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Abstract—Biometric matching involves a comparison of two
biometric data samples. In practical applications, one or both
of the samples may be of degraded quality, in respect to
the nominal quality of similar samples acquired in controlled
conditions. It has been shown in prior art that in such situations,
the integration of quality information into the process of bio-
metric matching can lead to significantly improved classification
performance of the biometric matcher. To facilitate such an
integration, quality measures originating from both compared
biometric samples are usually combined into one quality score.
In this paper, we analyze the merit of doing so. We revisit
the problem from a pattern classification perspective, and show
that using individual quality measures as separate classification
features frequently leads to a superior performance of a
biometric system in comparison with the system in which
quality measures are mapped into one quality score. We provide
experimental support of this claim using synthetic data, as well
as real biometric database, on the examples of face, fingerprint
and multi-modal matching.

I. INTRODUCTION

Biometric sample matching involves a comparison of two

biometric samples with the goal of establishing if they

originate from the same individuals or from different persons.

It constitutes the baseline of biometric identity verification,

and is an important concept in forensic science.

Biometric matching systems perform best when the quality

of the data samples is comparable and consistent. However,

it is a known fact that the conditions of biometric signal

acquisition often do not allow such consistency. When exter-

nal influences, often in conjunction with behavioral factors,

change the quality properties of the compared signals, the

classification accuracy suffers. The impact of quality degra-

dation on classification performance has been shown to affect

all of the prominent biometric modalities. Seeking to address

this issue, a number of systems have been proposed, where

the quality of the compared signals is explicitly measured,

yielding scores known as the biometric quality measures [1],

[2], [3].

Biometric sample matching returns only one similarity

score. However, each quality measure is derived from one

sample, so there are always two quality measures at hand per

matching. A prevailing procedure in the literature dictates to

combine both individual quality measures into one quality

score, which jointly represents the quality of the matched

signals. The resulting mapped (combined) quality score has

been used in the classification process, using a variety of
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approaches [4], [5], [6], [7], [8], [9]. These methods have

been generalized using a stacking-based framework, Q-stack

in [10]. Although all methods reported use the mapped

quality scores, and not the raw quality measures, remarkably

little attention has been paid to the actual mapping function

that maps the individual quality measures into one. The

problem of the impact of such mapping on classification

accuracy also remains unsolved.

In this paper we address the problem of mapping qual-

ity measures into one quality score before using them in

biometric matching. We argue that mapping of individual

quality measures into one quality score comes at a loss

of information, potentially detrimental to the classification

accuracy. First, we analyze different mapping functions using

synthetic data. Then, using real biometric data for face

and fingerprint matching, we show that a consistent error

reduction is achieved if both individual quality measures

appear in the classification process, instead of using only

one, combined quality score.

The rest of this paper is structured as follows. In Section

II we provide an overview of prior art in mapping quality

measures for biometric classification. Section III is devoted

to the analysis of the impact of the mapping of two sep-

arate quality measures into a joint quality score on class

separation. In Section IV we provide experimental support

of the claims of this work using real biometric data (face,

fingerprint and their fusion). Section V.

II. MAPPING QUALITY MEASURES

Biometric sample matching yields a similarity score, used

for making a decision whether both samples originate from

the same individual or not. Low quality of compared bio-

metric signals is likely to negatively influence the reliability

of this decision. In recognition of this fact, quality measures

have been used to adjust the score decision threshold [11].

In order to perform such operation, one quality score, which

we denote as q̄, was used to characterize the compared pair

of signals. This single quality measure is a combination

of quality estimates q1 and q2, derived for both involved

biometric samples.

In a multi-biometric system, scores originating from differ-

ent modalities can be fused to arrive at a final classification

decision. Inclusion of the biometric sample quality into the

fusion process has been shown to be systematically beneficial

to the classification accuracy [1], [8], [7], [10]. Also in these

systems, only one quality measure is used per similarity

score. That quality measure is either a combination of quality

scores originating from both compared samples, or it comes

from only one of the compared samples (testing), assuming
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that the other one (gallery) has been collected at a high,

controlled quality [6].

Combining quality measures from two compared samples

into one has become a de-facto standard in biometric match-

ing. Grother and Tabassi [12] combine quality scores for

two compared fingerprints using q̄ = min(q1, q2), arguing
that in ”positive applications” such as identity verification,

high quality of one of the samples can always be assured

during the enrolment phase. An assumption that the quality

of the gallery image is high may not hold: for instance,

certain people are consistently leaving low-quality fingerprint

impressions. In the case of a forensic application of biometric

sample matching, such an assumption cannot be made at all.

Grother and Tabassi also mention the possibility of using

q̄ =
√

q1q2, q̄ = |q1 − q2|, q̄ = 1

2
(q1 + q2) for combining

quality scores. Geometric mean, q̄ =
√

q1q2, is a frequently

used way of mapping individual quality scores into one, [4],

[7], [1], albeit without a sound justification for doing so. The

same method has been implicitly used by Chen et al. [2] to

weight the importance of bit-wise disagreement between two

iris codes.

Nandakumar et al. use two modality-specific schemes of

mapping quality measures to one quality score [8]. When

matching fingerprints, for each involved quality factor the

values pertinent to both matched samples are summed. As

such, the final quality measure is an elaborate form of

averaging multiple quality measures coming from individual

samples. For iris matching, the joint quality score is defined

as a correlation coefficient between two quality vectors.

So defined, the joint quality measure encodes the quality

differences between two irises, and not their individual

quality properties.

All the mentioned approaches have in common that they

use one joint descriptor of the quality of both matched

samples. However, biometric sample matching involves a

comparison of two samples, each having its own quality

properties. Collapsing two individual quality measures q1

and q2 into one q̄ must come at a loss of information. We

argue that this loss of information is reflected in reduced

separability between classes, and consequently in higher

error rates than those that can be attained when the quality

information is not mapped into one number.

III. THE IMPACT OF QUALITY MEASURE COMBINATION

ON CLASS SEPARABILITY

Let us consider the matching of two biometric samples, S1

and S2, resulting in a similarity score x. Assume we perform

independent quality measurements on S1 and S2, yielding

non-negative quality measures q1 and q2, accordingly. These

quality measures can be used directly in the classification

process. Alternatively, they can be combined into one quality

score using some mapping function f : q̄ = f(q1, q2). The
combined quality score q̄ is then used in the classification

process.

The function f(q1, q2) can be of arbitrary nature, but
for practical reasons it is usually a symmetric function,

f(q1, q2) = f(q2, q1). As a result, the application of f

projects all data points [x, q1, q2] onto the same mapping
plane that bisects the classification space defined by x,

q1 and q2. Figure 1 shows an orthogonal projection of

the mapping plane onto q1 and q2, for f =
√

q1q2. The

mapping f reduces the degrees of freedom of the classifier

deployed to distinguish between classes. The mapping of

[q1, q2] �→ q̄ cannot be reversed in all cases but when q1 = q2,

inadvertently causing an information loss in the system.

Before mapping, the separation EN between classes A

and B can be expressed in terms of Bayes error computed

in the evidence space eN = [x, q1, q2]. After mapping, the
class separation EC can be computed in the mapped evidence

space of eC = [x, f(q1, q2)]. We chose to approximate EN

and EC using numerical simulations. A large number of

simulated data samples ensures an arbitrarily close approxi-

mation of the true Bayes error. Consequently, the difference

ΔE = EC − EN gives the estimate of the gain that can be

expected from using q1 and q2 for classification, instead of

using q̄ = f(q1, q2).

In the simulations we have been randomly drawing 103

samples per class from class-conditional normal joint distri-

butions of eN = [x, q1, q2]. Marginal variances of x, q1, q2

were set to unity, and q1, q2 were designed as conditionally

relevant to x, p(q1, q2|A) = p(q1, q2|B). As shown in [10],
[13], the dependencies between conditionally relevant quality

measures and the matching scores x are critical for observing

better class separation in the evidence space eN in respect

to that obtained using matching scores alone. We simulate

these dependencies by controlling the correlation coefficients

ρ1 and ρ2, between x and q1, and between x and q2,

respectively. The difference between the means of marginal

class-conditional distributions of x was set to 1.

The data used to compute EC was derived from the

[x, q1, q2], by applying the mapping function q̄ = f(q1, q2).
The resulting distributions are given by eC = [x, f(q1, q2)].
We have compared the following formulations of f(q1, q2):
q̄ =

√
q1q2, q̄ = |q1 − q2|, q̄ = min(q1, q2) and q̄ =

1

2
(q1 + q2). The results of the simulations in terms of ΔE =

EC − EN are given in Figure 2.

The exclusively non-negative values of ΔE confirm that

no mapping function f(q1, q2) resulted in an increase of
class separation in respect to that observed for non-mapped

quality measures q1 and q2. All reported experiments showed

ΔE ≈ 0 for ρ1 ≈ 0 ≈ ρ2, where no gain is expected from

the use of conditionally-relevant quality measures anyway.

In the case of q̄ =
√

q1q2 and q̄ = 1

2
(q1 + q2) we observe

small values of ΔE for ρ1 ≈ ρ2. This result is no surprise

- if q1 and q2 are highly correlated with x then they are

also correlated with each other. Consequently, q1 ≈ q2, and

in this case the arithmetical and geometrical mean are both

good representations that can replace q1 and q2. However,

in biometric applications the main difficulty arises when the

two matched signals are of different quality. In this case, the

simulations show that using q1 and q2 explicitly is a better

solution than using a mapped quality score q̄.
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Fig. 1. Effects of the mapping of quality measures. Effects of multiple re-use of the same samples as imposters clearly visible in (b).
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Fig. 2. Comparative error differences between systems using mapped and non-mapped quality measures for classification, as a function of the correlation
coefficients ρ1 and ρ2 between scores x and quality measures q1 and q2. Results obtained using synthetic data.



TABLE I

CLASSIFICATION RESULTS FOR BASELINE SYSTEMS (NO QUALITY

MEASURES), ERRORS EXPRESSED IN [%]

erA erB HTER

face, xf 14.43 14.38 14.41

fingerprint, xp 0.98 0.94 0.96

SVM fusion, [xf , xp] 0.37 0.40 0.38

IV. EXPERIMENTAL EVALUATION

The experimental evaluation involved one-to-one matching

of face and fingerprint images from the Biosec database,

baseline corpus [14], which contains data collected from

200 subjects. The Biosec database provides 15600 com-

parisons (matchings), out of which 3200 are genuine, and

12400 are imposter comparisons. The experiments reported

here involved face matching using the DCTmod2 features,
modeled using a Gaussian Mixture Model-based classifier

[15]. The fingerprints were processed and matched using

the publicly available NFIS system [16]. Since the details

of the baseline biometric matchers are not critical for the

conclusions of this paper, we decide to skip them for brevity.

The performance of the baseline matchers on separating

genuine from imposter scores, obtained without the use of

quality measures, is given in Table I, in terms of class

errors erA and erB , and Half-Total Error Rate, HTER =
1

2
(erA + erB). Trained fusion of face and fingerprint scores
was performed using a linear SVM classifier.

We have used two face image quality measures, denoted

as qf1 and qf2. The first face quality measure was the

2D Pearson’s correlation coefficient with an average face

template [17]. The average face template Γ̄, measuring lx×ly
pixels, was created using PCA reconstruction from images

not included in the baseline corpus of the Biosec database.

Given a face image Γ0, the quality measure was computed

as

qf1 =
Σ

lxly−1

i=1
(pΓ0

− μΓ0
)(p

Γ̄
− μ

Γ̄
)

(lxly − 1)σΓ0
σ
Γ̄

, (1)

where μΓ0
and σΓ0

are the mean and variance of all pixels

in Γ0, and μΓ̄ and σΓ̄ are mean and variance of all pixels in

Γ̄.
As the second quality measure qf2, we used the average

image sharpness estimator [17], computed as

qf2 =
1

2
(
Σ

ly
m=1Σ

lx−1

n=1 |pn,m − pn+1,m|
(lx − 1)ly

+

+
Σ

ly−1

m=1Σ
lx
n=1|pn,m − pn,m+1|
lx(ly − 1)

),

(2)

where pn,m is the pixel value.

We have employed two fingerprint quality indices, pro-

posed by Chen et al. [3]. The first index measures the energy

concentration in the frequency domain as a global feature.

The second index measures the spatial coherence in local

regions.

A. Experimental protocol and results

The goal of the experiments was to demonstrate that the

loss of information associated with the mapping of two

distinct quality measures q1 and q2 onto one quality score

q̄ negatively impacts the utility of the quality information in

biometric matching. For this purpose, we used the framework

of Q-stack as a platform for the comparison [10]. For

each modality’s matcher and quality measure, and their

combinations, we ran two concurrent experiments: in the first

experiment, a baseline score x was used together with the

joint quality score q̄, in a similar fashion as in [10]. In the

second, concurrent experiment, we have used the same x but

this time together with original quality measures q1 and q2,

without mapping.

For each comparison we trained one stacked classifier in

the evidence space [x, q̄], and another one in the evidence
space defined by [x, q1, q2]. We used q̄ =

√
q1, q2 as the

mapping functions since it is the most commonly used

mapping seen in the prior art (Section II), and it also emerges

as the best choice of the different mappings considered

in Section III. Each trained stacked classifier was a SVM

classifier with a linear kernel. A sample of the compared

pairs of experiments is shown in Figures 3 and 4. Here, the

stacked classifiers are shown in blue color.

In our experiments, we have considered biometric match-

ing using both baseline classifiers alone and multimodal

fusion matching using face and fingerprint. The combinations

of baseline classifiers and quality measures used in the

experiments are summarized in Table II.

Our experiments involved 50-fold cross-validation with

random sub-sampling, where 50% of the genuine and im-

poster matches were used for system training, and the

remaining 50% were used for testing. For each run of the ex-

periment, 1600 genuine matches and 6200 imposter matches

were used for training, and the same number for testing. The

training and testing sets were disjoint at each of the cross-

validation runs. A comparison of the mean classification

errors after 50-fold cross-validation, for each considered pair

of mapped versus non-mapped quality measures, is shown in

Table III, in terms of class errors erA, erB , and HTER.

The results obtained using non-mapped quality measures

are marked in bold in Table III. The absolute and relative

mean differences betweenHTER1 (mapped q̄) andHTER2

(non-mapped q1, q2) are shown in columns δ and Δ. The
results of a one-sided KS-2 test of the hypothesis that

HTER1 > HTER2, computed over 50 cross-validation

runs, are given, together with the corresponding p value.

In all experiments reported, the classification errors were

reduced, in terms of class errors and HTER, by using

original pairs of quality measures q1 and q2 instead of a

mapped quality score q̄, in spite of contrary suggestions from

prior art. In all but two experiments, the improvements are

statistically significant at p = 0.05, according to one-sided
KS-2 test. Additionally, the results show that mapping quality

measures into one score q̄ can render quality measures less,

or even not useful for classification. For instance, the baseline
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HTER = 14.41 (Table I) is lower than the HTER obtained

using xf and mapped quality scores in Exp. 1 and 3. It is only

slightly higher than in Exp. 2. This shows that the mapped

quality measures were not useful as classification features.

In contrast, in all Exp. 1, 2 and 3 the use of original, non-

mapped quality measures resulted in systematic, statistically

significant reduction of error rates.

V. CONCLUSIONS

In this paper we revisited the common practice of com-

bining quality measures coming from compared biometric

signals into one quality score before classification. We pro-

vided theoretical and experimental support for the claim

that the mapping of quality measures into one quality score

inadvertently causes a loss of information and a reduction

of the classifier’s degrees of freedom, where conditional

dependencies between quality measures and baseline scores

could be exploited. Using synthetic and real biometric data,

we demonstrated that the use of original, non-mapped quality

measures systematically leads to significant improvements

of classification performance over systems that use mapped

quality scores.



TABLE II

EVIDENCE COMBINATIONS USED IN THE EXPERIMENTS. RESULTS OF THE EXPERIMENTS ARE GIVEN IN TABLE III.

Exp. Evidence: mapped q1, q2 �→ q̄ Evidence: non-mapped q1 , q2

1 xf ,

√

q
f1

1
q

f1

2
xf , q

f1

1
, q

f1

2

2 xf ,

√

q
f2

1
q

f2

2
xf , q

f2

1
, q

f2

2

3 xf ,

√

q
f1

1
q

f1

2
,

√

q
f2

1
q

f2

2
xf , q

f1

1
, q

f1

2
, q

f2

1
, q

f2

2

4 xp,

√

q
p1

1
q

p1

2
xp, q

p1

1
, q

p1

2

5 xp,

√

q
p2

1
q

p2

2
xp, q

p2

1
, q

p2

2

6 xf ,

√

q
f1

1
q

f1

2
,

√

q
f2

1
q

f2

2
xf , q

f1

1
, q

f1

2
, q

f2

1
, q

f2

2

7 xp, xf ,

√

q
f1

1
q

f1

2
,

√

q
p1

1
q

p1

2
xp, xf , q

f1

1
, q

f1

2
, q

p1

1
, q

p1

2

8 xp, xf ,

√

q
f1

1
q

f1

2
,

√

q
p2

1
q

p2

2
xp, xf , q

f1

1
, q

f1

2
, q

p2

1
, q

p2

2

9 xp, xf ,

√

q
f2

1
q

f2

2
,

√

q
p1

1
q

p1

2
xp, xf , q

f2

1
, q

f2

2
, q

p1

1
, q

p1

2

10 xp, xf ,

√

q
f2

1
q

f2

2
,

√

q
p2

1
q

p2

2
xp, xf , q

f2

1
, q

f2

2
, q

p2

1
, q

p2

2

11 xp, xf ,

√

q
f1

1
q

f1

2
,

√

q
p1

1
q

p1

2
,

√

q
f2

1
q

f2

2
,

√

q
p2

1
q

p2

2
xp, xf , q

f1

1
, q

f1

2
, q

p1

1
, q

p1

2
, q

f2

1
, q

f2

2
, q

p2

1
, q

p2

2

TABLE III

EXPERIMENTAL RESULTS USING DATA FROM BIOSEC DATABASE, ERRORS EXPRESSED IN [%]. THE EVIDENCE COMBINATION USED IN EACH

EXPERIMENT PAIR IS LISTED IN TABLE II. THE COLUMNS TITLED δ = HTER1 − HTER2 , ∆ = δ
HTER1

, KS-2 IS THE RESULT OF THE ONE-SIDED

KOLMOGOROV-SMIRNOV TEST OF THE HYPOTHESIS THAT HTER1 > HTER2 , COMPUTED OVER 50 CROSS-VALIDATION RUNS, AT THE p = 0.05

VALUE.

mapped, q̄ =
√

q1q2 non-mapped, q1, q2

Exp. erA erB HTER1 erA erB HTER2 δ ∆ p KS-2

face, DCT

1 14.72 14.70 14.71 12.67 12.72 12.69 2.02 13.70 1E-23 1

2 14.12 14.52 14.32 13.6 13.41 13.5 0.82 5.69 3E-20 1

3 14.64 14.51 14.58 12.56 12.38 12.47 2.11 14.45 1E-23 1

fingerprint

4 0.363 0.355 0.359 0.351 0.34 0.345 0.013 3.75 0.354 0

5 0.495 0.534 0.514 0.38 0.415 0.397 0.117 22.72 2E-15 1

6 0.365 0.345 0.355 0.32 0.316 0.318 0.037 10.33 9E-3 1

fusion, face+fingerprint

7 0.203 0.185 0.194 0.189 0.19 0.19 0.004 2.21 0.467 0

8 0.172 0.171 0.172 0.14 0.162 0.151 0.02 11.84 0.016 1

9 0.235 0.244 0.239 0.214 0.217 0.216 0.024 9.93 0.016 1

10 0.216 0.176 0.196 0.182 0.166 0.174 0.022 11.19 1E-05 1

11 0.202 0.209 0.206 0.165 0.117 0.141 0.064 31.31 5E-09 1
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