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ABSTRACT

We present a comprehensive review of the advent and impact of continuous flow chemistry with regard to 
the synthesis of natural products and drugs, important pharmaceutical products and definitely responsible 
for a revolution in modern healthcare. We detail the beginnings of modern drugs and the large scale batch 
mode of production, both chemical and microbiological. The introduction of modern continuous flow 
chemistry is then presented, both as a technological tool for enabling organic chemistry, and as a fundamental 
research endeavor. This part details the syntheses of bioactive natural products and commercial drugs.
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INTRODUCTION

The apothecary prepared his medications from 

natural sources, usually as a concoction of a 

complex mixture of compounds. Progress then 

brought in the production of isolated natural 

products, still as mixtures with occasional pure 

compounds. This approach is still the most 

common form of disease treatment throughout 

the world due to the much lower cost and greater 

availability of such medications, and obviously the 

direct use of the natural sources. Beginning in the 

19th century, research labs and chemical companies 

had routinely begun to perform reactions and thus 

molecular modifications, with the intent of creating 
new compounds of increased social and commercial 

value. Discussions of important remedies viewed 

from the molecular aspect can be found in two very 

relevant textbooks, written by Corey et al. (2007), 

and Nicolaou and Montagnon (2008).



An Acad Bras Cienc (2018) 90 (1 Suppl. 2)

1132 JULIANA M. DE SOUZA et al.

The case of aspirin (4) is a truly fascinating 

example, starting with the long-known activity of a 

crude weeping willow bark extract against several 

kinds of pain. These extracts contain salicin (1), 

and in the 19th century the conversion to salicylic 

acid was already well known, both compounds 

being recommended for treatment as a pain reliever. 

To reduce gastric acidity problems, the acetyl 

derivative of salicylic acid (2) was synthesized, 

becoming universally known as aspirin (4). Thus, 

the best known, most consumed and first synthetic 
drug was born, being accessible from phenol (3) 

and introducing the batch mode of performing 

organic reactions on a kilogram to ton-scale (Hafner 

et al. 2016) (Scheme 1). A very important aspect 

of the drug aspirin is its now well-known utility 

for the treatment of other health problems, and this 

approach is becoming very relevant.

The penicillin story starts with the 

serendipitous discovery by Fleming in 1928, and 

his decision not to clean or throw away the Petri 

dish, where the Penicillium notatum mold was 

destroying bacterial growths. However, this event 

passed almost unnoticed, the Second World War 

intervened and created an even bigger necessity 

for antibiotic medications. Thus, the isolation, 

structural identification of penicillin and the 

large-scale production, became multi-national 

endeavors. The culture of the Penicillium notatum 

microorganism leads to the large-scale production 

of natural penicillins, then fermentation transforms 

them into 6-aminopenicillanic acid (6-APA) (6), the 

starting material for the semi-synthesis of the many 

penicillin antibiotics available today (Scheme 2).

In the late 1940’s and 1950’s, steroid chemistry 

became very important due to Marker’s discovery 

of a steroidal sapogenin (diosgenin (8)) found in the 

Mexican yam, its transformation into 16-DPA (9) 

and then progesterone (10) (Scheme 3) on a kilogram 

scale (Marker et al. 1947, perhaps the longest full 

paper to be published; DeCorte 2016). These two 

steroids thus became the starting materials for the 

large-scale production of corticosteroids and C-19 

demethylated contraceptives (Hirschmann 1991) 

and the birth-control pill, and a social revolution 

provoked by a drug. The large-scale process 

development of both penicillin and cortisone (37 

steps from cholic acid) were both performed at 

Merck, under the leadership of Tishler (Hirschmann 

1991). The December issue of Steroids, 1992, 

volume 57, is dedicated to historical descriptions of 

the pharmaceutical industries endeavors in steroid 

chemistry. The steroid nucleus platform has also 

served as substrate for the discovery of many very 

important synthetic methodologies, a target for 

total synthesis, and the fundamental concepts of 

conformational analysis.

After the Second World War, the growing 

pharmaceutical industry began to look more 

seriously at totally synthetic molecules, as opposed 

to true natural products, their semi-synthetic 

derivatives, or molecules inspired or resembling 

natural products (analogues). The industrial 

building block era was then introduced, but with 

a strict preference for planar achiral hetero-

aromatics: this is obviously a strategic copy of 

Nature, which has also always used a relatively 

small group of biosynthetic building blocks, but 

which are chiral enantiomerically pure, with many 

stereogenic centers, and not frequently hetero-

aromatic. The present drug distribution based 

upon Nature or synthetic origins can be seen in the 

following Figure 1. We have simplified the groups 
of categories and rounded off the percentages, to 
be easier to analyze (based on Newman and Cragg 

2016 and references cited therein). 

Useful examples of the totally synthetics are 

the erectile dysfunction drugs, introduced first 

with sildenafil (Viagra, Pfizer) in 1998, and then 
“honored” by the me-too imitations vardenafil 

(Levitra, Bayer), tadalafil (Cialis, Eli Lilly) and 
avanafil (Stendra, Vivus). The building block 

approach can be seen in the synthesis of sildenafil 
(Scheme 4) (Dale et al. 2000), and the four 
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Scheme 1 - The aspirin saga and the “first” synthetic drug.

Scheme 2 -The penicillin antibiotics.

Scheme 3 - From the Mexican yam to steroidal drugs and the birth-control pill.
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commercially available drugs can be structurally 

compared in Scheme 5.

Other drug highlights developed over the 

last 60 years include the statins, antivirals to treat 

HIV, anti-cancer medicines, immunosuppressants, 

and treatments for depression and anxiety, as 

exemplified in Figure 2. The so-called neglected 
or forgotten diseases, basically encountered in the 

southern hemisphere, have found more limited 

success only in the case of malaria (Figure 2). 

The Figures help to visualize the quite distinct 

molecular structures of natural product derived 

or totally synthetic drugs. Clearly, these structural 

differences lead to important synthetic variations 
and diverse chemical methodologies, and 

consequently practices of large-scale production. 

The conventional chemical transformations and 

the fermentation processes should be understood 

simply as being reactions conducted with different 
species of reagents, but requiring the very same 

capacities of organic chemists for their success.

An important annual review of approved new 

drugs, as seen from the viewpoint of synthesis, has 

now reached year 2015 (Flick et al. 2017). We have 

reviewed the changing face of organic synthesis 

with special emphasis on the current century, 

dealing with natural products, synthetics and their 

use as drugs (Brocksom et al. 2015). The medicinal 

chemistry group (Holbrook and Garneau-Tsodikova 

2017) designs and then synthesizes possible drugs 

(candidates, hits and leads) (Nadin et al. 2012) at 

the laboratory bench level (gram scale), then passes 

on to the process development group at the pilot 

plant level scale (up to kilogram scale), before 

eventually entering into commercial production 

on the ton-scale (Eastgate et al. 2017, Federsel 

2009, 2013). All the drugs previously described 

are available worldwide on very large scales (up to 

hundreds of tons per year in some cases), usually 

produced in the batch mode. 

After at least a century of accumulated 

experience in the fine chemical and pharmaceutical 
industries, the batch mode of production on 

a significant scale (at least multi-kilogram) is 

generally very effective. The batch reactor can be 
easily adapted to both chemical and microbiological 

reactions in the liquid phase, with addition, stirring, 

and extensive temperature and pressure variation 

facilities. The experimental conditions can be 

changed during use in the one-pot mode, being 

frequently multi-use for quite different reactions. 
The mechanics of the batch mode are difficult and 
laborious as far as the manipulation of reagents 

and solvents before, during and after the reaction, 

requiring highly qualified personnel. Next, the 

logistics become even more complicated with 

the necessity for transport to the separator, dryer, 

concentrator, precipitation and crystallization or 

other purification facilities.
These considerations have convinced process 

development and commercial production units 

of the necessity to investigate other equipment. 

The flow units in use industrially for many 

decades suggested modernization, with reduction 

in scale but with continuous operation to permit 

adequate production levels. This change brings 

many advantages in safety, economies of time, 

solvents, energy, equipment and space. The 

reaction parameters are more quickly optimized, 

on a much smaller scale with further economies, 

and principally safety. Without doubt, our chemical 

Figure 1 - Drug origins: TS, totally synthetic; S–NP inspired, 
synthetics inspired by NPs; S–NP derived, synthetics derived 
from NPs; Biologicals + vaccines; NP, isolated NPs.
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Scheme 4 - The building block approach for the synthesis of sildenafil (18).

Scheme 5 - The totally synthetics sildenafil (18), vardenafil (19), tadalafil (20) and avanafil (21); a 
second social revolution?

Figure 2 – Atorvastatin (22), imatinib (23), paclitaxel (24), azathioprine (25), efavirenz (26), 
diazepam (27) and artemisinin (28).
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industries need less bad news on explosions, 

fires and environmental damage: certainly, flow 
chemistry (Hawkins 2015, Porta et al. 2016, 

Plutschack et al. 2017) is a very real solution as we 

will demonstrate in this review.

GENERAL REMARKS ABOUT 

CONTINUOUS FLOW CHEMISTRY

The use of continuous flow or simply flow chemistry, 
is not new in chemistry, but in the last 20 years it 

has spread to a much wider chemical community 

and found application for the production of 

many highly valuable intermediates and products 

(Plutschack et al. 2017, Gutmann et al. 2015).

A synthetic organic chemist works with 

round bottomed flasks (RBFs) where the scale-

up of the optimized process is always a challenge 

due to the need for many additional adjustments 

of the reaction parameters. To overcome these 

and other experimental difficulties, continuous 

flow reactors can be used as apparatuses for 

optimization and process development in organic 

synthesis. Continuous flow reactors are devices 

in which synthetic transformations take place in a 

continuously flowing stream within structures with 
general lateral internal dimensions from 1/16 to 

1/8 inches. Several different types of flow reactors 
are commercially available, and customization to a 

desired process is generally needed depending on 

the reaction characteristics (Scheme 6) (Plutschack 

et al. 2017).

A general continuous flow chemistry set-

up is presented in Scheme 6 where the reagents 

are separately pumped through a micromixer 

into the reaction zone (reactor). The reaction 

zone is temperature controlled and can be 

customized in order to meet the reaction needs 

in terms of length and reactor type, such as: coils 

(polytetrafluoroethylene (PTFE), perfluoroalkoxy 
(PFA), stainless steel, among others), microchips, 

fixed-bed reactors, agitating microsphere reactors 
and tube-in-tube reactors. Among the reactors cited 

Scheme 6 - General scheme for a continuous flow set-up.
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above, tube-in-tube is a very interesting alternative 

for gas-liquid reactions involving CO
2
, H

2
, O

3
, 

NH
3
 among others (Pastre et al. 2013c). This 

special type of reactor called “tube-in-tube” (TIT) 

generally comprises a 1.0 mm o.d. / 0.8 mm i.d. 

Teflon AF-2400 permeable tubing inside a PTFE 
or stainless-steel tube (3.18 mm o.d. / 1.59 mm i. 

d.). With the TIT reactor, a gas can be pressurized 

in the inner (or outer) tube and diffuse to the other 
tube where the reaction mixture is passing through. 

After the reaction zone, a back pressure regulator 

is normally installed giving the opportunity to tune 

the reaction pressure to the desired value. This 

allows researchers to explore reaction conditions 

not possible in the batch set-up, such as heating 

organic solvents at much higher temperatures then 

their boiling point. As shown in Scheme 6, in-line 

reaction analysis is also possible by the use of FT-

IR, HPLC, NMR, MS and/or UV-Vis, as well as 

quenching and purifications, allowing a researcher 
to begin with the crude starting material and arrive 

at the purified product in a telescoped protocol 

(Plutschack et al. 2017, Movsisyan et al. 2016, 

Reizman and Jensen 2016)

The advantage of using flow reactor technology, 
in most cases, is directly related to the size of the 

reactor, which can achieve a series of properties 

unreachable in batch reactor conditions. Therefore, 

the major advantages for using continuous flow 
conditions (Noël et al. 2015, Hartman et al. 2011, 

Elliott et al. 2016) are:

• Rapid and efficient mixing of reactants; 
• Efficient heat transfer; 
• Low operating volumes;

• High temperature and pressure conditions;

• High concentrations or no solvent;

• Inherently safer than batch (Alves et al. 

2015);

• Inherently greener;

• Easily scaled-up (e.g. by numbering 

up – parallel processing or process 

intensification); 

Regulation of many parameters such as heat 

and mass transfer, mixing and residence times is 

much improved in comparison with related batch 

processes. Mixing describes the way in which 

two or more phases come together and become 

intertwined. Batch and flow reactors exhibit 

different mixing mechanisms, where tube reactors 
inherently have much smaller diffusion times 

and achieve mixing much faster (higher surface 

to volume ratio, Figure 3) than in batch. This, in 

combination with reaction kinetics will determine 

if flow conditions are beneficial, based, most of 
the time, on the reaction Reynolds numbers (Re) 

(Plutschack et al. 2017).

Furthermore, some batch processes pose 

operational hazards, particularly with the use 

of highly reactive reagents. These hazards can 

be diminished under continuous flow conditions 
due to increased temperature control and short 

residence times. Most importantly, since the size of 

the reactors is very small, the amount of hazardous 

reagent or intermediates in an operation is minimal, 

increasing further the safety of the process (Hessel 

et al. 2013). Although the instant scale is relatively 

small, the continuous operation over many hours 

Figure 3 - Surface to volume ratio, Flow vs Batch reactors.
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produces much improved quantities (STY = space 

time yield = grams-tons per hour or day).

Scale-up under continuous flow conditions 

can be performed by two different approaches, 

in a different design when compared to the batch 
process:

1) by scaling-up with increased reactor size, 

without losing microfluidic characteristics, 

using longer coils and higher flow rates;
2) by numbering-up or scaling-out, a common 

strategy in continuous-manufacturing where 

several smaller reactors work in parallel 

towards a common product (Su et al. 2016 and 

Kuijpers et al. 2017);

Thus, we can summarize continuous flow 

chemistry as a real revolution of the present and 

future in the way to perform chemical synthesis 

in machine-assisted processes. Telescoped flow 

chemistry also has a further advantage which 

permits the combination of “incompatible” 

reactions. Large scale continuous flow protocols 
are not new in chemical engineering. However, 

the last 20 years has established this approach 

as a consistent enabling technology for chemical 

transformations.

NOVEL PROCESS WINDOWS (NPWS)

Enabling technologies allow the execution of 

many “impracticable” reactions, mainly on the 

industrial scale by processes intensification (PI). 
In this context, PI has become a concept of great 

relevance, since it aims to develop more sustainable 

and environmentally friendly processes. This 

concept was introduced by Ramshaw (1999), and 

then Stankiewicz and Mouljin defined this as the 
use of new equipment or techniques which promote 

a significant improvement of production processes 
on a large-scale. This leads not only to smaller 

plants but also to significant reduction of energy 
consumption and waste, resulting in cheaper and 

greener processes (Stankiewicz and Mouljin 2000).

Therefore, the Novel Process Windows (NPWs) 

concept emerges as the use of new equipment, 

micro/macro reactors and reaction conditions to 

perform chemical transformations in a vigorous, 

but completely safe and scalable manner (Hessel et 

al. 2008, 2013, Stouten et al. 2013, Illg et al. 2010) 

(Figure 4).

The NPWs concept is quite recent, first 

introduced in 2005 by Hessel, but only in 2009 

named as NPWs (Hessel et al. 2005, Hessel 

2009). Different from the PI and micro-process 

technologies, which are capable of increasing mass 

and heat transfer in reactions with defined kinetics, 
NPWs aim to accelerate the rates and drastically 

reduce the reaction time by applying pressurized and 

superheated conditions. Therefore, the kinetics of 

the reaction can be completely exploited changing 

the reactivity of the substrates and maintaining their 

selectivity at an acceptable level with increase in 

productivity (Hessel et al. 2011, 2015). In general, 

NPWs encompass reaction conditions that are far 

from conventional laboratory practices such as the 

use of high pressures (p), high temperatures (T), 

high concentrations (c) or even solvent-free, and 

reactions that occur on an explosive regime, which 

make possible the attainment of new chemical 

transformations (Razzaq and Kappe 2010).

Figure 4 - An overview on Novel Process Windows (NPWs).
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DRUGS OBTAINED UNDER SUPERHEATED 

PROCESSING (HIGH T) AND SOLVENT-FREE 

CONDITIONS (HIGH C)

Rufinamide (32) (Scheme 7) is an antiepileptic 

drug containing a 1,2,3-triazole moiety and is 

among the best-selling five-membered heterocyclic 
pharmaceuticals developed by Novartis (2004) and 

manufactured by Eisai (Inovelon® and Banzel®) 

(Baumann et al. 2011a, b).

The key intermediate 31 can be obtained by 

a 1,3-dipolar cycloaddition reaction (Scheme 7a) 

(Mudd and Stevens 2010). Hessel and coworkers 

(Borukhova et al. 2013) have shown that in batch 

experiments, a rapid decrease in reaction rate 

under diluted homogeneous reaction conditions 

was observed. Therefore, the solvent-free protocol 

under continuous flow conditions was preferred to 
attain a higher reaction rate (Scheme 7b). At 200 
oC the intermediate 31 was obtained in 82% yield.

Recently, NPWs have been exploited in 

porphyrin synthesis (Scheme 8). These dyes are 

natural or synthetic compounds which present 

relevant physical and chemical properties and 

numerous applications as photocatalysts, dye-

sensitized solar cells, sensors, molecular electronics, 

non-linear optics and in medicine, especially with 

regard to photodynamic therapy (PDT) for some 

cancers treatments (de Oliveira et al. 2015, Barona-

Castaño et al. 2016).

De Oliveira and coworkers investigated the 

one-pot synthesis of meso-tetraarylporphyrins 

and meso-tetraalkylporphyrins under continuous 

Scheme 7 – Rufinamide (32) synthesis: (a) Solvent- and catalyst-free Huisgen cycloaddition between 29 and 30. 
(b) Schematic representation of the microcapillary assembly.
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flow conditions, and demonstrated improvements 
and a multi-gram-scale protocol. A safe scale-up, 

cost-competitive and reproducible protocol was 

achieved (Momo et al. 2015).

NEW CHEMICAL TRANSFORMATIONS

A relevant example of NPWs for new chemical 

transformations is the adipic acid synthesis from 

cyclohexene by Hessel and coworkers (Shang et 

al. 2013). From an industrial perspective, this is the 

most important dicarboxylic acid in use as about 2.5 

billion kilograms of this compound are produced 

annually, mainly for nylon-6,6 production (Musser 

2005, Castellan et al. 1991).

Different from other methods described in 

the literature (Davis 1985), which present N
2
O as 

byproduct, Hessel and coworkers studied the direct 

cyclohexene (36) oxidation by hydrogen peroxide. 

Adipic acid (37) is produced by means of a packed-

bed microreactor in continuous flow (100 oC), using 

Na
2
WO

4
·2H

2
O as catalyst and [CH

3
(n-C

8
H

17
)

3
N]

HSO
4
 as a phase transfer without solvent addition. 

This process is based on a Noyori group seminal 

publication (Sato et al. 1998) (Scheme 9).

HIGH TEMPERATURE/PRESSURE PROCESSING - 

(HIGH -T/P)

Several methodologies that lead to the oxidation 

of 2-benzylpyridines to the corresponding benzoyl 

derivatives have been reported (Crook and 

McKelvain 1930, Akhlaghinia et al. 2012, Zhang 

et al. 2009, Nakanishi and Bolm 2007). Houwer et 

Scheme 8 - a) Comparison of the most common tetraphenylporphyrin (35a) syntheses in batch 
and flow conditions. b) Set-up for the one-pot 35a synthesis under continuous flow conditions.
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al. (2012) discovered that this oxidation can also be 

carried out using molecular oxygen in the presence 

of catalytic amounts of iron or copper salts in 

combination with acetic acid as additive. The 

ketones obtained as result of this transformation, 

can be used as building blocks for API synthesis, 

including the antihistamines, antiarrhythmic agents 

and others (Houwer et al. 2012) (Scheme 10).

Kappe and coworkers have described a 

gas–liquid continuous flow protocol for this 

2-benzylpyridine oxidation (Scheme 11), using 

propylene carbonate as a solvent instead of DMSO, 

providing several advantages of the NPWs concept 

such as high-T/p (Pieber and Kappe 2013). The 

authors detected limitations for the temperature 

when working with aprotic polar solvents such 

as NMP or DMSO in a continuous flow regime, 
which makes propylene carbonate a very attractive 

alternative (b.p. 242 °C).

Jamison and coworkers reported the use of 

high-T/p continuous conditions for β-amino alcohol 
formation by using an epoxide aminolysis in the 

synthesis of metoprolol and indacaterol. Drugs such 

as Oxycontin®, Coreg® and Toprol-XL® present this 

functional group pattern, and other drugs such as 

Zyvox® and Skelaxin® feature oxazolidones which 

can have amino alcohols as precursors (Scheme 

12) (Bedore et al. 2010, Bergmeier 2000, Desai et 

al. 2007).

The synthesis of metoprolol (55) in a microwave 

(MW) batch or under continuous flow conditions 
is summarized in Scheme 13. The microreactor 

Scheme 9 - Adipic acid (37) synthesis – Set-up of the packed-bed reactor.
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Scheme 10 - Metal catalyzed molecular oxygen oxidation of 2-benzylpyridines, and some important intermediates for API 
synthesis.

Scheme 11 - Set-up of the gas–liquid continuous flow reactor used by Pieber and Kappe.

Scheme 12 - Pharmaceutically relevant compounds having β-amino alcohol moieties.
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Scheme 13 - a) Metoprolol (55) synthesis – comparison between microwave 
(MW) and flow conditions. b) Flow chemistry set-up.

Scheme 14 – Set-up for the 1H-4-substituted imidazoles synthesis in continuous flow conditions and highT⁄p.
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working at high-T (240 ○C) and high-p (500 psi) 

resulted in high yields with residence times of 

about 15 seconds.

Eli Lilly described a continuous flow process for 
the high-T synthesis of 1H-4-aryl imidazoles in 2012 

(May et al. 2012). After this, Kappe and coworkers 

achieved a machine assisted process intensification 
synthesis under high-T/p of 1H-4-substituted 

imidazoles, using α-bromoacetophenones and 
α-aminoacids as starting materials (Scheme 14). 
Such imidazole derivatives are key building blocks 

in the synthesis of NS5A (a viral phosphoprotein) 

inhibitors, highlighting daclatasvir (62) as an 

important drug for hepatitis C (HCV) treatment 

(Carneiro et al. 2015). The two-step continuous 

flow protocol described by Kappe et al. afforded 
the imidazoles with residence times of about 4-10 

min (Scheme 14), and daclatasvir (62) (Scheme 15) 

again demonstrating a very relevant application of 

the methodology.

Fülöpa and coworkers reported an oxidative 

homo-coupling of aniline derivatives to 

azobenzenes in continuous flow high-T conditions 
(Scheme 16). Approaches to azobenzenes typically 

require vigorous or special reaction conditions (e.g. 

the use of strong oxidizing agents, strong inorganic 

bases or acids), which often lead to extensive 

byproduct formation and low yields (Georgiádes 

et al. 2015). Therefore, a simple flow reactor was 
assembled having as the key element a heated 

cylindrical column charged with copper powder 

for the oxidative coupling (Scheme 16).

Kappe and coworkers reported a scaled-up 

synthesis of 4-aryl-2-butenones under continuous 

flow conditions, which produces Nabumetone (67), 

a nonsteroidal anti-inflammatory drug (NSAID) 
known as Relafen® or Noracet® (Scheme 17) 

(Viviano et al. 2011).

In the flow experiments, a “two-feed” concept 
was adopted and the organic stream containing 

the aromatic aldehyde in acetone was pumped 

separately and mixed with the aqueous NaOH 

stream. Assuming a one-hour processing time for 

the cross-condensation of p-anisaldehyde (65a) 

at 120 ºC and 1 min residence time a throughput 

of ∼40 g of 67 per hour can be calculated. When 

it comes to the large-scale aldol condensation, a 

mesofluidic flow set-up was designed with one/
two feed modules, which enables a multipurpose 

functionality to continuous flow plants. The 

optimized overall reagent flow processing was 2.4 
kg/h which corresponds to 0.35 kg/h of product. 

When a 4.65L reaction mixture was processed at 

120 ºC, 1.75 kg/h of product was obtained (Scheme 

18).

The selective reduction of the products 66 

double bond to obtain compounds such as 67 in 

90% yield was also performed under continuous 

flow conditions, employing a fixed-bed catalyst at 
temperatures up to 100 oC and 100 bar of hydrogen 

pressure.

In general, NPWs have allowed many 

improvements in continuous flow protocols, and 
opened up several possibilities to discover and 

perform new reactions. There are many conditions 

to be explored under more extreme conditions, 

particularly when it comes to “forbidden” and 

“forgotten” chemical reactions.

PHOTOCHEMICAL REACTIONS AND 

CONTINUOUS PHOTO-FLOW PROCESSES

Photochemical transformations have regained 

a new perspective in organic synthesis since 

they started to be performed in continuous flow 
conditions. Many old and inefficient photochemical 
processes have been revisited since a number of 

technical limitations have been solved by machine-

assisted protocols. Recently, the efficiency of these 
reactions has been significantly improved under 
continuous flow conditions compared to batch 

due to homogeneous light irradiation allowed by 

the use of polymer tube reactors (PFA, FEP). In 

batch conditions, a number of limitations prevent 
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Scheme 17 - Synthesis of 4-aryl-2-butanones – Nabumetone (67).

Scheme 16 - Set-up for the copper-catalyzed continuous flow couplings of aniline derivatives.

Scheme 15 - Bisimidazole 61 synthesis - symmetrical core unit of daclatasvir (62).
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efficient photochemical reactions or photocatalyzed 
processes when using UV irradiation and common 

borosilicate glassware, due to UV light absorption. 

In addition, high dilutions are frequently necessary 

to avoid the excess of by-products occasioned by 

the intrinsic non-homogeneous batch-irradiation 

with the light penetration diminishing in ca 90% 

after 5-10 mm of light pathway (Su et al. 2014, 

Cambié et al. 2016, Nöel et al. 2017). Under 

continuous flow conditions these problems can 

easily be solved by using falling film plates or long 
length fluoropolymer tube reactors (regularly 1/16 
or 1/8 inch I.D. x 10-100 m) with multidirectional 

light irradiation inside the reactors (Figure 5).

Both numbering up (Su et al. 2016, Kuijpers 

et al. 2017) and process intensification of the 

photoreactors has allowed the scale up of many key 

molecules for the pharmaceutical industry (Cambié 

et al. 2016). Another important advantage of 

continuous conditions in photochemical reactions 

is related to safety. Since small amounts of 

reagents and solutions are continuously irradiated, 

very unstable or explosive intermediates can be 

produced with no incidents, such as endoperoxides 

and organic peroxides (Lévesque and Seeberger 

2012, de Oliveira et al. 2016).

It is important to highlight the relevance of 

temperature-control in photochemical processes, 

mainly in photocatalyzed reactions which depend 

on the efficiency of the photocatalysts. In this 

case, it is well known that the triplet lifetime of 

photosensitizers can be strongly diminished at 

temperatures above 0 oC, impairing the efficient 
collision between the substrates and excited 

photosensitizers in both energy and single electron 

transfer processes. This factor is important in 

batch photochemical reactors, making them quite 

expensive. Now, continuous flow tube reactors are 
easily temperature-controlled thus keeping high 

levels of light irradiation with the use of LED light 

Scheme 18 - Flow-plant system for aldol condensations.
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sources, which cover the ultra-violet to visible 

light regions with high energy efficiency and low 
heat dissipation. Considering all these advantages 

provided for continuous flow conditions, modern 
photochemical protocols have been improved 

for safety, reproducibility, minor dilutions, better 

selectivity, scalability and shorter reaction times, 

opening up new opportunities for research in both 

industry and academia (Matthew et al. 2010, Noel 

et al. 2017).

PHOTO-FLOW PROCESSES IN API SYNTHESIS

A significant industrial photochemical process 

was developed by Heraeus Noblelight (Germany) 

in which a very efficient falling film photoreactor 
was built and dedicated to the synthesis of the main 

reaction intermediate 68 of the anticancer drug 

camptothecin, commercialized as the medicine 

Irinotecan® (69) (Scheme 19). The annual demand 

of 69 is 1 ton and the capacity of this continuous 

flow plant is 720 kg.year-1, thus supplying almost 

all the demand for rearranged intermediate 68 

(Oelgemöller and Shvyndkiv 2011). In addition, 

the previously developed batch protocol involved a 

concentration 6 times lower than in the continuous 

protocol and gave only 50% yield. Under continuous 

flow the intermediate 68 was obtained in 90% 

yield, showing a relevant example of industrial 

improvements promoted by continuous photo-

flow conditions. The Oelgemöller and Shvyndkiv 
(2011) review the original reference do not attempt 

to explain the transformation of 66 to 68 (Scheme 

19).

Vitamin D
3 

(74) is an important example 

of a valuable API for the pharma industry. This 

compound is responsible for several metabolic 

and immunity regulations and can be obtained 

from provitamin D
3
 (70) (Scheme 20). In 2010, 

Takahashi and co-workers reported the synthesis 

of vitamin D
3
 (74) combining batch and two-stage 

continuous flow conditions by optimizations of 

thermal and photoisomerization precursors. The 

method developed afforded 74 in HPLC-UV: 

60%, isolated: 32% yield, and no intermediate 

purifications nor high-dilution conditions were 

necessary (Fuse et al. 2010).

One of the most significant syntheses reported 
under continuous photo-flow conditions is the 

synthesis of artemisinin (28) and derivatives, 

all of them well-known and potent antimalarial 

endoperoxides (Scheme 21) (Lévesque and 

Seeberger 2012). In 2014, the Sanofi laboratory 

Figure 5 – The two main flow-photoreactor types.
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Scheme 19 - Continuous flow synthesis of Irinotecan® (69) by Heraeus Noblelight (Germany).

Scheme 20 - Batch and continuous flow syntheses of vitamin D
3 
(74).
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established a continuous photo-flow plant for an 
annual production of almost 60 ton.year-1 (Nöel et 

al. 2017). Artemisinic acid (75a) is isolated from 

natural sources and chemically reduced to dihydro-

artemisinic acid (75b), the starting material for the 

photochemical process. Allylic peroxidation to 

76 is followed by a photochemical cycloaddition 

and rearrangement with O
2
 to artemisinin (28). 

The first part of this sequence is now executed 

by fermentation, while artemisinin (28) is further 

transformed chemically into the derivatives 77 to 

79.

In 2013, Lek Pharmaceuticals described 

significant improvements in the synthesis of a 

brominated intermediate 82 for rosuvastatin (83) 

production (Scheme 22), a super-statin used for 

cholesterol control (Šterk et al. 2013).

Fluorinations are considered to be very 

relevant functionalizations under continuous flow 
conditions, due to several safety issues involving 

these transformations. In addition, many API 

intermediates present fluorine atoms in their 

structures, thus justifying the recent studies in 

this field. For example, Britton and co-workers 

have recently described (Halperin et al. 2015) a 

fluorination protocol for natural leucine (Scheme 
23), which is an intermediate for Odanacatib® (86), 

a drug under clinical trial against osteoporosis. 

This protocol was developed on a gram-scale by 

Britton’s group and recently scaled up by Merck 

(Nöel et al. 2017).

E n d o p e r o x i d a t i o n s  w i t h  p o s t e r i o r 

rearrangements are relevant reactions that can 

be performed under continuous photo-flow 

conditions. Several protocols have been described 

using different photocatalysts for the generation 
of singlet oxygen (Yavorskyy et al. 2012a). 

Recently, de Oliveira and coworkers (de Oliveira 

et al. 2016) described a very efficient protocol for 
hydroxynaphthol oxidation using a home-made 

photoreactor (Scheme 24). The scope of naphthol 

oxidation was presented, producing a number of 

naphthoquinones including vitamin K
3
 (88), an 

important big pharma API. TPP was used as the 

photocatalyst, which is produced in our laboratory 

by continuous flow (Momo et al. 2015).
As an example of a dehydrogenation reaction 

catalyzed by iridium complexes, Knowles and 

co-workers at Merck (Yayla et al. 2016) have 

described the Elbasvir (91) synthesis starting from 

an advanced indoline intermediate 89 (Scheme 25). 

In this protocol, the researchers reported a gram-

scale transformation to the indole 90, with several 

advantages when compared to the batch mode, and 

with no significant by-product formation.
A photo-Favorskii rearrangement protocol 

was recently reported (Baumann and Baxendale 

2016a) for the synthesis of Ibuprofen (Scheme 26). 

Improvements were obtained when compared to 

the previous methodologies described by McQuade 

(Bogdan et al. 2009) or Jamison (Snead and 

Jamison 2015).

Approaches to the synthesis of very important 

peptides such as oxytocin or modified arylated 

peptides (Bottecchia et al. 2016, 2017, Talla et al. 

2015) are also described in the literature, opening 

up many possibilities for flow-photo-assisted 

biomedical chemistry.

As shown in this section, photochemical 

transformations have routinely been incorporated 

by the pharmaceutical industry for API production, 

and the development of continuous photo-

flow technologies has been responsible for this 

successful progress. Continuous flow chemistry is 
now very present in the pharmaceutical industry, 

and certainly photochemical processes already 

occupy an important place in this scenario.

NATURAL PRODUCTS SYNTHESIS UNDER 

CONTINUOUS FLOW CONDITIONS

Since Wohler’s urea synthesis (1828) from 
ammonium cyanate, and acetic acid was 
prepared by Kolbe in 1845, synthetic chemists 
have demonstrated exceptional creativity for the 
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Scheme 21 - Synthesis of artemisinin (28) under continuous photo-flow conditions, and transformation into 
derivatives 77-79. 

Scheme 22 – The brominated rosuvastatin intermediate (82) synthesis.

construction of natural and non-natural organic 

molecules (Nicolaou and Rigol 2017, Morrison 

and Hergenrother 2014). This becomes clear if we 

consider the outstanding total syntheses of complex 

natural products (NPs) performed in the last seven 

decades (Corey and Li 2013).

In NP synthesis, a complex target molecule is 

prepared and analytically characterized according 

to the naturally occurring compound, termed a 

natural product. Although there are a large number 

of new methodologies for the synthesis of NPs, the 

synthetic strategies and tactics have not followed 

the same development, and it is still a time-

consuming and labor-intensive practice involving 

manual procedures performed by a highly-trained 

and skilled workforce (Ley et al. 2015). In this 
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Scheme 23 - Leucine fluorination under continuous flow conditions; Odanacatib® synthesis.

Scheme 24 - Naphthol photooxidations followed by rearrangement; vitamin K
3
.

context, enabling technologies, such as continuous 

flow chemistry employing microreactors, have 

been broadly explored in order to circumvent the 

limitations of the traditional batch procedures for 

the synthesis of NPs (Pastre et al. 2013a).

In a multi-step synthesis performed in flow, the 
chemicals are directly pumped through the system 

containing mixers, coil reactors, microchips, 

columns, in-line liquid-liquid separators, analytical 

techniques for in-line and real-time monitoring, 

and back pressure regulators. A target molecule can 

thus be prepared in a well-designed continuous flow 
configuration, avoiding many manual operations, 
which are typically performed individually in batch 

(Scheme 27) (Fitzpatrick et al. 2016, Ley et al. 

2015).
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Scheme 25 - Elbasvir (91) synthesis.

Scheme 26 – Ibuprofen (93) synthesis by the photo-Favorskii rearrangement.

Over the last decade, the development of 

flow chemistry (or microreactor technologies) 

by several research groups has contributed to the 

improvement of the tools of organic synthesis 

towards a more sustainable practice (Fanelli et al. 

2017). Multi-step telescoped synthesis, machine-

assisted synthesis, in-line purifications and in-line 
reaction monitoring are some of the key features 

which have been extensively explored in the 

continuous flow regime (Elvira et al. 2013). In this 
section we will highlight these advances and the 

successful applications of flow chemistry for the 
synthesis of NPs.

In 2005, the first synthesis of a NP was 

demonstrated by the Ley research group using 

an automated flow system capable of preparing 



An Acad Bras Cienc (2018) 90 (1 Suppl. 2)

 FLOW CHEMISTRY AND ACTIVE PHARMACEUTICAL INGREDIENTS 1153

the neolignan NP grossamide (95) in a gram 

scale (Baxendale et al. 2006a). For this purpose, 

several columns of immobilized reagents and 

scavenging reagents were used to mediate each 

individual reaction and also to avoid the need for 

exhaustive manual purification of the intermediates 
in the synthetic sequence (Scheme 28). For both 

coupling and intramolecular cyclization steps, in-

line monitoring by LC-MS or UV-Vis techniques 

were used to optimize the reactions parameters 

and speed-up the whole process. Notice that these 

strategies of in-line purification and monitoring are 
part of the advantages which can be explored in 

flow, to give highly pure synthetic intermediates 
and to completely follow the reaction progress. 

Under optimized conditions, grossamide (95) was 

prepared after a three-step protocol including an 

enzymatic reaction.

Although it may be considered an easy task, 

the three-step synthesis of grossamide brought 

innovative concepts for multi-step assembly in 

flow. This opened up novel opportunities for multi-
step syntheses of compounds using immobilized 

reagents in a fixed-bed reactor, and also in-line 

monitoring employing bench top analytical tools 

(Baxendale et al. 2006a).

In 2006, the second NP synthesized in flow 
was the alkaloid oxomaritidine (104) isolated 

from Amaryllideacae oxomaritidine, (Scheme 

29) (Baxendale et al. 2006b). This is considered 

a milestone in method development given the fact 

that seven separate synthetic steps are combined 

Scheme 27 - General strategy for the multi-step continuous flow synthesis of NPs.
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in an elegant sequence in flow. For the sake of 

comparison, the synthesis in batch (Ley et al. 1999) 

using conventional RBFs requires at least four days 

of laboratory manipulation to prepare 104, while in 

a few hours the same seven steps were performed 

in flow. In this flow process, immobilized reagents, 
catalysts, scavengers or catch and release agents 

were efficiently used.
This seven-step sequence showcases the 

potential and what can be accomplished in flow 
for the synthesis of a complex target molecule. 

The sequence performed in flow reactors presents 
notable gains in terms of both the cost and 

efficiency of the process, since it reduces the use 
of extensive purification procedures. Moreover, 

the rapid optimization and precise control of 

reaction conditions allows a superior synthesis 

of oxomaritidine (104) with an impressive 40% 

overall yield.

In a review published in 2013, Ley and 

coworkers presented a wide variety of NPs 

already synthesized (Pastre et al. 2013a). Besides 

the syntheses of (±)-oxomaritidine (104) and 

grossamide (95) described above, other syntheses 

include the saturated isoprenoid pristine (105), 

asparagine-linked oligosaccharides (106), 

(‒)-perhydrohistrionicotoxin (107), vitamin D
3
 

(74), aplysamine (108), pseudomonas quinolone 

signal (PQS) (109), (+)-dumetorine (110), 

o-methylsiphonazole (111), pauciflorol F (112), 

artemisinin (28), the ladder-shaped polyether 

yessotoxin (113), and (‒)-hennoxazole A (114) 

(Figure 6). Most of these syntheses are integrated 

processes and combine batch and continuous flow 
processes, taking advantage of the benefits of each 
regime.

Since 2013 other important contributions in 

NP syntheses have been published, along with 

Scheme 28 - Simplified set-up for the synthesis of neolignan natural product grossamide (95) in flow.
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the development of novel technologies in flow 

chemistry (Elvira et al. 2013, Fanelli et al. 2017, 

Ley et al. 2015).

In 2014, Ley’s group reported the most 

ambitious synthesis of a complex NP, the spirocyclic 

polyketide spirodienal A (147), using a combination 

of batch and flow processes (Schemes 30-33) 

(Newton et al. 2014). Additional and innovative 

tools were demonstrated and used to accomplish 

the planned synthesis. The strategy adopted was 

based on the coupling of two key fragments, an 

aldehyde 135 and a bis-alkyne 144 (Scheme 33), 

both containing the same three stereocenters 

in the 1,3-dioxane ring. In order to prepare the 

aldehyde 135, the homoallylic alcohol 122 was 

first synthesized in five steps under continuous 

flow conditions (Scheme 30), using the in-house 
tube-in-tube reactor (Matthew et al. 2010) for the 

catalytic hydrogenation reaction.

The aldehyde fragment 135 was synthesized in 

11.6% overall yield for thirteen steps, nine of them 

performed in the flow regime (Scheme 31).

The synthesis of the bis-alkyne 144 (Scheme 

32) required the use of several solid-supported 

reagents and different types of reactors such as 

coil, microchip and fixed-bed reactors. In addition, 
some reactions already used to prepare aldehyde 

135 were again addressed here, demonstrating the 

versatility and reproducibility of flow reactions as 
reaction platforms.

Bis-alkyne 144 was prepared in 8 steps (7 

in flow and 1 in batch) in 22% overall yield and, 
interestingly, a continuous flow liquid-liquid 

separator was employed to deliver this compound 

in high purity. Liquid-liquid separators based on 

membrane technologies are now commercially 

available and offer a viable alternative to polymer-
supported reagents for in-line work-up procedures. 

 Scheme 29 – Continuous flow synthesis of (±)-oxomaritidine (104).
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Figure 6 - NPs prepared using combined batch and continuous flow processes up to 2013.

Scheme 30 - Continuous flow synthesis of the homoallylic alcohol 122.
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With aldehyde 135 and the bis-alkyne 144 in hands, 

10 more steps were carried out in batch to complete 

the total synthesis of the spirocyclic polyketide 

spirodienal A (147) (Scheme 33). 

Valuable transformations such as automated 

reagent additions, ozonolysis, silylations/

desilylations, olefinations, crotylations, and 

oxidations were efficiently carried out in flow 

(Fitzpatrick et al. 2016, Ley et al. 2015, Elvira et 

al. 2013), showing the potential for either method 

development or total synthesis. 

Moving to more recent studies performed in 

flow, Figure 7 exhibits the latest NPs prepared 

in either the end-to-end approach or using a 

combination of batch and flow regimes.
In 2013, Ley’s group demonstrated an 

integrated batch and continuous flow process 

for the synthesis of goniothalamin (151) (Pastre 

et al. 2013b). The addition of a Grignard reagent 

was performed in flow, proving that the handling 
of such sensitive materials (Browne et al. 2013) 

can be easily performed in a safe manner. The 

Scheme 31 - Integrated batch and flow synthesis of the key aldehyde 135.
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Scheme 32 - Continuous flow synthesis of the bis-alkyne 144.

Scheme 33 - Final steps of the spirodienal A (147) synthesis.
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strategy used by the authors to introduce the 

a,b-unsaturated six-membered ring lactone was 

based on a metathesis reaction using the second-

generation Grubbs catalyst (GII) in flow regime. 
In 2015, the same group reported the synthesis of 

isoborreverine (150) in flow regime (Kamptmann 
and Ley 2015). This NP was synthesized in a 

single step using a column packed with polymer-

supported boron trifluoride which catalyzes the ring 
opening reaction of borrerine. A diene intermediate 

is generated in this process and rapidly undergoes 

a Diels-Alder reaction to afford isoborreverine 

(150). In this study, the ability to rapidly change 

temperature and flow rates was essential for a fast 
optimization of reaction conditions for the desired 

biomimetic synthesis.

In 2016, Ley and coworkers presented the 

synthesis of cyclooligomeric depsipeptides, such 

as 152-154, using a macrocyclization reaction to 

form the challenging N-methylated amides (Lücke 

et al. 2016). Superior yields were obtained using 

a telescoped process in flow when compared to 
batch procedures: beauvericin (152), 26% yield in 

batch and 36% yield in flow; enniatin C (153), 15% 

yield in batch and 44% yield in flow; bassianolide 
(154), 24% yield in batch and 43% yield in flow. 
Although the synthesis of oligopeptides can be 

performed using automated synthesizers, these 

results using microreactors bring opportunities for 

their synthesis, notably when scale-up is required.

Collins and coworkers performed the synthesis 

of neomarchantin A (149) using batch and flow 
combined procedures (Morin et al. 2017). Two key 

bond formations involving C−O (S
N
Ar reaction) 

and C−C (olefin metathesis reaction) bonds were 
intensified using continuous flow techniques.

Beeler and coworkers exploited the benefits 
of flow chemistry for the synthesis of aglain (156) 

and rocaglate natural product analogues 157 (Yueh 

et al. 2017). In this case, an ESIPT-mediated 

[3+2]-photocycloaddition reaction was performed 

with good productivity (1.0 - 1.9 g.h-1) using a 

photochemical flow reactor. 
Recently, the natural product curcurmin (148) 

and two other curcuminoids were prepared by de 

Oliveira and coworkers in an end-to-end strategy 

Figure 7 - NPs prepared using batch and flow integrated approaches, since 2014.
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in flow regime (Carmona-Vargas et al. 2017). An 
interesting comparison between batch, flow and the 
combined strategies was demonstrated: curcumin 

(148) was obtained in 69% yield in batch (STY 

= 12.0 g per day), whereas a clear advantage was 

reported in the flow regime (60% yield; STY = 24.1 
g per day).

Natural products and structures inspired by 

their molecular scaffolds have played a significant 
role in the drug discovery field, representing more 
than half of all small-molecule drugs approved 

between 1981 and 2014 (Appendino et al. 2014, 

Morrison and Hergenrother 2014). In view of their 

unique structural diversity, NPs are still considered 

privileged scaffolds for drug discovery. However, 
even considering all the advances experienced 

in the last decades such as new methodologies 

based on catalytic methods, protecting group-free 

syntheses, C-H activation approaches and late 

stage functionalization, there are many challenges 

to be addressed in order to achieve more efficient 
and concise syntheses.

Based on the NP syntheses presented herein, 
it is clear that enabling technologies, especially 
continuous flow chemistry, can play a major role 
in the synthesis of complex NPs, leading to a 
fundamental change in the way we perform total 
syntheses. Flow chemistry facilitates the scale-up 
of advanced intermediates, which is often limited 
in batch and by the use of in-line tools. The number 
of individual purifications can be dramatically 
reduced, allowing for the integration of several 
steps and decreasing the time spent to deliver a 
complex NP. It is time to make better use of our 
financial and human resources, and therefore the 
opportunities brought by machine-assisted NP 
synthesis should be emphasized.

API SYNTHESIS & CONTINUOUS 

MANUFACTURING

Active pharmaceutical ingredients (APIs) are, in 

general, synthesized in batch manufacturing plants 

and then shipped to other sites to be converted 

into a form that can be given to patients, such as 

tablets, drug solutions, or suspensions (finished 

medicines). This system offers little flexibility to 
respond to surges in demand and is susceptible 

to severe disruption if one of the plants has 

to shut down. Worldwide, companies such as 

Novartis, Lilly, Lonza and others are investigating 

continuous manufacturing of new drug substances 

in order to reduce their manufacturing costs, and to 

provide a more robust way of producing the desired 

molecules. This demand has an incredible effect 
on the development of new technologies such as 

flow reactors, phase separators, pumps, among 

others. Some companies have established new 

businesses by designing their own reactor systems, 

like the Lonza FlowPlate® micro and milli-reactors 

(Vaccaro et al. 2014, Wiles and Watts 2014, 

Gutmann et al. 2015, Kobayashi 2016, Britton and 

Raston 2017, Fanelli et al. 2017, Plutschack et al. 

2017).

In academia, an initiative directed by Gupton 

at Virginia Commonwealth University - USA, 

in collaboration with the Bill & Melinda Gates 

Foundation, called Medicines for All, seeks 

cheaper and more efficient ways to manufacture 
drugs, particularly those needed to treat HIV and 

AIDS in developing countries. The main idea 

behind their strategy was to start with very simple 

commodity chemicals, in order to make it feasible 

for developing economies. So far these strategies 

are not completely applied in industry (Longstreet 

et al. 2013).

Another initiative funded by the Defense 

Advanced Research Projects Agency (DARPA) and 

MIT researchers came up with a small transportable 

device suitable for small-scale syntheses of drug 

molecules (Adamo et al. 2016). Their new system 

can produce 1,000 doses of four drugs formulated as 

solutions or suspensions in 24 hours; i.e benadryl, 

lidocaine, valium, and prozac. A refrigerator-

sized continuous-flow apparatus [1.0 m (width) 



An Acad Bras Cienc (2018) 90 (1 Suppl. 2)

 FLOW CHEMISTRY AND ACTIVE PHARMACEUTICAL INGREDIENTS 1161

x 0.7 m (length) x 1.8 m (height), ∼100 kg] is 

capable of complex multistep synthesis, multiple 

in-line purifications, post synthesis work-up and 
handling, semi-batch crystallization, real-time 

process monitoring, and ultimately formulation 

of high-purity drug products. The continuous flow 
strategy towards the synthesis of diphenyldramine 

hydrochloride is shown in Scheme 34.

Recently, Lilly (Cole et al. 2017) has enabled 

a kilogram synthesis of prexasertib monolactate 

monohydrate (166) under continuous flow 

conditions and GMP (good manufacturing practice) 

qualifications. This medicine has been assessed in 
phase 1 and 2 clinical trials in combination with 

cytotoxic chemotherapy, targeted agents, and as 

a monotherapy, and is the first CHK1 inhibitor 

to demonstrate objective clinical responses as a 

monotherapy. During discovery and initial clinical 

trials a nine-step route was used, but deemed 

unsuitable for long-term manufacturing due to 

several hazardous reagents and moderate yields. 

Lilly has now opened up a new route to prexasertib 

by exploring the continuous flow environment 

(Scheme 35).

The first step has serious restrictions when 

conducted under batch conditions due to the 

use of hydrazine in a large excess and the high 

temperatures needed for reaction completion. Using 

continuous flow technology and a plug-flow reactor, 
it was possible to reduce the amount of hydrazine 

and operate safely at 130oC. It is important to 

note that only 0.49% of the overall production is 

inside the reactor at any time, reducing material 

at risk and increasing process safety. The first step 
was conducted with 89.6% yield at 3.08 kg/day, 

arriving at the final product with only 2 ppm of 
hydrazine and less than 1% of impurities. The next 

step was accomplished with 88.7% yield on a 2.56 

kg/day basis. Unlike the first step, this intermediate 
needed further purification, since it was necessary 
to remove residual starting material, regioisomers 

and other minor impurities. The desired product 

was obtained on a continuous deprotection and 

batch crystallization process, leading to a final 

yield of 85% and 1.99 kg/day for the final step.
Safety is a decisive matter for Boehringer 

Ingelheim Pharmaceuticals (Marsini et al. 2017) 

when deciding to implement a continuous flow 

process for the synthesis of a CCR1 antagonist 

Scheme 34 – An example of end-to-end continuous flow synthesis with integrated analysis and separation for diphenyldramine 
hydrochloride (161).
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Scheme 35 – Continuous flow three-step synthesis of prexasertib monolactate monohydrate (166) under GMP conditions.

Scheme 36 - Semi-continuous isocyanate formation followed by Curtis rearrangement.



An Acad Bras Cienc (2018) 90 (1 Suppl. 2)

 FLOW CHEMISTRY AND ACTIVE PHARMACEUTICAL INGREDIENTS 1163

(169), which has an acyl azide and/or isocyanate as 

intermediates (Scheme 36).

The batch process started with the formation 

of an acyl azide, in order to lead to the carbamate 

product by Curtis rearrangement. Decoupling azide 

formation from isocyanate trapping was successful, 

due to the key potential drawback of undesired 

acyl azide accumulation in the CSTR (continuous 

stirred-tank reactor) upon further scale-up. When 

implementing the continuous flow protocol the 

isocyanate intermediate formation was optimized 

for a residence time of 3 min in 76% overall yield, 

and 56% more efficient than the original Curtis 

batch process, allowing a further scale-up to 40 kg 

of the final product.
D&M Continuous Solutions, Eli Lilly and 

Lilly Research Laboratories (May et al. 2016) 

have developed an efficient continuous iridium-
catalyzed homogeneous high pressure reductive 

amination reaction to produce the penultimate 

intermediate (172) in evacetrapib synthesis. The 

continuous process operated under GMP conditions 

for 24 days and produced over 2x106 tons of 172 in 

95% yield after batch workup, crystallization, and 

isolation (Scheme 37).

A final reaction condition was optimized 

where H
2
 pressure and substrate/catalyst ratio 

maximizes product formation leading to minor 

undesired impurities such as the cis regioisomer. 

The presence of TBAI was crucial as it appears to 

hold the Ir(I) in a more stable anionic form which 

is less prone to degradation under the reaction 

conditions. For those who are afraid of working 

with hydrogenation reactions at large-scales, the 

authors say “the reactor operates at >98% liquid 

filled with the hydrogen distributed throughout the 
45 pipes and downflow tubes resulting in a steady 
venting of nitrogen-diluted hydrogen over time 

(20 g/h at scale)… It is for these reasons that the 

continuous process is viewed as a low risk process 
in spite of its operation at high pressure”. They 

could show the linear scale-up capability of the 

continuous flow process going from 48L reactors 
up to 360L reactors for production scale, giving the 

desired product in 95% isolated yield.

One of the first examples of a continuous 

flow process applied to APIs was presented by 

DSM (Braune et al. 2009) on the nitration reaction 

towards the production of naproxinod, an anti-

inflammatory drug (Scheme 38). 
The task faced by DSM was to develop a safe 

and highly efficient nitration process, selectively 
nitrate only one hydroxyl group and handle the 

very hazardous nitrated product. After optimization 

found the exact nitric acid concentration needed 

(65%), it could be taken for scale-up. The operation 

unit has a total volume around 150 mL and process 

capability of 13 kg/h working at GMP conditions. 

Scheme 37 - Homogeneous continuous flow reductive amination of an intermediate of evacetrapib synthesis.
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Scheme 38 - DSM continuous-flow nitration process.

Scheme 39 - Nitroethanol continuous flow synthesis developed for aliskiren production.

Scheme 40 – The formylation process developed by Merck, in order to avoid batch scale-up 
problems.

During the pilot plant campaign 500 kg of qualified 
product could be produced under the developed 

conditions.

Lonza and Novartis (Roberge et al. 2014) 

have worked together in order to overcome a 

problem related to starting material nitroethanol 

in the aliskiren API synthesis. This reagent is 

required in kg amounts, since it is used in an 

organo-catalytic reaction between nitroethene and 

isovaleric aldehyde to form 2(R)-isopropyl-4-

nitro-1-aldehyde, subsequently reduced by sodium 

borohydride to furnish the desired 2(R)-isopropyl-

4-nitro-propan-1-ol. Since lower nitroalkanes are 

potentially explosive, a continuous flow process 
was developed for the production of nitroethanol 

(175) in high yields (95%) and very short residence 

times (Scheme 39).

An API developed by Merck (Grongsaard et al. 

2012) as an allosteric Akt inhibitor used for cancer 

treatment, had one step optimized under continuous 

flow conditions in order to ensure the production 
of kilogram quantities for clinical trials. During 

reaction optimization under batch conditions and 

gram scale, the design process worked as expected, 
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but under a larger scale the formylation reaction 

did not behave as expected. The reaction solution 

turned into a thick gel, a phenomenon that had 

not been observed in gram scale experiments. 

The batch temperature had to be raised to − 45°C 
and the agitator manually manipulated until the 

mixture was sufficiently mobile to allow stirring 
to continue automatically. The final yield was not 
affected but raised concerns about a possible scale-
up. With these results in hands, the authors decided 

to develop a continuous flow protocol in order to 
overcome the reaction media instability observed 

under batch conditions (Scheme 40).

The continuous flow process was performed 
mixing the amine and MeLi. This solution was fed 

into a stainless-steel tube reactor with an internal 

diameter of 6.35 mm, and kept at -78oC using a dry-

ice/ acetone bath. After the first deprotonation the 
amide stream was mixed with n-BuLi, to form the 

dianion in the first residence tube, and the dianion 
was then combined with the DMF/THF feed 

solution in order to produce the desired formylated 

product 177 in 65% yield and purity equal to that 

obtained under batch conditions. The very short 

residence times operated in this process which uses 

flow rates up to 175 mL min-1, allow the production 

of 1kg of the aldehyde after just 1 hour.

Continuous API production is a reality for big 

pharma, which certainly intends to migrate from 

batch to flow protocols in a few years. Many safety 
and low-cost production problems are addressed 

with this change, but most importantly the logistics 

will be significantly improved with much smaller 
GMP areas required for flow plants.

APPLICATION OF CONTINUOUS FLOW 

CHEMISTRY TO MEDICINAL CHEMISTRY

Lead compound identification and optimization, 
synthesis of chemical libraries, and supply of 

materials in sufficient quantity for clinical assays, are 
time-consuming and a laborious task for medicinal 

chemists. Therefore, further advances are needed 

to reduce the time taken to synthesize libraries of 

compounds, identify potential hits/leads, optimize 

synthetic routes to afford the final compounds, and 
put drug candidates into production.

Continuous flow chemistry is finding increasing 
use as an enabling technology in academic and 

industrial environments, providing a number of 

advantages over batch processes, and leading to 

a variety of interesting and exciting opportunities. 

As we have mentioned before, continuous flow 

processing enables simple scale-up of reactions, 

enhanced mixing, temperature and pressure 

control, decrease of waste generation and energy 

consumption, and integration of several reaction 

steps (telescoped synthesis). Furthermore, the 

volumes of reagents/solvents are reduced, which 

facilitates the screening of reaction conditions, 

and consequently, the rapid generation of focused 

compounds libraries (Malet-Sanz and Susanne 

2012, Yavorskyy et al. 2012b, Baraldi and Hessel 

2012). These advantages become more appealing if 

one considers that solvents account for ca. 80% of 

the waste generated in the production of APIs.

Although the pharmaceutical industry still 

relies on the use of multipurpose batch reactors in 

its production lines, it is clear that continuous flow 
chemistry is already making the manufacturing 

of APIs faster and simpler. It should also have a 

profound impact on the discovery of new drug 

candidates, synthesis of chemical libraries, and 

scale-up of reactions for clinical trials (Fitzpatrick 

et al. 2016, Baraldi and Hessel 2012, Malet-Sanz 

and Susanne 2012, Rankovic and Morphy 2010, 

Poh et al. 2016).

In this context, an increasing number of 

studies have been reported, and selected families 

of heterocycles with pharmacological importance 

prepared in flow are shown in Figure 8. These 

efforts highlight the application of continuous flow 
chemistry as a reliable enabling technology for the 
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fast generation of compound libraries for biological 

screening in drug discovery programs.

For those interested in the molecules shown in 

Figure 8, the publication by Britton and Jamison 

for the synthesis of pyrazoles and pyrazolines is 

a good example of the use of flow chemistry in 
the synthesis of chemical libraries (Britton and 

Jamison 2017). A sequence of coil reactors was 

used to generate substituted diazoalkanes in situ 

which then undergo a [3+2] cycloaddition reaction 

with alkynes and alkenes to afford pyrazoles 

and pyrazolines, respectively. More than thirty 

compounds were prepared using the optimized 

conditions in a straightforward manner (Scheme 

41) (He and Jamison 2014, Mykhailiuk 2015).

The ability to perform several steps in flow 
without the need for individual purifications was 
also explored (Britton and Jamison 2017). Three 

flow modules were added which allows further 

reactions with the recently formed azole core. Thus, 

C-N arylation/methylation, amidation and TMS 

removal reactions were sequentially performed 

and gave access to some therapeutics and a human 

lung cancer suppression candidate. For example, 

Scheme 42 shows an integrated sequence of five 
steps in a continuous flow regime to prepare the 
measles therapeutic AS-136A (183). Other highly 

substituted pyrazoles can be prepared using 

this unified continuous flow assembly for their 

evaluation in a MedChem program.

Another concept of flow chemistry that 

has stimulated research in the field of medicinal 
chemistry is the possibility to integrate steps that are 

typically performed alone: synthesis, purification, 
and evaluation of biological activities. (Guetzoyan 

et al. 2013, Baranczak et al. 2017). In this regard, 

many synthetic and biological laborious manual 

procedures can be avoided employing a machine-

assisted approach for complete evaluation of a 

target molecule (Ley et al. 2015).

In this context, Ley’s group reported in 2013 

the use of flow chemistry to perform the synthesis 

and biological evaluation in an integrated flow 
platform (Scheme 43) (Guetzoyan et al. 2013). 
The continuous flow synthesis of a series of 
imidazo[1,2-a]pyridines, including two anxiolytic 
drugs (zolpidem and alpidem), was evaluated and 
directly coupled to a frontal affinity chromatography 
(FAC) screening assay in order to investigate their 
interaction with the Human Serum Albumin (HSA) 
protein (Kragh-Hansen 1990). 

Advantages of flow processes in this set-up are 
evident, since it allows different aminopyridines 
and unsaturated ketones to be dispensed into the 
reactors to achieve a collection of compounds 
in a computer- and machine-assisted manner. 
Moreover, this transformation typically takes 24 
hours in batch procedures (Guetzoyan et al. 2013).

By the use of immobilized reagents, this 
strategy proves that both the desired set of reactions 
and the workup and purification procedures can be 
accessed in a single process avoiding exhaustive 
manual operations. The authors did not present 
a fully integrated platform for the synthesis of 
compound libraries and their biological evaluation, 
but the instrumental components and assembly 
demonstrated in this study form the basis for future 
developments towards this goal. 

Summarizing, flow chemistry has brought 
a new dimension for traditional medicinal 
chemistry with a huge difference when compared 
to combinatorial chemistry. Continuous protocols 
are more focused and deliver fast solutions for 
extensive screenings. The incorporation of in-line 
biological assays will speed up the process of drug 
discovery, placing continuous flow chemistry at the 
frontier of modern medicinal chemistry.

CONCLUSIONS

Chemical syntheses assisted by enabling 
technologies have been widely used in the last 
six decades by the petrochemical and chemical 
industries, and it is well accepted that continuous 
flow chemistry has been the key technology in 
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Figure 8 - Selected examples of bioactive heterocyclic molecules prepared in continuous flow regime.
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Scheme 41 - Continuous flow synthesis of highly substituted pyrazoles and pyrazolines.

Scheme 42 - Synthesis of AS-136A using a unified continuous flow platform.

this scenario. However, only in the last 20 years 

has this technology attracted the attention of big 

pharma and academia as a real and useful tool to 

expand accessible chemical space and support 

scale-up, safety, profitability and sustainability of 
chemical and API synthesis. In this review we have 

shown the many facets and possibilities of enabling 

technologies in chemical synthesis, highlighting 

essential examples using flow chemistry but, most 
importantly, trying to show the broad scenario 

in which chemists and chemical engineers are 

inserted. To finish, we should always remember 
that Nature knows best; biosynthesis is much more 

a continuous flow process than batch.
Our principal perspective is that enabling 

technologies such as continuous flow chemistry 
are not a promise, but are very important tools 

already present, and certainly are the future of 
developments in chemical synthesis.
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