for the th link at the fusion
center could be complemented to yield a value less than 1/2).
If , then . That is, the false alarm probability
of the decision received at the fusion center is higher than the
false alarm probability of the decision made by the sensor. As
the link becomes very unreliable, the probability approaches
1/2. Similarly, when , . Only when

, the link error “increases” to be larger than (of course
this is achieved with a concomitant increase in the false alarm
probability). Given the unreliable nature of the communication
link between a sensor and the fusion center, we next examine
its impact on the reliability of the decision made by the fusion
center.

Under very general conditions, an optimum fusion rule for
combining the decisions of the sensors takes the form of a
counting rule [1], [2]. This result is also valid for combining
decisions received through noisy links, as long as the links are
also i.i.d.. In the remainder of this section, the performance
of a counting rule (CR) in a slow Rayleigh-fading channel is
considered.

A. Performance Analysis of CR for Finite

For a wireless sensor network, slow Rayleigh-fading channel
is an appropriate model in certain applications. The slow fading
characterization implies that channel characteristics do not
change over several successive bit intervals and within this
period, the received signal amplitude in a sensor link at the FC
can be assumed to be a sample of a Rayleigh random variable.
Using standard results on reception in slow Rayleigh-fading
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Fig. 1. Probability of false alarm/detection versus average channel SNR for
noncoherent FSK.

channels, we can write the following relations (see [21, pp.
818]):

noncoherent FSK

PSK
(4)

where is the average channel error probability and is
the average SNR of the Rayleigh-fading channel. By using (4)
in (2) and (3), with replaced by , the corresponding
probabilities and can be obtained. For OOK, the probability
of error is not equal to the probability of error .
With noncoherent detection, using the probabilities of bit errors
given in (see [23, eq. (9.5.9)]) and (1), we get

(5)

(6)

where is the normalized threshold used by the noncoherent
detector. Let , denote the false alarm probability and
the detection probability, respectively, of a counting rule at
the fusion center, which decides that a POI is present when

is greater than or equal to a threshold . While
computing the overall false alarm (and detection) error proba-
bility of a CR, the required and are obtained by using the
average channel error probability of each link in (2) and (3).
The correctness of this statement is proved in the Appendix.
The threshold for the CR ranges between 1 and , with 1
corresponding to the Boolean OR rule and corresponding
to the Boolean AND rule. Let be equal to , where
is the maximum tolerable probability of false alarm (which
depends on a minimum value of , , for a specific sensor
quality, ) for an individual link. Such a choice of guaran-
tees the probability of false alarm of a counting rule to
approach zero asymptotically with increasing , as discussed
in Section II-B. For and noncoherent FSK, Fig. 1
shows the variations of and the probability of detection of
a counting rule for different average channel SNR values

. The figure also shows as a function of . With
slightly greater than the assumed minimum guaranteed channel
SNR 5 dB , is several decades higher than
(from (2) and (4), a sensor with a low of 0.001 is completely

masked by a high channel error of approximately 0.194, leading
to a high ). As approaches infinity, approaches
and approaches the value that would be obtained had the
link been error free. Therefore, for a specific , it is essential
that the link reliability is greater than a certain minimum value
in order that an acceptable is achieved. On the other hand,
when , decreases with increases in channel SNR,
i.e., higher is achieved when the link is less reliable! (of
course this is achieved with a concomitant increase in the false
alarm probability). But, when , increases as

increases. In general, except for weak observation SNR of
sensors, the effect of link errors on the detection probability is
less severe, assuming that the sensor detection probability will
be larger than 0.1. A similar observation was made in [7] under
the condition of a large number of sensors.

B. Asymptotic Error Exponents for the CR

For the counting rule with the threshold , the con-
dition guarantees that both the probability of false
alarm and probability of miss go
to zero as increases without bound. This can be seen from
the following argument. According to the law of large num-
bers, as , the distribution of under
no POI hypothesis becomes degenerate at the value .
Hence, the probability that this sum exceeds goes to zero,
if . Similarly, under POI hypothesis , the condi-
tion guarantees that , as . The
constraints on and will be satisfied as long as the sensor
signal-to-noise ratio is above a certain minimum value and
the link bit error rate is below a certain value. For example,
when detecting a constant signal in AWGN, the detection prob-
ability and the false alarm probability at a sensor are related by

, where is the complemen-
tary cumulative distribution function of standard normal variate.
Using this expression and (2)–(3) the required values of and

to guarantee can be determined. The two asymptotic
error exponents are defined as
and . Whereas an application
of the central limit theorem (CLT) to leads to incorrect error
exponents, an application of a large deviation theory leads to the
correct error exponents for the CR with the threshold,
(see example 1.2, statement at the bottom of page 1, and equa-
tion (1.4) in [22]):

(7)

(8)

For each of the three modulation schemes, given that a min-
imum channel SNR is achievable, we now examine the
sensor quality (in terms of its probability of detection , at
a given ) requirement for achieving zero asymptotic errors.
For all modulations the CR threshold is set at . With
noncoherent detection of binary FSK, the false alarm proba-
bility and the detection probability at the fu-
sion center are obtained by using (4) in (2)–(3). Assuming that
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TABLE I
MIN. � REQUIRED FOR ACHIEVING ASYMPTOTICALLY ZERO � (�
IS TAKEN TO BE � ATTAINED WITH FSK AT A PARTICULAR � , OOK

COLUMN IS BASED ON (9) FOR � .) (a) � � ��� (b) � � �����

and , is bounded within the interval
and there exists a such that will be

less than , for . The behavior of depends
on the value of . For , is bounded within the
interval . Therefore, in order that with in-
creasing , has to be greater than ( is
determined by and ). This establishes a minimum sensor
quality requirement. When , is bounded within
the interval . Under the assumption that ,
is greater than , for . is sufficient to en-
sure that asymptotically approaches zero.

For PSK appropriate probabilities are obtained by using (4)
in (2)–(3). Again, is a necessary condition for the
asymptotic errors to go to zero. However, for a given and
minimum channel SNR, , maximum of is smaller
than that of FSK. Therefore, the minimum required at the
sensor is smaller in the case of PSK (see Table I, which shows
the requirements at the sensor for different minimum channel
SNRs, for and ). Of course, PSK requires
the tracking of the carrier phase.

For OOK, both and (see (5) and (6))
are monotonic increasing functions of the SNR, with

.
Since is a parameter of choice, same could be assumed
for OOK and FSK. If is assumed unknown, then cannot
be obtained as a function of ; in this case, given specific
and values, can be chosen so that is equated to the
upper bound of , i.e.,

(9)

OOK requires less energy than the other two schemes; the en-
ergy saved depends on how often a sensor decides the presence
of a POI. However, another measure of comparison is to com-
pute the minimum required for each case (Table I). Because
of the method of selection of , for , the minimum
required for OOK is much less than those of FSK and PSK
(using (6) and equating at to solve for

). However, a penalty in terms of asymptotic rate at which
approaches zero is paid. The false alarm error exponent is

Fig. 2. False alarm error exponents for counting rule with � � �����.

Fig. 3. Miss error exponents for counting rule with� � ��� and� � �����.

so small (not reported here) when compared to those of FSK
and PSK, this method of choice of makes OOK modulation
unfavorable. To overcome this problem, an alternate method is
to let be bounded below , where ,
and then obtain by replacing with - in (9) (clearly,

).
With this choice of , the required for OOK is ob-

tained by equating at to :

(10)

For example, with ,
and , equals 2.1371, and with 5 dB,

equals 0.1943. With the FC counting threshold
set at , this method of selection of gives a larger .
Fig. 2 shows that for OOK is still somewhat smaller when
compared to the error exponents for FSK or PSK. Comparing
FSK and PSK, it can be seen that for PSK is larger. The
variation of miss error exponent depends on the value of
(Fig. 3 is for ). The miss error exponents for both
FSK and PSK decrease with increases in average SNR, only
when . This is due to the fact that the probability

, in both these two cases, decreases with increases in channel
SNR. In the case of OOK, increases with increases in average
SNR, for both and . For , the
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error exponent for OOK is better than that of FSK (or PSK), for
moderate to large SNR values. Though not shown here, similar
comparative performances are observed to be true for
and . Also, for any given modulation, specific and
SNR values, the error exponent (for both miss and false alarm)
increases, when is decreased. This is reasonable because a
lower at a specified implies a better sensor. Hence, with
a proper selection of threshold for noncoherent OOK detection,
it is possible to obtain performance comparable to that of FSK
(higher error exponent for , but smaller error exponent for

), with the added benefit of energy conservation.
Even though noncoherent detection of FSK is the preferred

choice for fading channels, some observations regarding co-
herent FSK performance can be made now: for large SNR and
slow-Rayleigh fading, coherent PSK has a 3 dB advantage in
SNR over coherent FSK; hence, for large SNR, the graph for
coherent FSK is exactly the graph for PSK shifted to the right
by 3 dB (Figs. 2 and 3). Similarly, for large SNR, the graph for
differential PSK (DPSK) modulation is exactly the graph for
noncoherent FSK shifted to the left by 3 dB.

III. ASYMPTOTIC ERROR EXPONENTS OF LIKELIHOOD RATIO,
MRC, EGC, CR, AND SQUARE LAW COMBINING

For a finite and a slow Rayleigh-fading channel, it was
pointed out in [17] that the maximal ratio combining (MRC) of
the received signals from different sensors does not provide the
best detection performance. Here, using a large deviation theory,
we evaluate the asymptotic error rates of MRC, equal gain com-
bining (EGC), and optimal likelihood ratio (LR) rule for PSK
and square law combining (SLC) for FSK. Consideration of
SLC for FSK is motivated by the result that for a slow Rayleigh-
fading channel, the SLC combining of diversity branches with
FSK signals is analogous to the MRC combining of diversity
branches with PSK signals [21]. Whereas these combiners are
optimal in diversity context, in decentralized detection setup,
as discussed later, both the MRC for PSK and the SLC for FSK
turn out to be suboptimal. Slow Rayleigh-fading channel is con-
sidered first followed by the nonfading case. Error exponents of
the CR, for Rayleigh-fading, were already obtained in II. For
OOK, although SLC is a possible combiner, its performance is
not addressed here. For this modulation, the asymptotic perfor-
mance of a CR in a Rayleigh channel was thoroughly addressed
in Section II. Whereas, in the case of CR, there exists a minimum

requirement for the errors to go to zero asymptotically, as
will be seen below, no additional requirement, beyond the “nat-
ural” constraint of , is required for all the other com-
biners. Without any loss of generality, let and

A. Slow Rayleigh-Fading Channel

1) Maximal Ratio Combining: In a wireless sensor network
of sensors, consider the situation that out of sensors
decide “1” (the presence of a POI) and that the remaining

sensors decide “0” otherwise. To illustrate the MRC output,
assume that the first set of sensors had decided binary “1”. If
the sensors use PSK signaling to transmit their data, then upon
matched filtering, the maximal ratio combiner output for the
Rayleigh faded PSK signals received in a zero mean AWGN,

conditioned on the above assumption on sensors’ decisions, is
given by [17], [21],

(11)

where is the channel gain of the th link. Implementation
of MRC requires the knowledge of the channel states, .

are all i.i.d. as exponential with mean
and are all i.i.d. zero mean Gaussian

noise with variance , which are independent of . Under
the hypothesis of no POI , the unconditional , for
i.i.d. sensors and i.i.d. links, can be treated as the sum of i.i.d.
samples of the form shown below:

where
with probability
with probability .

(12)

For large , using large deviations, we can find the rate with
which the false alarm error probability at the fusion center ap-
proaches zero [22]:

(13)

where goes to zero faster than the exponential term in (13),
as increases without bound, are i.i.d. variables specified
by and is a
constant threshold value. In order for the false alarm error to go
to zero in the limit as goes to infinity, has to be chosen
to yield a negative expected value of . Hence

(14)

By computing the moment generating function (MGF) of ,
the error exponent in (13) can be computed (see [22, Theorem
3.1 on p. 7 and eq. (2.2), (2.3)]):

(15)

where the expression within the curly bracket is the MGF of ,
, and is the SNR (average) of the

Rayleigh channel.
Remark: For all the combiners in this section, the miss error

exponent can be obtained from the corresponding false alarm
error exponent by replacing with and with - in the
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expression within the curly brackets. The miss error exponent
for MRC dictates

(16)

In order that both the errors approach zero asymptotically,
has to satisfy both the constraints, (14) and (16).

If desired, results for MRC combining of coherent FSK sig-
nals can easily be obtained from (12). For coherent FSK, de-
noting the two filter outputs corresponding to the frequency
(for decision by a sensor) and the frequency (for decision

by a sensor), as and , respectively, it is clear that is
similar to (12) with replaced by (corresponding to noise
in filter ), with probability , and with
probability , whereas is similar to (12) with replaced
by (corresponding to noise in filter ), with prob-
ability , and with probability . The final
decision is arrived at by comparing to zero.

has the noise term , with the variance
of being , which is twice the variance of in
PSK (for diversity reception, similar result is well known, see
[21, p. 826]). Hence, the error exponent for coherent FSK at a
specific SNR is the error exponent of PSK at the SNR, which is
3 dB below the specified SNR.

2) Equal Gain Combining: For equal gain combining, the
equation for , an analog of (12), for the MRC, is given by

where
with probability
with probability . (17)

The false alarm error exponent is given by

(18)

where and
.

3) Square Law Combining of FSK Signals: Let , be
the frequencies by which sensor sends bits, ,

, respectively. After square law combining of the branch
signals, let , denote the normalized square law outputs,
normalized with respect to the noise variance , that detect the

combined energies in frequencies, , , respectively. Under
, , and can be represented by the following equations:

(19)

where is distributed as exponential with mean and
is distributed as exponential with mean 1, when the fre-

quency was transmitted by the sensor , and
is the average SNR. The distributions are interchanged when
the frequency is sent. , , are all mutually sta-
tistically independent and are mutually independent across the
index . The square law combining makes a decision by com-
paring with the threshold, . Hence, see (20),
shown at the bottom of the page, where

.
4) Optimal LR Rule: Using [17] and by denoting as the

output of the LR statistic based on the MF output

(21)

The LR test decides the presence of a POI when
exceeds a constant. The error exponents can be numerically
computed. For a fixed average channel SNR and for each com-
biner, we observe how the error exponents vary with thresholds.
Figs. 4–6 show the variations of the miss error exponent against
the false alarm error exponent for , and for
various values of SNR. As expected, the curves for the LR fusion
rule stay above all the others. However, the implementation of
LR rule requires the error probabilities associated with a sensor
decision and the channel state information, and hence is com-
plex. From Fig. 4, we observe that for PSK in Rayleigh-fading
channels, at very low SNR of 5 dB, the MRC outperforms
EGC and CR. This is consistent with the fact that the optimal
likelihood ratio test is approximated by MRC, as indicated in
[17]. At high SNRs of 10 dB (Fig. 5), CR exhibits the best per-
formance when compared to the other two suboptimal rules. For
moderate SNRs, equal gain combining has a better performance
than maximal ratio combining and counting rule.

Individual decisions required in CR are based on coherent de-
tection of PSK signals and hence requires the tracking of carrier
phases of individual sensor-to-fusion links. In addition, the max-
imal ratio combining fusion rule requires the channel state infor-
mation, viz., channel coefficients . Hence, considering both
the complexity of implementation and the performance, equal
gain combining is the best choice for low to moderate SNR,
whereas counting rule is the best choice for large SNR values.

(20)
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Fig. 4. Error Exponents, PSK in Rayleigh-Fading, Miss versus False Alarm,
SNR � �5 dB.

Fig. 5. Error Exponents, PSK in Rayleigh-Fading, Miss versus False Alarm,
SNR � 10 dB.

Fig. 6. Asymptotic error exponents, FSK in Rayleigh-fading, miss versus false
alarm.

These relative performances are similar to those obtained for the
case of a small number of sensors (see [17]; the Chair-Varshney
rule is equivalent to a CR for the i.i.d. sensors and channels). As
expected, a larger at a given (i.e., a better quality sensor)
leads to increased exponents for both types of errors (for the
sake of brevity, results are not shown, but are available in [24]).

For binary FSK in Rayleigh-fading channels, from Fig. 6 and
other observations not shown here (see [24]), we can conclude

that square law combining outperforms counting rule for SNR
values of 0 dB and 5 dB. Only from moderate SNR of 10 dB
to very high SNR values, does counting rule outperform square
law combining. In general, the best error exponents achieved
with FSK are below those achieved with PSK. Considering that
noncoherent FSK does not require carrier phase tracking, when
FSK is chosen as the modulation scheme, square law combining
with FSK is a good choice for low to moderate SNR. At high
SNR, counting rule is preferred over square law combining.

B. Asymptotic Performance in AWGN Channel

Considering that significant direct line of sight propagation
could exist between the sensors and the FC in certain applica-
tions, it will be of interest to know the asymptotic error expo-
nents of different combiners in such situations. For the case of
PSK signals in AWGN, we consider EGC (which is equivalent
to MRC for this channel) and CR, whereas for FSK signals, we
consider SLC and CR.

For EGC, (17) applies with replaced by 1. The false alarm
error exponent is given by

- -

(22)

where and is the SNR. For
CR, (2)–(3) apply with for PSK and

for noncoherent FSK. For SLC, (19) applies but with
, being distributed as noncentral chi-square with 2-de-

grees of freedom and mean , and exponential with mean
2, respectively, when the frequency was transmitted by the
sensor . The distributions will be interchanged when the fre-
quency was sent. The false alarm error exponent is given by

- - -

(23)

where . For PSK
and FSK signals received in a zero mean AWGN channel, we
show representative asymptotic error exponents of suboptimal
fusion rules in Figs. 7 and 8, respectively ( ,
and SNR values of 0 and 10 dB). We have observed for PSK,
at SNR of 0 dB and for all combinations ,

, equal gain combining outperforms counting
rule. However, with increase in channel SNR, the perfor-
mance of counting rule gets better when compared to equal
gain combiner. In the case of FSK, for all combinations of

, and SNR values considered,
square law combining is better than counting rule for small
SNR values. Only for large SNR, counting rule outperforms
square law combining.
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Fig. 7. Asymptotic error exponents, PSK in AWGN, miss versus false alarm.

Fig. 8. Asymptotic error exponents, FSK in AWGN, miss versus false alarm.

IV. CONCLUSION

In this paper we have analyzed the impact of the quality of
wireless sensor links on decentralized detection performance of
wireless sensor networks. For a counting rule (CR) at the fu-
sion center (FC) and a finite number of sensors , we have
shown that the probability of false alarm of the CR could be
several decades higher than the probability of false alarm of the
sensor, depending on the channel SNR. Moreover, for a counting
rule, slow Rayleigh channel, and a large number of sensors,
the OOK with the proper choice of individual sensor decision
threshold at the FC, in addition to providing energy saving, pro-
vides error performance comparable to that of FSK. For PSK
signals, the relative performances of counting rule, maximal
ratio combining and equal gain combining, for very large and
Rayleigh-fading or AWGN channel, resemble those seen earlier
for finite and Rayleigh-fading by Chen, Jiang, Kasetkesam
and Varshney, viz., equal gain combining performs the best for
low and moderate SNR, with the counting rule achieving best
performance for large SNR. For FSK signals, in both AWGN
and Rayleigh- fading channels, square law combining shows
better performance over counting rule at low SNR values, with
the converse being true for high SNR values. Extension of the
analysis to nonidentical sensors and nonidentical sensor-fusion
links will be meaningful. Also, the present work was based on
the situation where the sensors transmit their data to the fusion
center without any relay nodes. Further performance analysis
involving amplify forward or decode forward relays in the net-
work will be worth investigating.

APPENDIX

False Alarm Probability of CR With Independent Fading
Links: We prove that the average link error probability can be
used for each link while computing the overall false alarm (and
detection) error probability of a CR.2 Let be the
instantaneous SNRs of the received signals corresponding to
the individual links between a sensor and the fusion center.
Then, for a specified counting rule at the fusion center with
the threshold , the false alarm probability of the FC decision
can be written as , where
the expectation operation is with respect to the distribution of
the instantaneous SNRs, and describes the
function that determines the conditional false alarm probability
of the CR, conditioned on the instantaneous SNRs. Hence,

received counts in favor of with

the corresponding probability for the count

where depends on and . Equivalently

since ( , ) are independent. Using the fol-
lowing relation:

if
if

in the previous equation, we get

The above equation shows that the average probability can be
used for the th link in order to arrive at . If the links are
identical, then is independent of and becomes a
sum of Binomial probabilities.
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