ERRATUM

Impact of climate change on Indian agriculture: a review

R. K. Mall • Ranjeet Singh • Akhilesh Gupta • G. Srinivasan • L. S. Rathore

Published online: 6 March 2007 © Springer Science + Business Media B.V. 2007

Erratum to: Climatic Change (2006) 78: 445–478 DOI 10.1007/s10584-005-9042-x

The original article was published without Tables I, II, III, IV, V, and VI, shown here on the following pages.

The online version of the original article can be found at doi:10.1007/s10584-005-9042-x.

R. K. Mall (⊠) Central Ground Water Board, New Delhi 110001, India e-mail: mall_raj@rediffmail.com

R. Singh · A. Gupta · L. S. Rathore National Center for Medium Range Weather Forecasting, Noida 201307, India

G. Srinivasan India Meteorological Department, Lodi Road, New Delhi 110003, India

Present address: R. K. Mall Department of Geophysics, Banaras Hindu University, Varanasi 221005, India

Region	Temperature	Rainfall	Reference
All India	Increase in 0.4°C/100 years in the mean annual temperature.		Hingane et al. 1985
All India	Increase in max. Temp. (0.6°C/100 yrs) Min temp trend less. General increase in the		Rupa Kumar et al. 1994
Western Himalayas	diurnal range of temp Winter season, Srinagar, Mussoorie and Mukteswar shows increasing trend (0.5°C/100 year) Monsoon season, Srinagar, which is beyond the monsoon regime, shows	No increasing or decreasing trend for last 100 years	Pant et al. 1999
Indo-Gangetic Plain	significant increasing trend, whereas Mussoorie and Dehradun which are at the foothills of Himalaya show decreasing trend Annual surface air	Summer monsoon rainfall	Singh and
Region (IGPR)	temperature of the IGPR showed rising trend (0.53°C/ 100-year, during 1875– 1958	over western IGPR shows increasing trend (170 mm/ 100 years) from 1900 while over central IGPR it shows decreasing trend (5 mm/ 100 years) from 1939 and over eastern IGPR decreasing trend (50 mm/100 years) during 1900–1984 and increasing trend (480 mm/100 years) during 1984–1999.	Sontakke 2002
	Decreasing trend (-0.93°C/100-year during 1958–1997	Westward shift in rainfall activities over the IGPR.	
All-India		Monsoon rainfall is trend less and is mainly random in nature over a long period	Mooley and Parthasarathy 1984; Thapliyal and Kulshrestha 1991
NE Peninsula, NE India, NW Peninsula, West Coast and Central Peninsula		NE peninsula, NE India and NW peninsula show decreasing trend in the Indian summer monsoon rainfall (-6 to 8% of normal/100 years) while increasing trend was noticed along the west coast and over central peninsula	Rupa Kumar et al. 1992

TABLE I Selective reports on observed climate change during the twentieth century over India

TABLE I	(continued)
---------	-------------

Region	Temperature	Rainfall	Reference
		(+10 to 12 % of normal/ 100 years)	
Western and Eastern Himalayas	n	Western Himalayas get more snowfall than the eastern Himalayas during winter.	Kripalani et al. 1996
		More rainfall in the eastern Himalayas than in the western Himalayas during the monsoon season	
Rajasthan desert		Slight increase in monsoon rainfall; in spite of large inter annual variations	Pant and Hingne 1998
Luni River Basin (Arid west Rajasthan)	Rising trend at Barmer, Jodhpur, Ajmer and Pali	Annual rainfall indicating increasing tendency at 19 station (around Ajmer in upper part of the Luni basin	Singh et al. 2001
	Decreasing treand at Udaipur and jwaibandh	Decreasing trend at the remaining nine stations in lower Luni basin i.e. Barmer.	

Region	Temperature	Rainfall	Reference
All India	Increase in winter or <i>rabi</i> crop growing season temperature by 1–4°C with increased CO ₂ concentration	Precipitation increase of approximately 20%. Increase in specific humidity by 19% Increase in heavy rainfall days during the summer monsoon period i.e. in <i>kharif</i> crop growing season, and an increased inter annual variability	Bhaskaran 1995
All India	Average temperature change is predicted to be in the range of $2.33-4.78^{\circ}$ C with a doubling in CO ₂ concentration	Increase in the frequency of heavy rainfall events	Lonergan 1998
All India	Increase in annual mean day and night temperature of 0.7 and 1.0°C in 2040s with respect to 1980s.		Lal et al. 1995
All India	Increase in mean temp. (°C): Year 2020s	Change in rainfall (%) Year 2020s	Lal et al. 2001
	<i>Kharif</i> season, 0.87 to 1.12 <i>Rabi</i> season, 1.08 to 1.54 Year 2050s <i>Kharif</i> season, 1.81 to 2.37 <i>Rabi</i> season, 2.54 to 3.18 Year 2080s <i>Kharif</i> season, 2.91 to 4.62 <i>Rabi</i> season, 4.14 to 6.31	Kharif season, 1.8 to 5.1 Rabi season, -2.0 to 4.7 Year 2050s Kharif season, 7.2 to 10.5 Rabi season, -9.2 to 3.8 Year 2080s Kharif season, 10.1 to 15.2 Rabi season, -24.8 to -4.5	
All India	Increase in annual mean temperature by 1.3–1.7°C	6–13% increase in <i>kharif</i> season rainfall	Rupa Kumar & Ashrit 2001
All India	Year 2050s	Year 2050s	Rupa Kumar et al. 2003
	South of 25°N (south of cities such as Udaipur, Khajuraho and Varanasi) maximum temp. will increase by 2–4°C. In the northern region the increase in maximum temp. by more than 4°C.	Decrease in number of rainy days over a major part of the country. This decrease is more in western and central part (by more than 15 days)	
	Increase in minimum temperature up to 4°C all over the country.	While near the foothills of Himalayas (Uttaranchal state) and in northeast India the number of rainy days increase by 5–10 days. Overall increase in the rainy day intensity by 1–4 mm/day except for small areas in the northwest India where the rainfall intensities decrease by 1 mm/day.	

TABLE II Selective reports on projected climate change during next century over India

Region	Potential yield		Irrigated yields		Rainfed yields	
	Current	Percent (%) change	Current	Percent (%) change	Current	Percent (%) change
>27°N	6.66	-3.9	4.89	3.7	2.95	28.6
25–27°N	5.84	-1.5	4.78	-4.4	3.34	-7.2
23–25°N	5.86	-5.6	4.18	-10.8	1.17	-19.6
20–23°N	4.18	-18.4	2.29	-18.3	0.51	-11.8
<20°N	3.69	-17.3	2.43	-21.4	0.97	-23.9

TABLE III Grain yield (t ha^{-1}) of wheat in current weather and percent change in response to climate change (425 pp CO₂, 2°C increase in mean temperature) in different regions of India

(Source: Aggarwal and Kalra 1994)

TABLE IV Increase in yield (%) of different cultivars under modified climate of northwest India

Cultivar (Station)	Rainfed		Irrigated	Irrigated	
	S-II	S-III	S-II	S-III	
WH542 (Hisar)	37	30	27	23	
HD2329 (Ludhiana)	31	22	16	12	
HD2285 (Delhi)	29	24	22	19	
Sonalika (Pantnagar)	34	27	22	18	
Raj3765 (Jaipur)	36	29	28	22	

S-I: current climate; S-II: T_{max} +1.0°C, T_{min} +1.5°C, 2×CO₂; S-III: T_{max} +2.0°C, T_{min} +2.5°C, 2×CO₂. (Source: Attri and Rathore, 2003)

Region	Percent (%) ch	Percent (%) change in yield (range)	nge)							
	Improved level	Improved level of management			Current level of management	of management			Pooled	
	CERES-rice		ORYZAIN		CERES-rice		ORYZAIN			
	Pessimistic	Optimistic	Pessimistic	Optimistic	Pessimistic	Optimistic	Pessimistic	Optimistic	Pessimistic	Optimistic
2010 Scenarios	arios									
North	2.5	6.8	3.7	6.6	1.3	3.5	3.7	6.9	1.3	6.9
East	2.3	5.4	3.5	5.1	1.9	4.3	4.1	7.4	1.9	7.4
West	1.0	4.5	2.5	4.8	1.5	3.8	3.4	5.8	1.0	5.8
South	1.4	3.9	3.3	7.2	1.9	3.6	4.0	5.2	1.4	7.2
2070 Scenarios	arios									
North	12.0	30.0	15.9	25.7	9.0	22.3	15.5	24.2	9.0	30.0
East	9.5	31.1	13.9	23.8	6.0	13.8	6.1	16.6	6.1	16.6
West	6.5	31.5	16.8	25.1	3.6	15.2	11.3	17.2	8.9	31.5
South	7.5	33.8	15.7	24.9	4.0	19.9	10.8	20.2	10.8	33.8

TABLE V Impact of uncertainties in climate change scenarios and crop models on rice yields at two contrasting level levels of management

Crop	Region	Yield impact	Reference
Rice	All India	Increase (region wise and scenarios based)	Aggarwal and Mall 2002
	North–West, Central	Increase (decrease in North-West)	Rathore et al. 2001
	South	Decrease/increase (scenarios based)	Sasendran et al. 1999
	North-West	Decrease/increase (scenarios based)	Lal et al. 1998
	Punjab	Decrease/increase (scenarios based)	Hundal and Kaur 1996
	All India	Increase	Mohandass et al. 1995
	North	Increase	Achanta 1993
	All India	Decrease	Sinha and Swaminathan 1991
	Northern India	Decrease	Saini & Nanda 1986
Wheat	North	No impact/decrease (scenarios based)	Aggarwal 2003
	North-west	+16 to +37%	Attri and Rathore 2003
	North–West, Central	No effect in NW, 10–15% decrease in Central	Aggarwal 2000
	North-west	Decrease/increase (scenarios based)	Lal et al. 1998
	Punjab	Decrease/increase (scenarios based)	Hundal and Kaur 1996
	All India	Decrease	Gangadhar Rao and Sinha 1994
	All India	Decrease/increase (region wise and scenarios based)	Aggarwal and Kalra 1994
	All India	Decrease/increase (region wise and scenarios based)	Aggarwal and Sinha 1993
	All India	Decrease	Sinha and Swaminathan 1991
Soybean	All India	Decrease/increase (region wise and scenarios based)	Mall et al. 2004
	Central	Decrease/increase (scenarios based)	Lal et al. 1999
Maize	North	Decrease/increase (region wise and scenarios based)	Sahoo 1999
	Punjab	Decrease	Hundal and Kaur 1996
Chickpea	All India	Decrease	Mandal 1998
Pigenpea	All India	Decrease	Mandal 1998
Groundnut	Punjab	Decrease	Hundal and Kaur 1996
Sorghum	All India	Decrease	Chatterjee 1998
-	All India	Decrease/increase (region wise and scenarios based)	Gangadhar Rao et al. 1995
Brassica (Mustard)	North	Increase	Upreaty et al. 1996

TABLE VI Selective reports on impacts of projected climate change on yield of different crops in India