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HIV-1 infection is characterized by genetic diversity wherein distinct viral subtypes (clades A, B,
C, D, E, F, G, K and O) are expanding in different geographical regions. This article deals with
the topic of HIV-1 subtype diversity in the context of sensitivity to antiretroviral drugs, drug
resistance and viral fitness. Increasing evidence suggests that all clades of HIV probably display
similar sensitivity to antiviral drugs. However, viruses from some subtypes and/or geographical
regions may have a greater propensity to develop resistance against certain drugs than do other
viral variants. In addition, differences in regard to replication capacity or fitness may exist
among various HIV subtypes and differences in this regard may potentially become magnified
under conditions of drug resistance. Immunological pressures may also play an important role
in the evolution of viral subtypes that may impact on ultimate drug resistance profiles.
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Introduction

Contrary to predictions made at the inception of the AIDS
epidemic two decades ago, HIV-1 has evolved to assume
multiple guises, which differ from place to place across the
globe. The predominant subtype that is found in the de-
veloped Western World, clade B, differs considerably from
those subtypes and recombinants that exist in Africa and Asia,
where the vast majority of HIV-infected persons reside. Thus,
serious discrepancies may exist between the subtype B retro-
virus that medical practitioners encounter in North America
and Europe and those viral subtypes that plague humanity on a
global scale. To bridge this gap, the following exposition of
HIV clade diversity and its clinical consequences is in order.

The large genomic diversity of viral subtypes in different
geographical regions is the consequence of the astonishingly
high mismatch error rate of the HIV reverse transcriptase
(RT) enzyme coupled with the absence of an exonuclease
proof-reading activity. Other factors that contribute to the
rapid pace of genetic diversification include the replicative
rate of each viral subtype, the number of mutations arising in

each replicative cycle, the viral propensity for genomic
recombination and viral fitness. In addition, high rates of
genomic evolution may result from host, environment and/or
therapeutic selection pressures.1–6

Three classes of HIV-1 have developed across the globe:
M (major), O (outlying) and N (new).2,3 Among the M group,
which accounts for >90% of reported HIV/AIDS cases, viral
envelopes have diversified so greatly that this group has been
subclassified into nine major clades including A–D, F–H, J
and K, as well as several circulating recombinant forms.1–7

Viral diversity appears to radiate out of sub-Saharan Africa,
where over 28 million of the total 40 million infected persons
live.6–10

Geographical spread

As depicted in Figure 1, the demographic distribution of
patients infected with particular clades, or subtypes, is hetero-
geneous, with predominant clades in a given region, as
follows:
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A and A/G recombinant variants predominate in West and
Central Africa.6

B has been the predominant species in Europe and the
Americas. However, with increasing immigration and global-
ization, >40% of new infections in Europe are presently non-
B African and Asian variants.

C is largely predominant in Southern and Eastern Africa,
India and Nepal. Indeed, clade C has created the recent
epicentres of the HIV pandemic by its uncontrolled spread
throughout Botswana, Zimbabwe, Malawi, Zambia, Namibia,
Lesotho, South Africa, India, Nepal and China.3,4,6,7,11–15

D is generally limited to East and Central Africa, with spor-
adic cases observed in Southern and Western Africa.6,7,9,10,16,17

E has never materialized alone, but rather appears as an
A/E mosaic detected in Thailand, the Philippines, China and
Central Africa.4,6,7,18–20

F has been reported in Central Africa, South America and
Eastern Europe.

G and A/G recombinant viruses have been observed in
Western and Eastern Africa as well as in central Europe.6

H has only been detected in Central Africa.4–10,21

J has been reported exclusively in Central America.10,16

K has recently been identified in the Democratic Republic
of Congo and Cameroon.5

This list is not exhaustive, for more subtypes are constantly
being discovered, and migrating populations are shaping new
patterns of infection.22

Of particular concern are HIV-1 clades C and A, as well
as the A/G and A/E recombinant forms, which represent the
predominant subtypes in Africa and Asia where HIV disease
is dangerously out of control.

In sharp contrast, the other genre of retrovirus, HIV-2, has
not spread much beyond West Africa where it is presently
endemic. Some sporadic cases have been observed elsewhere
in Africa but the virus appears to be significantly less patho-
genic than HIV-1.6,7,16,17

Genomic diversity of clades

HIV-1 clades are phylogenetically classified on the basis
of the 20–50% differences in envelope (env) nucleotide se-
quences. The Env proteins of groups M and O may differ by as
much as 30–50%. The N subtype, in turn, appears to be phylo-
genetically equidistant from M and O.1,2,23,24 Within M sub-
groups, inter-clade env variations differ by 20–30% whereas
intra-clade variation of 10–15% is observed.24–27

The pol region of HIV-1 is two to three times less divergent
than env because this region encodes two critically important

Figure 1. Subtype diversity of HIV-1 infections prevalent worldwide.
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enzymes, RT and protease, which, if excessively mutated,
render the virus inoperative. gag sequences are even further
intolerant of mutations, seeing as they encode for relatively
inflexible core protein sequences.

Inter- and intra-clade variations within pol sequences are
particularly relevant insofar as this region encodes RT and
protease proteins, against which many antiviral drugs are
directed. Variations in these regions may therefore affect drug
susceptibility and development of drug resistance. Ethiopian
clade C isolates differ (with respect to RT) from clade B by
6.8–10%, and intra-clade differences of 3.5–5.8% have been
reported for strains from Africa, India and South America.28–30

The fact that any given percentage variation in nucleotide
sequence translates into lower amino acid sequence variation
is notable because many genetic mutations are silent. For in-
stance, the 10% nucleotide divergence between RT sequences
in clades E and B yields only a 7% divergence in amino acid
residues.

Not only do env genes vary substantially from clade to
clade, but so do the long terminal repeat (LTR) sequences,
which contain transcriptional promoters of HIV replica-
tion.31–33 Each clade has its own LTR copy number as well as
an exact nucleotide sequence of enhancer and promoter
structures, despite the uniformity in other LTR features, i.e.
Sp1 sites, TATA box and TAT-responsive element.31,32,34

Moreover, diversity is seen in numbers of transcriptional
promoters. These include the NF-κB binding sites (three to
four in C, two in B and just one in E), as well as in sequences
upstream of NF-κB sites, such as the nef-overlapping USF
gene, which is incident only in clade B,32 and the AP-1 tran-
scriptional factor binding site (which exists as one site in
subtypes C, E and G, two in A and F, and none in B or D).32

The –170 region of U3, containing a specific motif for the NF-
IL6 transcriptional factor (C/EBP-B), is harboured by clade B
but not by A, C, D or O.33 This factor transactivates the HIV-1
LTR in cells of monocytic origin.33,35 Additionally, subtype
discrepancies arise between the negative regulatory element
(NRE) seen in clades C, D and E versus that detected in
clade B.34

Given these genetic distinctions between HIV-1 promoters,
it is not surprising to find that clades respond differentially to
various transcriptional factors. The NF-κB binding factor,
Rel-p65, NF-κB and nuclear HeLa cell extract all stimulate
HIV-1 clade C to a far greater extent than clade B or E.31,34

Likewise, tumour necrosis factor (TNF)-α activates the LTRs
of clade C more impressively than those of clades A, B, D, F
and G, with the lowest stimulation seen in clade E.32

One might inquire as to whether clade diversity bears any
impact on HIV-1 gene expression and replication kinetics,
pursuant to these structural and functional differences,
coupled with the fact that the LTR is believed to play a pivotal
role in cellular tropism.36 The matter requires further eluci-
dation by studies of HIV-1 transcription and replication
kinetics, which scrutinize subtypes and cell types.

Recent experiments indicate that the sequence of the viral
regulatory protein, Nef, also differs between HIV-1 clades,
ranging in variation from 14.4% to 23.8%, with the closest Nef
configurations being those of B and D.37 The clinical impli-
cations of Nef sequence diversity are currently unknown but
potentially great, given the recent observation that Nef se-
quences may change in clade B-infected patients as a function
of disease progression.38,39

Lastly, there is evidence that other regulatory and acces-
sory HIV-1 genes may play an important role in subtype
diversity. This relates partly to the fact that clade C contains a
uniquely truncated Rev protein and an enlarged Vpu product,
as well as the finding that clade D expresses a Tat protein with
a C-terminus deletion.27

Subtype diversity in co-receptor usage, cell 
tropism and syncytium inducibility

Clades may show differences in co-receptor usage and syncytia-
inducing capacity that may impact on disease progression.
The cytopathic property of B strains can be either syncytium
inducing (SI) or non-SI (NSI), the former being consistent
with a virus that infects T cells and replicates swiftly, whereas
the latter is characteristic of a virus that infects macrophages
and grows more slowly.40–42 The chief co-receptor of SI virus
is the β chemokine receptor CXCR4, whereas that of NSI
virus is the β chemokine receptor CCR5.43–46 Most HIV clades
cause disease by assuming the CCR5+/NSI phenotype during
early disease and the CXCR4+/SI phenotype during the end
stages of disease.47–49 However, this correlation does not hold
true for clade A, C or D. Clade A viruses tend to favour CCR5
even at later stages, a pattern that is seen to a more extreme
extent in C strains, which rarely become CXCR4+/SI even in
moribund patients. Subtype D displays simultaneous tropism
for CCR5 and CXCR4 throughout the course of disease.15,50–53

Some researchers postulate the reason for the absence of
the CXCR4 phenotype among clade C HIV to be that African
patients may experience persistent immune activation by co-
existent infections, which constantly trigger CCR5 over-
expression.51,54–56 However, in light of the fact that C strains
are actually commonplace in countries with starkly con-
trasting immunological backgrounds, this notion may be
inaccurate. Equally unclear is the contention arising from
preliminary studies to the effect that subtypes vary in their
ability to infect Langerhans cells, with such tropism linked to
vaginal/cervical transmission.11,57–59 Further experimental
analysis is required.

Any discussion of HIV-1 host cell tropism as a function of
subtype would not be complete without reference to the V3
loop of the envelope glycoprotein gp120 involved in HIV-1
entry into CD4 cells.60–62 Particular amino acid substitutions
are believed to be essential for co-receptor usage, infectivity
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and cell tropism in clade E.60 Clade D strains demonstrate a
highly variable pattern of V3 loop amino acids compared
with other group M subtypes. At the opposite extreme, clade
C displays less variation in the V3 loop than all the others, and
also lacks the highly conserved N-linked glycosylation site
traditionally associated with other subtypes.53,63–65

The relationship between HIV-1 subtype diversity and
disease transmissibility and progression is poorly understood.
Moreover, inter-subtype studies may be complicated by host,
societal and virological factors that are difficult to control.6

Subtype diversity may impact on modes of HIV transmis-
sion.6,7,11,12,57,58,66,67 Homosexual and intravenous drug abuse
are the primary modes of transmission observed for clade B
strains in Europe and the Americas. In contrast, clades A, C, D
and E predominate in Africa and Asia where heterosexual
transmission predominates. Further analysis of this topic is
warranted, as are studies among different clades.12,68,69

Several studies suggest that AIDS progression differs as a
function of infecting subtype.6,57,68–70 In one study, patients
hosting clade A or G would appear to live symptom-free for
the longest, whereas those infected by clade D live an inter-
mediate span and those hosting clade C experience rapid dis-
ease progression.70 In a recent large cohort study, subtype D
was associated with lower CD4 cell count and faster disease
progression and death compared with subtype A.69 Likewise,
a cross-sectional study found clade C patients to suffer the
highest rates of viraemia coupled with lowest CD4 counts,
with progression to AIDS before their A- or D-infected
counterparts.68

To better appreciate the virological characteristics of each
subtype, additional longitudinal studies with various HIV
subtypes are needed. These may help researchers to innovate
superior strategies for disease control.

Subtype diversity in the face of antiretroviral 
drugs

In developed countries, clade B HIV infections have been
managed with highly active antiretroviral therapy (HAART)
using nucleoside- and non-nucleoside RT inhibitors (NRTIs
and NNRTIs) as well as protease inhibitors (PIs). Such
therapy has sharply reduced HIV transmission, morbidity and
mortality, but has also created the long-term spectre of drug
resistance. Advances in genotypic analysis have identified the
changes in sequence that can confer resistance to each anti-
retroviral drug and even against entire classes of NRTIs,
NNRTIs and PIs.71–74 However, very little data are available
as to how subtype diversity may affect drug susceptibility and
resistance. Despite the fact that antiretroviral therapy has
been scientifically fine-tuned to target the pol gene products
(RT and protease), nucleotide divergence within this
sequence as a function of HIV subtype is only now coming to
light.75–79

It has been shown that the Y181C and Y181I mutations
render group O and HIV-2 resistant to all drugs within the
entire NNRTI class, respectively.80–83 In a less absolute
manner, clade F shows some measure of resistance to the non-
commercialized NNRTI, the TIBO compound, while remain-
ing sensitive to other NNRTIs, such as nevirapine and
delaviridine (DLV), as well as NRTIs and PIs.84 Clade C
isolates from treatment-naive Zimbabweans appear to be as
drug sensitive as clade B isolates.85,86 In contrast, our results
indicate that some clade C isolates may show inherent
resistance against NNRTIs due to the presence of a G190A
mutation.28–30 A different study found clade D viruses to func-
tion with diminished drug sensitivity owing to rapid growth
kinetics, whereas subtypes A, B, C and E demonstrated
comparable sensitivity.87 Preliminary results from the paedi-
atric PENTA 5 study show that resistance rates are higher for
non-B versus B clades.88

Our group has recently evaluated the effects of clade geno-
typic diversity on drug susceptibility and drug resistance
patterns.28–30 Clade C isolates were obtained from treatment-
naive immigrants to Canada, Ethiopians living in Israel and
subjects from Botswana and India.28–30 There was low phylo-
genetic divergence (3.8–5%) among clade C strains from
Ethiopia, Botswana and India, indicating that these variants
are more closely related than those previously observed for
other clades.89–91 This is similar to other studies showing less
diversity with clade C viruses than other African strains.2

As observed in Africa, we show that clade A can be sub-
divided into clade A, A/E and A/G subclusters. Recom-
bination has been reported to be a common feature among
retroviruses and, as well, between HIV-1 strains, particularly
clade A.2,4,92 Ominously, mutation and recombination may
both contribute to rescuing high-fitness HIV-1 variants.
Recent identification of individuals infected with HIV-1 iso-
lates from two subtypes and inter-subtype species suggests
that this effect may frequently materialize among viruses co-
circulating in specific geographical regions.4,8,93–95

Genotypic analyses of viruses of different clades show
many nucleotide changes (silent mutations), polymorphisms
and secondary mutations within RT and protease regions
implicated in the emergence of resistance to NRTIs, NNRTIs
and PIs used in HIV-1 treatment. Whereas, in treatment-naive
patients, many of these changes do not confer resistance to
drugs per se among different clades, they may facilitate the
development of resistance. A recent study in Ivory Coast
showed how almost all HIV-1 patients were infected with
non-B subtypes, predominantly by A/G recombinants.96 In
addition, a high prevalence of 57.4% genotypic and pheno-
typic HIV-1 drug-resistant strains was reported among
68 patients who were treated with NNRTIs, NRTIs and
PIs between 1998 and 1999.96 Indeed, a comparably high 30–
50% proportion of viral variants harbouring drug resistance
mutations had previously been reported in some developing
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countries among HIV individuals receiving antiretroviral
therapy.97,98 These findings underscore how the introduction
of suboptimal therapy and poor patient adherence may lead to
a more rapid appearance of resistant variants in African or
Asian strains than that reported for clade B infections in
developed countries where HAART is available. This last
point is particularly worrisome in the light of the fact that
suboptimal antiretroviral therapy is becoming increasingly
prevalent in developing countries.7,76,82,99

Our laboratory carried out in vitro drug selection studies on
15 clade C isolates to contrast the emergence of mutations that
confer drug resistance in HIV-1 clade C strains compared
with that observed for clade B.28–30 Ethiopian and Botswanan
clade isolates carried a clade C-specific KVEQ cluster of
silent mutations (amino acids 65, 106, 138, 161, respect-
ively), which allowed for RT-based phylogenetic character-
ization. There were numerous baseline polymorphisms and
silent mutations in treatment-naive subjects within RT at sites
linked to resistance to NNRTIs and NRTIs [azidothymidine
(AZT), multi-NRTI resistance], as well as protease poly-
morphisms that facilitate resistance to PIs.28–30 These include
R211K and L214F (NRTI), A98S and E138K (NNRTI) and
M36I (PI) secondary or accessory mutations that were not
shown to confer phenotypic resistance on their own. Never-
theless, evaluation of baseline drug susceptibility demon-
strated similar sensitivities among most clade C viruses from
treatment-naive persons, confirming observations reported
for clade C strains from Zimbabwe.28,30,85 Intrinsic resistance
to nevirapine and efavirenz was seen in one of the 15 indi-
viduals where G190A expression led to innate NNRTI resist-
ance mutation. In this isolate, resistance to nevirapine and
efavirenz was observed with no DLV resistance. This result
corroborates data on the resistance impact of the G190A
substitution in clade B isolates.100

Our laboratory carried out studies to ascertain the dosage
and time to development of resistance to NNRTIs in clade C
isolates compared with clade B viruses.28,30 The final drug
concentration required for the development of resistance
mutations conferring NNRTI resistance was significantly
lower for clade C than clade B viruses for each of nevirapine
(2 versus 10 µM), efavirenz (0.01 versus 1 µM) and DLV
(1 versus 10 µM), respectively.28,30 Moreover, resistant vari-
ants were fully selected more rapidly with the clade C isolates
(8 or 9 weeks with nevirapine or DLV and 13 weeks with
efavirenz) than with the clade B control (at least 15 weeks
with nevirapine or DLV and 30 weeks with efavirenz).28 In
general, at the middle interval of the selection period, the sub-
type B viruses harboured a mixture of wild-type and mutated
forms, whereas clade C isolates were mutated forms in regard
to all the NNRTIs (nevirapine, DLV or efavirenz). These
findings suggest that clade C viruses can more rapidly select
for resistance to NNRTIs. Recently, it was reported that non-
subtype B HIV-1 strains were likely to be less susceptible to

HAART.101 In addition, non-B sequences were statistically
associated with rapid progression to resistance after anti-
retroviral therapy, and had different mutational patterns to
B isolates.102 Another recent study showed some evidence of
HIV-1 subtype impact on the development of NNRTI resist-
ance mutations; there was an increased prevalence of specific
mutations and polymorphisms among non-clade B viruses
that may have predisposed their hosts to NNRTI treatment
failure.102 These in vivo reports correlate with observations in
cell culture; discrepancies seen in the development of
NNRTI-resistant mutations were not previously noted in vitro
for subtype C RT.

Our studies also indicate that novel resistance mutations
can develop in clade C isolates.28–30 Two of five Ethiopian
clade C isolates initially harboured the A98S secondary
mutation associated with resistance to nevirapine.28 After cell
culture selection with nevirapine, a new S98I mutation arose
conferring primary phenotypic resistance. In subtype B
HIV-1 strains, the mutation at this position has been reported
to be A98G and has been observed in vivo.103 This was the first
report on the presence of the S98I mutation in RT in vitro
selected by nevirapine. In clade C-resistant variants selected
with nevirapine, several other amino acid changes were also
generated, including A98I, A98S, K103N, V106M, V108I
and Y181C.28 The baseline polymorphism at codon 106 in
clade C viruses facilitated development of a novel V106M
mutation, conferring efavirenz resistance.28–30

Apart from S98I and V106M, the codon changes at
positions 103, 106, 108 and 181 observed with clade B
isolates were also noted in subtype C infections and patients
failing NNRTI therapy.28–30,71,104 Yet the emergence of some
NNRTI resistance mutations may be more accelerated in
certain HIV-1 non-B subtypes and facilitated by pre-existing
genetic polymorphisms. In a recent clinical trial conducted in
Uganda for prevention of mother-to-child transmission of
HIV-1 with nevirapine, the K103N mutation was detected in
20% of treated women by 6 weeks after receiving a single
dose of nevirapine at the onset of labour.105 This leads to a
concern for the postpartum transmission of resistance through
breastfeeding.105

After selection with DLV, a silent mutation, A62A, initially
observed in one Ethiopian isolate, became A62V, a mutation
associated with multi-drug resistance against NRTIs.28,30,71

This shows that silent mutations at sites related to drug resist-
ance in clade C RT have potential impact in facilitating codon
changes for emergence of resistance. Another secondary
mutation at a site associated with cross-resistance among
multiple NRTIs, i.e. substitution V75E, was generated in one
of five Ethiopian clade C isolates, grown under conditions of
DLV pressure.28,30,71 Once again, this suggests that clade C RT
may have specific patterns of drug resistance that need to be
considered. In addition, these findings demonstrate that clade
C viruses may progress rapidly to resistance after treatment
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with NNRTIs.28 Additional prospective studies need to be
conducted in order to assess the incidence of drug resistance-
related mutations in populations infected with subtype C strains
and undergoing drug therapy.

It has been established that HIV-2 RT, showing 60%
sequence homology with HIV-1 RT, is not inhibited by any
of the known NNRTIs.83 This has been mechanistically linked
to differences in the NNRTI binding pocket of HIV-2
harbouring the natural Y181I polymorphism. In other studies,
10 Cameroonian group O viral isolates were shown to be
naturally resistant to NNRTIs (nevirapine, DLV, R82913),
while showing sensitivity to NRTIs [AZT, didanosine, zalciti-
bine, lamivudine (3TC)] and PIs (saquinavir, ritonavir).81,82

Group O viruses carry the natural Y181C polymorphism
similar to the Y181I divergence seen in HIV-2. Four Roman-
ian clade F isolates, showing 7.4% genotypic variation from
clade B isolates, were also shown to have reduced sensitivity
to the TIBO compound, while demonstrating phenotypic
susceptibility to other NNRTIs such as nevirapine and DLV,
as well as to NRTIs and PIs.84 In contrast, the phenotypic
sensitivity of clade C isolates from five drug-naive infected
Zimbabweans to NRTIs and NNRTIs was reported to be
similar to that of clade B isolates.85,86

In our study, the presence of certain secondary mutations
associated with resistance to NNRTIs and to zidovudine
(ZDV) did not significantly decrease the susceptibility of
Ethiopian or Botswanan clade C strains to RT inhibitors,
except for one virus that harboured G190A, a nevirapine
resistance primary mutation.28,30 However, resistance to
efavirenz and nevirapine developed more rapidly. This has
serious clinical ramifications since these two drugs are inex-
pensive and accessible to resource-poor nations.

Immunodominant epitopes

Several immunodominant regions have been characterized in
HIV-1 clade B RT. Therefore, the peptides harbouring drug-
selected mutations that appear in these epitopes may be of
interest in therapeutic immunization protocols to restrict
emergence of escape mutations and antiviral drug resistance.
However, little is known about potential divergence among
RTs of different HIV-1 subtypes. Diversity in the pol regions
of HIV-1 clade C, corresponding to known cytotoxic T
lymphocyte (CTL) and T-helper epitopes within clade B RT,
could be important and confound immunotherapeutic strate-
gies that target RT immunogenic regions.

A total of 14 clade C antiviral treatment-naive isolates were
included in our studies, comprising five previously character-
ized clade C isolates from Ethiopia and nine other HIV-1 iso-
lates obtained from nine drug-naive individuals originating
from Botswana.30 Screening for the diversity of immuno-
dominant regions of HIV-1 subtype C RT was carried out to

identify amino acid substitutions that may affect recognition
of these epitopes by cellular immune response effectors.

A polymorphism was identified that clustered within
certain CTL epitopes of clade C isolates from Ethiopia and
Botswana.30 Such clustering has been reported in Gag-
specific CTL epitopes in HIV-1-infected individuals.106

These clustered mutations in Gag may be required for HIV-1
escape from HLA-B27-restricted CTL responses.107 To date,
there has been no previous report on the genotypic divergence
of CTL epitope sequences in clade C RTs from different
regions. Such inter- and intra-clade C variations may affect
RT immunogenicity and CTL cross-reactivity for different
strains of HIV-1, allowing viral escape from immune control.

In addition, analysis of T-helper epitopes in clade C RT of
Ethiopian and Botswanan isolates has also shown that clus-
tered polymorphisms were present in certain CD4+ T-cell
epitopes, mainly in the N-terminal part of the RT fingers and
the C-terminal region of the RT palm subdomain. T-helper
epitope diversity observed in clade C RT is another factor
that may potentially contribute to a divergent immune cross-
reactivity of RT regions. The role of CD4+ T cells in priming
immune responses against HIV has been widely documented.
T-helper lymphocytes have been reported to be critical for the
induction of CTL responses, as well as for maintaining CD8+
T-cell memory and for the maturation of CD8+ T-cell func-
tion.108,109 The polymorphism found in clade C RT sequences,
corresponding to known clade B regions that trigger immuno-
dominant T-helper responses, emphasizes the need for global
screening for distinct immunogenetic patterns among HIV-1
subtypes. This may reveal immune correlates for a broadly
cross-reactive immune therapeutic approach to prevent the
destruction of CD4+ T cells by HIV.

Despite the natural polymorphisms among different
HIV-1 subtypes, the recognition of RT epitopes by CTLs and
T-helper cells has been reported to be affected by antiviral
drug resistance mutations.110–112 A series of mutations selected
by NNRTIs and NRTIs can lead to viral drug resistance.104,113

Mutations generated during antiviral therapy could also
decrease immune responsiveness to RT, in the case of amino
acid substitutions within epitopes that are normally recog-
nized by CTLs and T-helper cells.

To identify drug resistance mutations that might be
generated within immunogenic motifs of clade C RT, our
group used increasing concentrations of different NNRTIs
(nevirapine, DLV and efavirenz) as well as NRTIs (3TC and
ZDV).28–30 Experiments carried out with Ethiopian and
Botswanan subtype C strains revealed a panel of common
mutations at sites associated with drug resistance as well as
odd amino acid changes, A62V, V75E, L210M associated
with secondary resistance to NRTIs, as well as S98I, K103E,
V106M conferring NNRTI resistance. In the case of RT CTL
recognition motifs, mutations at drug resistance sites were
mainly noted within two relatively conserved immunogenic
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regions of RT overlapping CTL epitopes 103–118, 108–123,
175–184 and 180–190.30 In the case of RT T-helper epitopes,
half of the drug resistance mutations arose in relatively con-
served regions 48–73, 62–78 and 88–100, and half arose in
highly polymorphic epitopes, i.e. 171–191, 195–210 and
196–216.30 Many other mutations, unrelated to drug resist-
ance sites, were also noted within regions overlapping the
CTL and T-helper epitopes of HIV-1 clade C RT. The impact
of these residues, including the drug resistance mutations and
amino acid substitutions due to clade C polymorphism, on the
specific immunogenicity of clade C RT is unknown. Some
antiviral drug mutations in clade B RT have been reported to
increase the immunogenicity of previously poor immuno-
genic regions of RT.112

We have mainly investigated the fingers and palm sub-
domain of RT, as the majority of drug resistance mutations are
generated within these areas of RT.71,83,104 We have noted the
existence of an important polymorphism in the CTL and
T-helper epitopes in clade C RT. An average sequence hom-
ology of 88.4–91.5% was found among Ethiopian and/or
Botswanan clade C isolates and other HIV-1 group M subtype
prototype strains. These observations suggest that large
immunological differences may exist among RTs.

The immunogenic properties of HIV-1 RT have been
documented in several studies.112,114–117 Thus, HIV-1 subtype
natural polymorphisms which exist at critical amino acids
may anchor positions within epitopes that may alter mech-
anisms of HIV-1 RT fragment processing and presentation,
allowing immune escape of HIV-1 subtype variants.118–120

There is ample evidence to demonstrate that the immune
system may control and significantly suppress viral repli-
cation during early stages of HIV-1 infection.109,121 Genotypic
divergence noted in clade C RT suggests that a global
characterization of CTL and T-helper anchor motifs and
predicted drug selected mutations in HIV-1 non-B subtype
RT is warranted. Knowledge of frequently arising baseline
polymorphisms and drug-related mutations, in the context of
immune responsiveness to RT, may boost our understanding
of the immunotherapeutic control of HIV infection.

Conclusions

These considerations of genetic diversity and its potential
consequence on drug resistance are of paramount significance
in treating non-B HIV. Antiviral drug regimens presently in
use have been designed against clade B, and so might not be
equally effective in Africa or Asia. Indeed, as noted above,
non-B infections are both less susceptible to HAART and
statistically associated with a more rapid post-HAART pro-
gression of mutational patterns than B isolates.101,102 More-
over, quite apart from genetic considerations, the fact that
developing countries can scarcely afford multiple drug

regimes for each patient, and must hence resort to suboptimal
therapy, e.g. bitherapy (AZT/3TC), favours the accelerated
development of drug resistance in these regions. For instance,
7–29% of pregnant women administered AZT monotherapy
developed AZT-resistant strains, as did 5–21% of their infected
offspring.122 Developed countries have a vested interest in
screening the phenotypes and genotypes of non-B subtypes
and in ensuring the availability of antiretroviral drugs for the
treatment of HIV disease throughout the planet.
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