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ABSTRACT

Radar and surface rainfall observations are two sources of operational data crucial for heavy rainfall

prediction. Their individual values on improving convective forecasting through data assimilation have been

examined in the past using convection-permitting numerical models. However, the benefit of their simultaneous

assimilations has not yet been evaluated. The objective of this study is to demonstrate that, using a 4D-Var data

assimilation system with a microphysical scheme, these two data sources can be assimilated simultaneously and

the combined assimilation of radar data and estimated rainfall data from radar reflectivity and surface network

can lead to improved short-termheavy rainfall prediction. In our study, a combineddata assimilation experiment

is compared with a rainfall-only and a radar-only (with or without reflectivity) experiments for a heavy rainfall

event occurring in Taiwan during the passage of a mei-yu system. These experiments are conducted by applying

the Weather Research and Forecasting (WRF) 4D-Var data assimilation system with a 20-min time window

aiming to improve 6-h convective heavy rainfall prediction.Our results indicate that the rainfall data assimilation

contributes significantly to the analyses of humidity and temperature whereas the radar data assimilation plays a

crucial role in wind analysis, and further, combining the two data sources results in reasonable analyses of all

three fields by eliminating large, unphysical analysis increments from the experiments of assimilating individual

data only. The results also show that the combined assimilation improves forecasts of heavy rainfall location and

intensity of 6-h accumulated rainfall for the case studied.

1. Introduction

Heavy rainfall is one of themost common high-impact

weather phenomena across the globe and the most fre-

quent cause of flooding, a hazard that results in signifi-

cant loss of life and property damages each year. The

prediction of heavy rainfall particularly in warm season,

however, has been a long-standing scientific challenge in

weather forecasting with slow progress. Since the warm

season heavy rainfall is closely associated with meso-

scale convective systems (Heideman and Fritsch 1984;

Schumacher and Johnson 2005), the key to improving its

prediction lies in developing convection-permitting nu-

merical models that allow the representation of moist

convection in these systems. Further, it is necessary for

these models to be initialized by high-resolution (both in

space and time) observations via rapid update data as-

similation (DA) to keep up with the rapid evolvement of

convection.

A major effort taken to improve short-term quanti-

tative precipitation forecasts (QPFs) by both research

and operational communities has been the assimilation

of observations fromDoppler radars (radial velocity and

reflectivity) into convection-permitting models. While

notable progress has beenmade (see Sun et al. 2014 for a

review), challenges in heavy rainfall prediction are still

plenty. Among many issues requiring future research

and development is the assimilation of other high-

resolution observations in addition to Doppler radars.

For example, in recent years, efforts have been made toCorresponding author: Juanzhen Sun, sunj@ucar.edu
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assimilate lightning observations (Fierro et al. 2012, 2014;

Dixon et al. 2016) and geostationary satellite observations

(Honda et al. 2018a,b; Zhang et al. 2018). Jones et al.

(2015, 2016) investigated the impact of combined assimi-

lation of radar and satellite observations of liquid/ice water

path on severe storm prediction and found benefits

comparing to the assimilation of any single type of the

two data sources.

In this paper, our purpose is to demonstrate the benefit

of assimilating rainfall analysis from quantitative

precipitation estimation (QPE) simultaneously with

radar radial velocity and reflectivity observations.

QPE is a gridded hourly rainfall product derived

from radar reflectivity observations (and polarimet-

ric measurements in case of polarimetric radar) and

surface rain gauge observations. The rainfall mea-

surement from a surface rain gauge is commonly

accepted as the ground truth of precipitation at a

specific weather station; however, rain gauge net-

works cannot well represent the spatial distribution

of rainfall over a region due to its limited station

density. On the other hand, rainfall estimated from

radar reflectivity has a high spatial resolution, but its

accuracy is not as reliable as the rain gauge mea-

surement because of its dependence on empirical re-

lationship for the estimate. Hence, as NWP models

are being run at increasingly higher resolutions, QPE

products that combine a radar derived rainfall field

and rain gauge measurements, taking advantages of

the high resolution of the former and the higher ac-

curacy of the latter, have become popular and are

often used as the true rainfall field for verifying

forecasts.

Strictly speaking, radar reflectivity and accumulated

rainfall from QPE are not independent of each other

because radar reflectivity is related to hydrometeors and

rainfall is merely a temporal accumulation of the hy-

drometeors falling to the ground. Nevertheless, the two

have distinct differences in that the former is a 3D

snapshot related to hydrometeors via an assumed drop

size distribution while the latter is a 2D hourly accu-

mulated quantity obtained by an empiricalZ–R relation.

In addition, QPE is commonly adjusted by the inde-

pendent measurements of surface rainfall from rain

gauge networks. These differences could render dif-

ferent characteristics of the two quantities resulting in

different outcomes of data assimilation. It is therefore

worth examining the individual effects of the two data

fields as well as their combined impact on data

assimilation.

Although the effect of simultaneous assimilation of

radar and rainfall data has not been evaluated, plenty

of previous studies were conducted to assess the impact

of radar observations or of rainfall observations (orQPE)1

using three-dimensional and four-dimensional variational

(3D-Var and 4D-Var) data assimilation techniques as well

as ensembleKalman filters (EnKF). It has been shown that

the assimilation of the instantaneous three-dimensional

reflectivity with a 3D-Var system is effective only if the

dynamical field, such as latent heat or relative humidity,

is forced to adjust via some simple assumptions on

convective-scale dynamics, for instance, latent heat re-

lease or in-cloud saturation (e.g., Albers et al. 1996; Xue

et al. 2003; Hu et al. 2006; Stephan et al. 2008; Weygandt

et al. 2008; Wang et al. 2013a). Similarly, the rainfall

observations have to be converted to latent heat release

in a vertical column and then the latent heat can be as-

similated into a model with a prespecified latent heat

profile. Jones and Macpherson (1997) used this ap-

proach to assimilate QPE with a nudging technique.

Because the rainfall observations are accumulated in

time, the four-dimensional data assimilation technique

is in principle advantageous in assimilating these data

due to the temporal window required to generate an

analysis. Several previous studies demonstrated the ef-

fectiveness of the 4D-Var technique in rainfall data as-

similation (Zou and Kuo 1996; Guo et al. 2000; Tsuyuki

et al. 2002; Koizumi et al. 2005; Xu et al. 2006; Lopez and

Bauer 2007; Lopez 2013). Recently the EnKF has also

been applied to rainfall data assimilation (Miyoshi and

Aranami 2006; Zupanski et al. 2011; Lien et al. 2013).

To our knowledge, the only combined assimilation of

both radar and rainfall data was done by the Met

Office’s 4D-Var. However, in their system, although

the radar radial velocity is assimilated via the 4D-Var, the

QPEdata assimilation is done separately through the latent

heat nudging method (Jones and Macpherson 1997) with

prespecified vertical profiles (Ballard et al. 2015), partly due

to the lack of the adjoint of microphysics in their 4D-Var.

In the current study, we use the Weather Research

and Forecasting Data Assimilation (WRFDA) 4D-Var

system (Huang et al. 2009;Wang et al. 2013b) to examine

the impact of the combined assimilation of radar obser-

vations (radial velocity and reflectivity) and QPE. In the

WRFDA4D-Var system, the simultaneous assimilation of

radar and rainfall data are made possible because of the

microphysics scheme in its adjoint model. A number of

previous studies have demonstrated the ability of the

4D-Var technique and its superior performance to

its 3D-Var in improving convection-permitting model an-

alyses and forecasts, for example, by Wang et al. (2013b),

1Although it is common to refer QPE as ‘‘rainfall analysis,’’ in

this paper we use ‘‘rainfall observation’’ to emphasize that it is the

‘‘observational’’ input data to be assimilated by the model.
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Sun and Wang (2013), and Li et al. (2014) using

WRFDA 4D-Var, by Kawabata et al. (2011) using the

JMA (Japan Meteorological Agency) 4DVar system,

and by Ballard et al. (2015) and Li et al. (2018) usingMet

Office’s Unified Model 4D-Var. Our objective in the

current study is to examine the relative contributions of

the two most operationally available observation types

for heavy rainfall forecasting, radar data and rainfall

data, and to demonstrate that their combined assimila-

tion produces improved convective-scale dynamical

balance and hence improved short-term heavy rainfall

prediction. A convective system imbedded in a mei-yu

front occurred in Taiwan on 2 June 2017 is used for the

DA and forecast experiments in our study. To achieve

our objective, we will compare three experiments as-

similating rainfall data only, radar data only (radial ve-

locity and reflectivity), and all data (both radar and

rainfall). To examine the impact of reflectivity when

rainfall data are assimilated, an experiment assimilating

radial velocity and rainfall is also conducted to be

compared with the all data experiment.

The paper is organized as follows. In section 2 the

WRFDA 4D-Var DA system is described. In section 3

the convective system of 2 June 2017 and the radar and

rainfall observations are presented. Section 4 covers

the configuration of the DA and modeling system and

the experimental design. In section 5 we first present the

results of four single observation experiments that per-

turb rainfall only, radial velocity and reflectivity, radial

velocity and rainfall, and all three variables, respec-

tively, and then the results of their real data experiments

for the heavy rainfall case. A summary and conclusions

are given in the last section.

2. Description of WRFDA 4D-Var

WRFDA is the variational DA system developed for

WRF-ARW (Advanced Research Weather Research

and ForecastingModel) (Skamarock et al. 2008), including

both 3D-Var and 4D-Var. Huang et al. (2009) described

the basic 4D-Var framework with the adjoint model

(ADM) of WRF dynamical core. Zhang et al. (2013)

described a major framework upgrade along with some

other software enhancements. Wang et al. (2013b) devel-

oped the adjoint of a warm rain microphysical scheme and

demonstrated its capability for radarDA. The assimilation

of rainfall data was developed in recent years and de-

scribed in Ban et al. (2017). Both the tangent linear model

(TLM) and ADM of the 4D-Var system were upgraded

over the years tomatch each of the updatedWRFversions.

A 4D-Var DA system seeks an optimal analysis by

iteratively reducing a cost function composed of a

background term, an observations term, and a constraint

term (i.e., J 5 Jb 1 Jo 1 Jc). The constraint term in

WRFDA4D-Var is a digital filter to prevent the analysis

from contamination of high-frequency noise. With the

objective to obtain an analysis xa0 of the atmospheric

state at a model initial time x0, the background and the

observation terms are defined as follows by assuming K

observations with each represented by k:

J(x
0
)5

1

2
(x

0
2 xb0)

T
B

21(x
0
2 xb0)

1
1

2
�
K

k50

fyok 2H
k
[M

k
(x

0
)]gTR21fyok 2H

k
[M

k
(x

0
)]g .

(1)

The variables of xb0 and yok represent the background

state at the model initial time that is typically provided

by a previous model forecast and the observed state,

respectively; Mk is the nonlinear prediction model to

propagate the initial atmospheric state to that at the kth

observation time; Hk is the nonlinear observation op-

erator at time k; and B and R are the background and

observation error covariance matrices, respectively.

Similar to most of the operational variational DA

systems, WRFDA 4D-Var is formulated by an incre-

mental approach (Courtier et al. 1994) that converts the

cost function (1) to one that uses increment (departure

from nonlinear basic state) as the analysis control vari-

able via the following variable transformation:

d
k
5 yok 2H

k
[M

k
(x

0
)] . (2)

Further, the nonlinear operators ofHk andMk in Eq. (1)

can be linearized as follows:

H
k
[M

k
(xn0)]’H

k
[M

k
(xn21

0 )]1H
k
M

k
[xn21

0 ]dxn0 , (3)

where the superscripts n and n 2 1 represent the current

and previous outer loop iterations, respectively, and

dxn0 5 xn0 2 xn21
0 . Unlike the inner loop iterations that min-

imize the cost function, the outer loop iterations are

performed to successively update the nonlinear basic

state; Hk and Mk are the tangent linear operator ofHk and

Mk. Applying Eqs. (2) and (3), the cost function (1) is

changed to

Jn(dxn0)5
1

2
[dxn0 2 (xb0 2 xn21

0 )]
T
B

21[dxn0 2 (xb0 2 xn21
0 )]

1
1

2
�
K

k50

[H
k
M

k
(xn21

0 )dxn0 2 dn21
0 ]

3R
21[H

k
M

k
(xn21

0 )dxn0 2 dn21
0 ] . (4)

When the increment dxn0 at the nth outer loop iteration

is obtained, the estimate of the atmospheric state is
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updated by xn0 5 xn21
0 1 dxn0 and the first guess trajectory

Mk(x
n
0) is produced for the next outer loop n 1 1. The

basic assumption of the incremental approach is that

with enough number of outer loop iterations the solu-

tion of the cost function (4) can gradually approximate

that of the nonlinear cost function (1).

To simplify the computation of B21, the background

error covariance matrix is decomposed by B 5 UU
T

and a control variable transform by dx0 5 Uv is applied

where v is the vector of control variables to be mini-

mized in the cost function (4). The control variables used

in this study are u wind, y wind, temperature T, surface

pressure Ps, pseudo–relative humidity, and cloud con-

trol variables of cloud water, rainwater, ice, and snow

mixing ratios. The pseudo relative humidity is defined by

the ratio between water vapor and its saturated value in

the background. For the momentum control variables,

Sun et al. (2016) demonstrated that u wind and y wind

outperformed streamfunction and velocity potential

for the high-resolution regional model application.

The operator U is implemented through a recursive

filter in the horizontal direction and an EOF (empir-

ical orthogonal function) decomposition in the verti-

cal direction.

The method for radar radial velocity and reflectivity

data assimilation in WRFDA 3D-Var and 4D-Var has

been described in several previous publications (Xiao

et al. 2005, 2007; Wang et al. 2013a,b; Sun and Wang

2013; Sun et al. 2016) and the reader is referred to them

for technical details. WRFDA has two options for radar

reflectivity assimilation: one directly assimilates the re-

flectivity observations via an observation operator (Xiao

et al. 2007) and the other indirectly assimilates the re-

flectivity via a microphysical retrieval (Wang et al.

2013a). The current study uses the indirect method.

Wang et al. (2013a) showed that the linearization of the

reflectivity forward operator, as required by the incre-

mental formulation of the cost function, could result in a

dry bias in rainwater analysis. Thus, they proposed to as-

similate the derived hydrometeor mixing ratios whereby

the forward operator in the cost function was avoided. The

derivation of the hydrometeor mixing ratios, including

rain, dry snow, wet snow, and hail, follows that introduced

by Gao and Stensrud (2012).

The rainfall data assimilation in our study followed

that described by Ban et al. (2017). As shown below, a

forward operator is necessary to compute the model

accumulated (from time step 1 to the end of the

FIG. 1. Radar composite reflectivity at (a) 0000, (b) 0800, (c) 1500, and (d) 2100 UTC 2 Jun 2017. (e) The 24-h accumulated rainfall

between 0000 UTC 2 Jun and 0000 UTC 3 Jun 2017.
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assimilation window nt with the increment dt) rainfall

from the forecast rainwater in order to obtain the dif-

ference between the modeled and observed rainfall:

J5 J
b
1 J

o
1

 

�
nt

1

r
0
q
r0
V

T
dt

r
w

3 103 2RNob

!T

3O21
R

 

�
nt

1

r
0
q
r0
V

T
dt

r
w

3 103 2RNob

!

, (5)

where Jb is the background term [i.e., the first term in

(4)] and Jo represents the observation term including all

observations other than rainfall. RNob stands for ob-

served rainfall in mm accumulated over the 4D-Var

assimilation window and OR is the observation error

covariance; their details will be described in the next

section. The variables qr0 and r0 are the rainwater

mixing ratio and dry air density at the lowest model level

and rw is the liquid water density at the lowest model

level. The rainfall terminal velocity VT is given by

V
T
5 36:34(0:001 rq

r
)0:1346

�

r
0

r

�0:5

, (6)

where qr is the rainwater mixing ratio in g g21 and r is

the dry air density. The sensitivity of the rainfall obser-

vation term with respect to the prognostic model vari-

ables at t5 0 is determined by the 4D-Var adjoint model.

The assimilations of both radar reflectivity and rainfall

in WRFDA 4D-Var depend on a microphysical scheme

to create multivariate correlation and impact on the

dynamical and thermodynamical variables. There are

two such schemes available in WRFDA 4D-Var along

with their adjoints. One is a large-scale condensation

scheme and the other is a warm-rain microphysical

scheme described in Wang et al. (2013b). The latter is

used in the current study. The WRF Model and its DA

system configurations in the current study will be de-

scribed in section 4.

3. The heavy rainfall case and observational data

a. Description of the 2 June 2018 heavy rainfall event

A convective rainband formed as a mei-yu frontal

system reached the northern tip of Taiwan island at

0000 UTC 2 June and then propagated southward

before 1500 UTC when its west segment became

FIG. 2. Synoptic situation from GFS analysis valid at 0000 UTC 2 Jun 2017 as presented by (a) 500-mb geo-

potential height (contour) andwind vectors, (b) surface pressure (contour) andwind vectors, (c) 850-mbwind speed

(color fill), geopotential height (contour) and wind vectors, and (d) 850-mb equivalent potential temperature

(contour) and wind vectors.
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stationary (Figs. 1a–d), producing large amount of ac-

cumulated rainfall in central Taiwan that reached more

than 800mm in 24 h (Fig. 1e). The 24-h accumulated

rainfall clearly shows that Taipei and its vicinity, central

west plains south of Taichung, and the central moun-

tains were the major regions hit by the heavy rainfall

(see Fig. 3a for the locations of these cities and Taiwan

topography). The heaviest hourly rainfall was recorded

at 108mm by a station in central Taiwan. The heavy

rainfall system caused major floods and mudslides in

northern and central areas of Taiwan, and cancellation

of hundreds of flights and close of Taipei Songshan

Airport for several hours.

The mei-yu system formed as a low pressure system in

northeastern Asia, shown in Fig. 2a, deepened on 1 June

2017. Coupled with a subtropical high located in the

Pacific Ocean, it created a large pressure gradient and

strong wind jet in eastern Asia. A low-level southwest-

erly jet swiped over Taiwan (Figs. 2b,c), bringing mois-

ture to Taiwan. The highmoisture alongwith the cold air

from the north resulted in a region of large gradient of

equivalent potential temperature across Taiwan with a

southwest to northeast orientation (Fig. 2d). This syn-

optic situation agrees well with those typical for mei-yu

rainbands that occurred in Taiwan (Chen and Yu 1988).

Although our ability in predicting the large-scale mei-

yu rainband has improved over the years with improved

global model resolution and data assimilation, the chal-

lenge remains in accurately forecasting the embedded

heavy rainfall that is often closely associated with local

mesoscale circulations and topographical forcing (Chen

2004). By assimilating local observations such as those

from radar network and surface rainfall network we an-

ticipate that the model’s skill in short-term heavy rainfall

prediction can be improved.

b. Description of radar and rainfall data

Radar radial velocity and reflectivity observations

used in this study were collected by Taiwan’s opera-

tional radar network that included four S-band and two

C-band Doppler radars, whose locations are shown in

Fig. 3a. These six radars routinely produce radial ve-

locity and reflectivity volumetric observations with the

same update rate of 7min but different number of ele-

vation angles. With reflectivity observations from this

radar network, an integrated operational hourly rainfall

product, named Quantitative Precipitation Estimation

and Segregation Using Multiple Sensors (QPESUMS;

Zhang et al. 2008), are produced. In QPESUMS, an

empirical Z–R (reflectivity–rainfall) relation is first used

to produce a gridded hourly rainfall field updated every

10min with a 1 km horizontal resolution and then the

rainfall field is integrated with rainfall measurements

from Taiwan’s surface rain gauge network (see Fig. 3b)

FIG. 3. (a) Taiwan topography, the locations of four S-band radars of RCWF,RCHL,RCKT, andRCCGand twoC-band radars RCMK

andRCGI, and the locations of Taipei and Taichung cities, around which the areas were mostly impacted by the 2 Jun 2017 heavy rainfall.

(b)Observed hourly rainfall by Taiwan rain gauge network valid at 0000UTC2 Jun 2017. (c)As in (b), but fromQPESUMS that combines

radar QPE and rainfall from the gauge network.
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using a local bias correctionmethod. The final QPESUMS

product valid at 0000 UTC 2 June 2017 is shown in Fig. 3c.

Comparing Fig. 3c with Fig. 3b, it is apparent that the

integrated QPESUMS rainfall product has a higher

spatial resolution and coverage than the rain gauge

network. When assimilating radar and rainfall data si-

multaneously, one important factor that can impact the

effectiveness of the assimilation is their relative infor-

mation content. The total observation number from the

513 rain gauge stations is 513 at a given time, which is

about three orders smaller in comparison with the total

data number of a typical gridded 3D radar volumetric

dataset. With a 1 km resolution, the gridded QPESUMS

rainfall product results in the number of data points

having the same order as that of radar reflectivity data

at a single time. This is one of the reasons why we chose

to assimilate the integrated rainfall product QPESUMS

in this study rather than assimilating the rain gauge data

directly. Although not directly assimilated, the rain

gauge observations play a critical role in correcting the

inevitable bias in the raw radar QPE. Figure 4 shows the

RMS difference between rain gauge and radar QPE

with and without the gauge correction computed with

hourly rainfall data between 2 and 4 June 2017.

Because the QPESUMS rainfall is derived from radar

reflectivity, a natural question is whether its correlation

with the reflectivity will cause negative impact if both

are assimilated. We will show an experiment in section 5

designed to answer this question.

For radar data quality control, the automated radar

data preprocessing and quality controlmodule embedded

in NCAR’s Variational Doppler Radar Analysis System

(VDRAS; Sun and Crook 1997) was used to produce

gridded PPI data with a 2km horizontal resolution. The

module includes several quality control algorithms to

deal with ground clutters and aliased velocities and to

perform random noise filtering, superobbing, and error

estimate. Some of the algorithms were described in Sun

(2005) and Lim and Sun (2010).

A rainfall data quality control procedure is contained

in theQPESUMS algorithm to remove rainfall data with

large deviation between the rain gauge and radar de-

rivedQPE. Based on Fig. 4, a constant error of 3mmh21

(e.g., 1mm for the 20-min accumulation in our experi-

ments) is specified for the QPESUMS rainfall data

assimilation.

4. Model and DA configurations and experimental

design

WeusedWRFDA3.9.1 andWRF 3.9.1 for the current

study. The experimental domain is shown in Fig. 5 with a

10/2 km nest and 51 vertical levels. The initial conditions

at the cold-start time (0000 UTC 2 June 2017) and

boundary conditions were provided by GFS 0.258 anal-

ysis., The radar and rainfall data were assimilated only in

the 2 km domain because of their availability in this

domain. A baseline experiment (CTRL_3D; red high-

light in Fig. 6) with 3-hourly cycled WRFDA 3D-Var

assimilating conventional Global Transmission System

(GTS) observations on both domains was initialized at

0000 UTC 2 June 2017 by GFS analysis and provided

first guess for the 4D-Var experiments. The background

error statistics for both domains were obtained from the

FIG. 5. Nested WRF forecast model domain for all experiments

listed in Table 1. The radar and rainfall data assimilation, either

alone or combined, is conducted on the 2-km domain while the

GTS data assimilation in CTRL_3D is conducted on both domains.

FIG. 4. Root-mean-square difference (RMSD) between hourly

rainfall from Taiwan rain gauge network and radar QPE computed

at the points of the rain gauge stations. The ref and black bars

represents theRMSDusing radarQPEbefore and after (QPESUMS)

the rain gauge adjustment by an algorithm that produced QPESUMS

rainfall.
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Central Weather Bureau of Taiwan (CWB), which are

used in their operational 10/2-km DA and forecast sys-

tem. The statistics was generated by subtracting 12-h

forecast from 24-h forecast valid at the same time ini-

tialized every 12-h from downscaled GFS analysis for

the month of July 2017.

Four 4D-Var experiments along with CTRL_3D are

summarized in Table 1. The experiments Rn_4D, RvRf_

4D, RvRn_4D, and RvRfRn_4D assimilate, respectively,

QPESUMS rainfall data alone, radar radial velocity and

reflectivity, radar radial velocity and QPESUMS rainfall,

and all three observation fields. The experiments Rn_4D

and RvRf_4D were conducted to compare the relative

impacts of assimilating rainfall alone to assimilating radar

alone. RvRfRn_4D evaluates the benefit of assimilating

these two datasets simultaneously. RvRn_4D was de-

signed to answer the question, by comparing it with

RvRfRn_4D, whether the reflectivity data add any ben-

efit or harm when rainfall data are already assimilated

due to the possible correlation of these two datasets.

The configuration of the 4D-Var experiments is il-

lustrated in Fig. 6 (blue highlight). All the 4D-Var

experiments start from CTRL_3D analysis. The two-

pass radar DA strategy assimilating the conventional

data and radar data in two steps follows that of Tong

et al. (2016). They demonstrated that assimilating

radar observations separately from GTS data with a

smaller length scale allowed better fit to radar data

and resulted in improved convective forecasting. In

this study the length scale in the 4D-Var experiments

is reduced by half from the statistically computed BE

used in CTRL_3D.

The initialization times are at 0300, 0600, 0900, 1200,

1500, 1800, and 2100 UTC. The assimilation window is

20min in which there are two radar scanning volumes

available from each radar. The short window is necessary

to capture dynamical processes of convection essential

for heavy rainfall (Wang et al. 2013b). The 20-min rain-

fall accumulation within the assimilation window is

assimilated at the end of the window. Because the

QPESUMS rainfall is hourly accumulation, the 20-min

accumulated rainfall is estimated simply by dividing

the hourly rainfall valid at the same time by three.

Experiments were conducted (but not shown) to ex-

amine the sensitivity of DA to the 20-min rainfall es-

timated using different hourly rainfall rates (available

every 10min) that overlap the assimilation window and

their results showed little differences. All of the 4D-

Var experiments were run with three outer loops up-

dating the nonlinear basic state and 25 iterations for

each outer loop to minimize the cost function.

After the data assimilation at the multiple of 3 h from

0300 to 2100 UTC, 6-h forecasts were run for all of the

five experiments. The physics options used in the WRF

forecast model include the Thompson bulkmicrophysics

scheme, the Mellor–Yamada–Janjić (MYJ) PBL scheme,

the Monin–Obukhov surface layer scheme, the RRTMG

radiation scheme, and the Kain–Fritsch cumulus parame-

terization scheme that is applied only in the outer domain.

The description of the above schemes can be found in the

WRF-ARW technical report (Skamarock et al. 2008).

5. Results

a. Results from single observation tests

We first conducted single observation tests for the

4D-Var experiments Rn_4D, RvRf_4D, RvRn_4D, and

RvRfRn_4D to compare their multivariate responses of

analysis increments to different observation inputs given

at a single grid point. The background of these single

observation tests is the 3-h WRF forecast from the ex-

periment CTRL_3D valid at 0600UTC 2 June 2017. The

location of the single observation was carefully chosen

such that both the background and the observations

produced precipitations. The single observations of ra-

dial velocity and reflectivity were taken from the nearest

TABLE 1. Summary of experiments.

Exp Rainfall Radial velocity Reflectivity DA method Single OBS test

CTR_3D No No No 3D-Var No

Rn_4D Yes No No 4D-Var Yes

RvRf_4D No Yes Yes 4D-Var Yes

RvRn_4D Yes Yes No 4D-Var Yes

RvRfRn-4D Yes Yes Yes 4D-Var Yes

FIG. 6. Schematic diagram of data assimilation strategies for

CTRL_3D (red) and all the 4D-Var experiments (blue). GFS:

Global Forecast System; GTS: global transmission system; 3DV:

3D-Var; 4DV: 4D-Var; RD: radar; RN: rainfall.
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radar at the height of 1500m and the 20-min rainfall was

taken from QPESUMS. Table 2 summarizes the back-

ground and observation values for reflectivity, radial

velocity, and rainfall.

Figures 7–9 show the analysis increments (from fore-

cast background) of y-wind, temperature, and water

vapor mixing ratio, respectively, from the four single

observation experiments. For the wind increments, the

results in Fig. 7 suggest that radar DA (Fig. 7a) plays a

much more significant role than rainfall DA (Fig. 7b).

Comparing RvRf_4D with an experiment assimilating

the reflectivity observation alone (not shown) suggested

that the increment contribution was dominantly made

by the radial velocity, which is also evidenced by the

close resemblance between the wind increments of

RvRn_4D (Fig. 7c) and RvRfRn_4D (Fig. 7d).

In contrast to the wind increments, the temperature

(Fig. 8) and humidity (Fig. 9) increments both show

larger responses to rainfall data in comparison with ra-

dar data. Their combined assimilation with (Figs. 8d, 9d)

FIG. 7. V-wind increment on a west–east vertical plane across the single observation point from the four single

observation tests: (a) RvRf_4D, (b) Rn_4D, (c) RbRn_4D, and (d) RvRfRn_4D.

TABLE 2. Single observation and background values.

Radial velocity Reflectivity Rainfall

Background 16.87m s21 7.64 dBZ 0.12mm

Observation 19.9m s21 36 dBZ 5.8mm
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or without (Figs. 8c, 9c) the reflectivity reduces the in-

crements for temperature and humidity. The greater

temperature and humidity responses produced by the

rainfall DA are not surprising because the accumulated

rainfall on the ground at the end of the assimilation

windowmust correspond to sufficient precipitable water

in the column of air above at the initial time (positive

humidity increments) or cooled column of air above

the surface rainfall (negative temperature increments).

Note that the vertical distribution of the humidity and

temperature increments are mainly determined through

the adjoint of the microphysical processes in the 4D-Var

within the 20-min window.

Although the assimilation of the two-dimensional

accumulated rainfall exhibits larger effect in the analy-

sis in comparison with the assimilation of the three-

dimensional instantaneous field of reflectivity, we will

show later in this section in the data assimilation ex-

periments that the large multivariate increments gen-

erated by the rainfall DA can be prone to error without

the dynamical constraint provided by radar observa-

tions, especially those of radial velocity.

b. Results from the 2 June 2017 mei-yu case study

When assimilating different types of observations si-

multaneously in a variational framework, a basic check

FIG. 8. As in Fig. 7, but for temperature.
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to determine whether the assimilation behaves properly

is by examining the convergence of the minimization of

the cost function. Figure 10 shows the cost function re-

duction with respect to minimization iteration (accu-

mulated with the three outer loops) for the three

experiments Rn_4D, RvRf_4D, and RvRfRn_4D. The

cost function of RvRn_4D is not shown because it is

similar to that of RvRfRn_4D. As expected, jumps oc-

cur at the accumulated iterations 25, 50, and 75 because

of the mismatch between the linearized state (for the

inner loopminimization in the incremental 4D-Var) and

the nonlinear state when the nonlinear basic state is

updated. The cost functions in the three experiments are

all reduced effectively within each outer loop although

their absolute magnitudes are quite different. To com-

pare the relative reductions of the cost functions among

the three experiments, we plot the three cost functions

normalized by their respective values at the first itera-

tion in Fig. 10d. It is shown that the cost function from

Rn_4D is reduced most rapidly among the three ex-

periments. However, as will be shown later, the rapid

reduction of the cost function fails to produce better

analysis and forecasts, likely due to overfitting to the

rainfall data without being constrained by the dynamical

information from the radar radial velocity. From

Fig. 10d, we also note that the large jump at the

FIG. 9. As in Fig. 7, but for water vapor mixing ratio.
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transition between the first outer loop and the second

outer loop is much reduced when the rainfall data are

simultaneously assimilated with the radar data.

To examine the impact of the combined assimilation

of radar and rainfall data on heavy rainfall prediction,

we first compare the skills of precipitation forecasts from

the five experiments and then compare the differences

of the analysis fields in wind, humidity and temperature

in order to gain insight on the physical causes of the

improved skill. The fractions skill score (FSS) of 6-h

accumulated rainfall with a radius of influence of 10 km

is computed against QPESUMS over the land for the

five experiments and the result is displayed in Fig. 11, in

which Figs. 11b–i show the scores of the forecasts ini-

tialized at each of the seven initialization times and

Fig. 11a shows the average score over the seven fore-

casts. Note that larger radius sizes have also been tested

for the FSS computation and found that the relative

skills among the experiments do not change although

the larger size increases the scores of all experiments.

From Fig. 11a we first note that the 4D-Var assimi-

lation of radar and rainfall data, alone or combined,

improves the precipitation skill over the control exper-

iment (CTRL_3D) and the radar data experiment shows

greater improvement (RvRf_4D) than the rainfall data

experiment (Rn_4D). The most remarkable improve-

ment is produced by RvRfRn_4D when both data

sources are assimilated simultaneously with evidently

higher scores than that of either Rn_4D or RvRf_4D.

From the single observation tests shown earlier, we

noted that the impact of reflectivity on wind increments

was much smaller than that of radial velocity and its

impacts on temperature and humidity were insignificant

in comparison with those from rainfall data assimilation.

Comparing the precipitation skills between RvRn_4D

(excluding reflectivity) and RvRfRn_4D in Fig. 11a, we

see additional evidence that the contribution of the re-

flectivity to the precipitation forecasts is small although

slightly positive. It is worth noting that the reflectivity

data assimilation has been shown to result in notable

impact in several of previous studies with 3D-Var (e.g.,

Xiao et al. 2007; Wang et al. 2013b; Weygandt et al.

2008), but the impact was indirectly produced by ad-

justing the dynamical fields of moisture or temperature

based on an assumption of in-cloud saturation or latent

heat release. Without the dynamical adjustment the

hydrometeor mixing ratios could just fall to the ground

after a few time steps into free model forecasts. The

insignificant difference of precipitation forecast skills

betweenRvRn_4D andRvRfRn_4D indicates that even

with the 4D-Var technique with a microphysical scheme

it is still difficult to fit the model to the reflectivity ob-

servations. One of the reasons can be that the 7-min

update frequency of the radar volumetric data are not

quick enough to capture the rapid development of mi-

crophysical variables in moist convection. Fabry and

Sun (2010) demonstrated that the error growth in rain-

water mixing ratio reached a nonlinearity threshold in

less than 10min in contrast to 70min for velocity,

meaning that it is much more difficult to fit the model

to reflectivity than to radial velocity even with the short

20-min assimilation window used in this study. We are

FIG. 10. Reduction of cost function with respect to number of iterations accumulated in three outer loops for

(a) Rn_4D, (b) RvRf_4D, and (c) RvRfRn_4D at the analysis time 1500 UTC 2 Jun 2017. (d) The cost functions of

the three experiments normalized by their respective first iteration values.
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currently investigating a multiple-time-window scheme

in which the reflectivity assimilation is done with a

smaller window length than that of the radial velocity

and the result will be reported in a separate paper.

The FSSs of the 6-h rainfall forecasts initialized at

different times are shown in Figs. 11b–h (note that

RvRn_4D is not included in these figures because it

differs little fromRvRfRn_4D as shown in Fig. 11a). We

first notice that the impact of Rn_4D on the rainfall

forecast skill varies at different initialization times:

negative impacts at higher thresholds for the 0300 and

0900 UTC forecasts but significantly positive impacts at

FIG. 11. Fractions skill scores (FSS) of 6-h accumulated rainfall forecasts, initialized at (b) 0300, (c) 0600, (d) 0900,

(e) 1200, (f) 1500, (g) 1800, and (h) 2100UTC, respectively, with respect to rainfall amount for the four experiments

CTRL_3D, Rn_4D, RvRf_4D, and RvRfRn_4D. (a) The FSSs averaged over the seven forecasts for the four

experiments plus RvRn_4D.
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0600, 1200, and 1800 UTC. In contrast, the radar data

assimilation produced significant positive impacts for all

forecasts except for higher thresholds at 2100 UTC. The

combined assimilation improves the rainfall forecast

skill over the two individual assimilation experiments

for most forecast runs with significant improvement at

1500, 1800, and 2100 UTC.

We further examine the FSSs of hourly precipita-

tion forecasts from the above experiments (except for

RvRn_4D) to see how their skills vary with time

(Fig. 12a). The experiment Rn_4D significantly im-

proves the skill of hourly rainfall forecast in the first

hour and then its skill decreases with time and becomes

lower than that of the control experiment after the third

hour. Compared with the rainfall DA, the radar DA re-

sults in larger improvement over CTRL_3D on the pre-

cipitation skill except for the first hour and the last hour.

Combining the two data sources enhances the skill from

the two individual assimilation experiments for most of

the forecast hours.

The average rainfall over the land (Fig. 12b) indicates

that all the forecasts from the four DA experiments

underpredict the rainfall amount. That is not surprising

given the extremely heavy rainfall amount observed.

The individual assimilation experiments Rn_4D and

RvRf_4D improve the forecasts of the rainfall amount

over the control experiment in the first 3 h and in the

entire 6 h, respectively. As both radar and rainfall data

are assimilated in RvRfRn_4D, further improvement is

resulted in the first 3 h over both the radar-only experi-

ment and the rainfall-only experiment. Also, the com-

bined assimilation results in large improvement over the

rainfall-only experiment in the entire 6 h.

By comparing the 6-h precipitation patterns, we found

that the combined assimilation of rainfall and radar data

results in improved forecasts of location, intensity, or

both for the forecast runs at most of the initialization

times. Figures 13 and 14 provide two examples of rainfall

forecasts initialized, respectively, at 0600 UTC when the

rainband propagated southward and at 1500 UTC when

it was stalled by the strong southwesterly flow. At

0600 UTC, the control experiment successfully forecasts

the propagating rainband in northern Taiwan but the

location is to the north of the observed rainband (indi-

cated by the blue oval) and further it misses most of the

rainfall on the mountains of central Taiwan (the black

circle). Both the radar or rainfall data assimilation ex-

periments result in some degree of improvement in

these two areas but the experiments RvRfRn_4D shows

the most significant improvement. It not only successfully

forecasts the location of the main rainband but also sub-

stantially improves the rainfall forecast on the mountains

of central and southern Taiwan in terms of area coverage

as well as intensity. For the 1500 UTC (Fig. 14) forecasts,

the control experiment underpredicts the rainfall amount

and again the rainfall area is to the north of the observed.

While both RvRf_4D and RvRfRn_4D improve the lo-

cation, orientation, and intensity of the rainband, the latter

shows substantial improvement on intensity.

To see how the different data assimilation experi-

ments modify the initial conditions, we compare the

analysis increments (from CTRL_3D background) in

Fig. 15 among the experiments Rn_4D, RvRf_4D, and

RvRfRn_4D for the y-component wind, temperature,

and humidity fields on the eighth model level (;930mb)

at the analysis time 1500 UTC. For the wind field, both

the rainfall and radar data produce large increments

(Figs. 15a,b). However, the radar data has larger impact

than rainfall data in the combined assimilation (Fig. 15c)

as suggested by the similarity between RvRf_4D and

RvRfRn_4D. Interestingly, the large increments on the

sea west and east of the island in the rainfall-only ex-

periment (Fig. 15a) are suppressed when radar data are

also assimilated in RvRfRn_4D. For the humidity anal-

ysis, the rainfall-only experiment results in large incre-

ments in the areas of heavy precipitation (Fig. 15d) and

FIG. 12. (a) FSSs of hourly rainfall forecasts with respect to

forecast hour for the threshold of 15mm, averaged over seven

forecasts, for CTRL_3D, Rn_4D, RvRf_4D, and RvRfRn_4D.

(b) As in (a), but for rainfall averaged over all grid points on land.
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they are substantially tuned down when radar data are

simultaneously assimilated (Fig. 15f). Similarly to the

humidity increments, the temperature increment in

RvRfRn_4D largely follow the pattern of Rn_4D;

nevertheless, the large negative increments in the

center of the heavy rainfall band from Rn_4D, an in-

dication of rapid precipitation fallout due to the lack of

dynamical support, is much reduced.

The above comparison suggests that, similar to the

single observation tests, the radar observations provide

important information about the wind circulation in and

around the precipitation area while the rainfall obser-

vations produce large convective-scale responses in the

humidity and temperature fields. The combination of

the two types of observations result in moderate incre-

ments of wind, humidity, and temperature fields because

of the mutual constraining of the two data types.

To further understandwhat are the physical structures

in the analysis fields that contribute to the improved

precipitation forecasts when the two data sources are

simultaneously assimilated, we show the relative humidity

and wind vectors on the eighthmodel level for CTRL_3D,

Rn_4D, RvRf_4D, and RvRfRn_4D in Fig. 16 at the ini-

tialization time 1500 UTC. We first notice that Rn_4D

(Fig. 16b) creates a large area of near-saturation humidity

covering the central Taiwan and its nearby sea. However,

the high humidity area is concentrated to the central west

plain region in RvRfRn_4D (Fig. 16d) along with a north-

westerly flow not present in CTRL_3D (Fig. 16a) and

Rn_4D (Fig. 16b). This flow is also shown in RvRf_4D

(Fig. 16c) in the same region, suggesting that it comes from

radar DA; however, without the rainfall DA the rainband

region is apparently too dry, even drier than CTRL_3D.

These results suggest that the northwest flow as well as the

(a) QPE

(b) CTRL_3D (c) Rn_4D

(d) RvRf_4D (e) RvRfRn_4D

mm/6h

FIG. 13. Comparison of 6-h accumulated rainfall forecasts from the experiments (b) CTRL_3D, (c) Rn_4D, (d) RvRf_4D, and

(e) RnRfRn_4D initialized at 0600 UTC 2 Jun 2017. (a) Rainfall from QPESUMS is shown in for verification.
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enhanced humidity are both responsible for enhancing the

convective precipitation and hence improving the forecast

skill. Without the enhanced humidity from the rainfall as-

similation, the saturation of the updraft air column takes

place during the forecast, which results in lower forecast

skill as in RvRf_4D.

We then examine the vertical distribution of the hu-

midity and wind fields in Fig. 17 in the cross section along

A-B shown in Fig. 16a. While the background forecast

from CTRL_3D (Fig. 17a) clearly exhibits a strong and

deep updraft within the saturated columns around 40km

away from the point A, its location is not consistent with

the observed rainband (see Fig. 14a). By assimilating

radar data in RvRf_4D (Fig. 17c), a broad and deep up-

draft south of that in CTRL_3D is produced but the

midlayer of the updraft columns are rather dry. On the

other hand, although assimilating only rainfall data in

Rn_4D (Fig. 17b) results in a successful suppression of

the saturated humidity in the columns of the existing

convection in the background field (around 40km away

fromA inCTRL_3D) and the increase of humidity to the

south of it, the experiment fails to produce updrafts es-

sential for forecasting convection but instead downdrafts

dominate in the moist region due to the water loading

effect. The combined assimilation in RvRfRn_4D largely

maintains the updraft structure in RvRf_4D while sig-

nificantly enhancing the relative humidity with saturated

air columns up to 9km. The above comparison suggests

that the combined assimilation results in an analysis with

consistent dynamical (i.e., updraft) and thermodynamical

(i.e., saturated air) features important for convective

development. We believe it is this convective-scale

consistency that results in the improved location and

intensity forecasts of the rainband as demonstrated in

Fig. 14. In Fig. 18, the relative humidity, wind, and

rainwater mixing ratio fields at t 5 2 h (valid at

1700 UTC) on the A-B cross section are compared. The

combined assimilation (Fig. 18d) generates rainwater at

FIG. 14. As in Fig. 13, but for forecasts initialized at 1500 UTC 2 Jun 2017.

2226 MONTHLY WEATHER REV IEW VOLUME 148

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://jo

u
rn

a
ls

.a
m

e
ts

o
c
.o

rg
/m

w
r/a

rtic
le

-p
d
f/1

4
8
/5

/2
2
1
1
/4

9
2
8
0
7
8
/m

w
rd

1
9
0
3
3
7
.p

d
f b

y
 g

u
e
s
t o

n
 1

9
 J

u
n
e
 2

0
2
0



FIG. 15. Analysis increments of (a)–(c) U wind, (d)–(f) water vapor mixing ratio, and (g)–(i) temperature on the eight

model level (;930mb) from the experiments (a),(d),(g) Rn_4D, (b),(e),(h) RvRf_4D, and (c),(f),(i) RvRfRn_4D. Note

that for the temperature increments the color scale in (h) is much smaller than that in (g) and (i).
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FIG. 16. Relative humidity analysis fields overlaid by wind barbs on the eighth model level at the 1500 UTC

initialization time for (a) CTRL_3D, (b) Rn_4D, (c) RvRf_4D, and (d) RvRfRn_4D. The red line A–B indicates

the cross-sectional location for Fig. 17.
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about the right location of the observed rainfallmaximum

(indicated by the red arrow below the x axis) whereas the

rainfall alone experiment (Fig. 18b) does not have any

rainwater greater than 1gkg21 likely because the dy-

namical spinup process causes a rapid rain-out in the first

2-h model integration. On the other hand, the radar DA

experiment (Fig. 18c) produces rainwater around the lo-

cation of the observed rainfall, but it is not as organized

and high in magnitude as that in the combined assimila-

tion experiment.

6. Summary and conclusions

In this study we assessed the benefit of simultaneous

assimilation of radar and rainfall observations by con-

ducting a number of 4D-Var experiments on a mei-yu

heavy rainfall event that occurred in Taiwan on 2 June

2017. Four 4D-Var experiments Rn_4D, RvRf_4D,

RvRfRn_4D, andRvRn_4D that, respectively, assimilate

rainfall data, radar data including both radial velocity and

reflectivity, rainfall and radar data, and rainfall and radar

radial velocity were conducted and compared. A 3D-Var

experiment CTRL_3D assimilating only conventional

observations was used as the background and a baseline

in the evaluation. The experiments RvRn_4D and

RvRfRn_4D were compared to assess the additional

contribution of radar reflectivity when rainfall data are

assimilated. The three experiments Rn_4D, RvRf_4D,

and RvRfRn_4D were compared to evaluate the benefit

of combined rainfall and radar data assimilation on short-

term heavy rainfall forecasts. The physical structures of

the analysis fields from these three experiments were also

compared to gain insight on the reasons for the different

performances of the rainfall forecasts from these experi-

ments. Our main findings from this study are summa-

rized below:

1) Assimilating rainfall alone results in large but unreal-

istic temperature and humidity increments which en-

hances the rainfall forecast skill, as compared to the

baseline experiment, in the first 3h but degrades it

thereafter, due to the lack of dynamical consistency.

2) While the radar data assimilation is critical for cap-

turing the regional-scale wind circulation and asso-

ciated updraft crucial for convective-scale heavy

rainfall forecasts, it has little impact on humidity

FIG. 17. Vertical cross section of relative humidity at the analysis time 1500 UTC along line A–B (illustrated in

Fig. 16a) with wind vectors overlaid for the four experiments (a) CTRL_3D, (b) Rn_4D, (c) RvRf_4D, and

(d) RvRfRn_4D.
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analysis that also plays a critical role for heavy rain-

fall prediction.

3) Assimilating the rainfall data in addition to the radar

observations results in positive impact on heavy

rainfall forecasts. The temperature and humidity

responses resulting from the rainfall assimilation

provide important thermodynamic information in

the initial conditions in addition to the dynamical

information from radar DA. The simultaneous assim-

ilation of rainfall and radar eliminates the unrealistic

large increments in the rainfall alone experiment.

4) Radar reflectivity DA plays a smaller role in the

analysis fields of wind, temperature, and humidity in

comparison to rainfall DA. The relative merit of

rainfall DA is likely due to it only requires the model

to produce a reasonable two-dimensional accumu-

lated rainfall over a time period, which is less difficult

for the model to achieve than an accurate temporal

hydrometeor distribution as required by the re-

flectivity DA. Nevertheless, the inclusion of re-

flectivity in addition to rainfall and radial velocity

results in a slightly positive impact on the precipita-

tion forecasts.

5) Combined assimilation of radar and rainfall data

results in analyses with dynamical and thermodynam-

ical coupling that creates updrafts in saturated air

columns, leading to improve convective forecasting.

Although our study is encouraging in that it provides a

demonstration of the importance to combine the ob-

servations with similar scales for convective precipita-

tion forecasts, we are fully aware that further evaluation

with more convective cases is necessary to draw a general

conclusion. One concern of the 4D-Var technique is about

its computation efficiency. Amultiresolutionmethodology

that allows variable resolutions in different outer loop

cycles has been developed at NCARaiming to reduce the

computation cost. Preliminary experiments produced

encouraging results. The work will be reported in a

separate paper.

It is noted in the current case study that even with the

combined assimilation of radar and rainfall data the

FIG. 18. As in Fig. 17, but for 2-h forecast (valid at 1700 UTC). The magenta contour lines are rainwater mixing

ratio above 1 g kg21 with an interval of 1.5 g kg21. The red arrows indicate the location of the observed rainfall

maximum.

2230 MONTHLY WEATHER REV IEW VOLUME 148

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://jo

u
rn

a
ls

.a
m

e
ts

o
c
.o

rg
/m

w
r/a

rtic
le

-p
d
f/1

4
8
/5

/2
2
1
1
/4

9
2
8
0
7
8
/m

w
rd

1
9
0
3
3
7
.p

d
f b

y
 g

u
e
s
t o

n
 1

9
 J

u
n
e
 2

0
2
0



heavy rainfall is still underpredicted. Research is under

way to identify the errors sources (i.e., model errors, ob-

servation insufficiency and data assimilation strategy) that

cause the underprediction. Assimilation of additional types

of convective-scale observations, such as lightning detec-

tion networks, geostationary satellites, and crowdsourcing

data all have the potential to help reduce the initial con-

dition uncertainty of convection-permitting model leading

to improved heavy rainfall prediction.
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