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Abstract Coronavirus disease 2019 (COVID-19) pandemic has posed a serious threat to

both the human health and economy of the affected nations. Despite several control efforts

invested in breaking the transmission chain of the disease, there is a rise in the number of

reported infected and death cases around the world. Hence, there is the need for a mathematical

model that can reliably describe the real nature of the transmission behaviour and control

of the disease. This study presents an appropriately developed deterministic compartmental

model to investigate the effect of different pharmaceutical (treatment therapies) and non-

pharmaceutical (particularly, human personal protection and contact tracing and testing on

the exposed individuals) control measures on COVID-19 population dynamics in Malaysia.

The data from daily reported cases of COVID-19 between 3 March and 31 December 2020

are used to parameterize the model. The basic reproduction number of the model is estimated.

Numerical simulations are carried out to demonstrate the effect of various control combination

strategies involving the use of personal protection, contact tracing and testing, and treatment

control measures on the disease spread. Numerical simulations reveal that the implementation

of each strategy analysed can significantly reduce COVID-19 incidence and prevalence in the

population. However, the results of effectiveness analysis suggest that a strategy that combines

both the pharmaceutical and non-pharmaceutical control measures averts the highest number

of infections in the population.

1 Introduction

In December 2019, a novel strand of coronavirus, namely severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19) emerged in

Wuhan, Hubei Province of China [1–3]. The Chinese government reported the virus to the

World Health Organization (WHO) on 31 December 2019 [4]. By 22 January 2020, a total
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of 571 cases of COVID-19 were reported in 25 provinces in China [5]. Despite the drastic,

large-scale containment measures promptly implemented by the Chinese government, in a

matter of a few weeks the disease had spread well outside China, and several countries have

been facing with a global threat of the disease [2,6,7]. More than 210 countries of the world

have been affected by COVID-19 epidemic [7], leading to its declaration as a global pandemic

on 11 March 11 2020 by WHO [1,8,9].

Following the first positive confirmed case of COVID-19 in Singapore, the COVID-19

threat became more apparent in Malaysia as eight close contacts to the first case were identified

to be in Johor [4]. On 25 January 2020, Malaysia announced its first (index) case of COVID-19

[10]. The first wave of the disease lasted from 24 January to 16 February 2020 with a number

of cases totalling 22, which is mainly comprised infected individuals arriving from China

[4]. The disease has spread very fast all over the country after 27 February 2020 due to the

community transmission, establishing the beginning of its second wave [4]. On 5 April 2020,

the number of cases increased to 3662 [10]. This spike in COVID-19 cases was attributed

to a special religious gathering which took place between 27 February and 2 March 2020 at

Sri Petaling mosque, whereby larger number of cases might be imported by the international

participants [10]. Thus, the potential scale of COVID-19 epidemic became apparent in the

country. According to [10], the sudden rise in COVID-19-confirmed cases could mean that

the asymptomatic infected individuals could significantly spread the disease. Malaysia is

currently experiencing the third wave of COVID-19, which broke out on 20 September 2020.

By 31 December 2020, the number of reported cases of the pandemic has cumulated to

113,010, including 471 deaths, 88941 recovered cases, and 23598 active cases [11].

SARS-CoV-2 is an RNA virus from the family of Coronaviridae and genus Betacoro-

navirus [14]. RNA viruses have high rates of mutation. This feature profoundly influences

disease emergence, viral evolution, appearance of drug resistances, and vaccine efficacy [12].

Then, it is critical to monitor the dynamics of SARS-CoV-2 mutation in order to understand its

infectivity, virulence, and pathogenicity for a vaccine development [13]. In [14], the genetic

epidemiology of SARS-CoV-2 in Malaysia was studied by sequencing four genomes from

the country during the second wave of infection. The lineage B.6 strain was found to be

predominant, implying a local evolution [14]. All the circulating strains in Malaysia were

introduced from different countries. In October 2020, a new strain of the disease, D614G,

was detected in Sabah state of the nation. It was reported that the strain is 10 times more

infectious than the previous strains [15].

COVID-19 is a disease which targets the respiratory system of humans [5]. It is transmitted

from human-to-human via direct contact with contaminated surfaces and by inhaling the

respiratory droplets from COVID-19-infected humans during coughing and sneezing [4,5,

16]. The incubation period for COVID-19 has been reported to range between 0 and 14 days,

although a longer incubation period of 25 days is found in the literature [8]. The rate of

recovery from the disease infection is higher than the mortality rate, but this ratio varies from

one country to another as well as region to region [7]. The primary symptoms of COVID-

19 are severe chest pain, high fever, body aches, headache, consistent dry coughing, and

complication in the respiratory system [7].

Currently, there is no approved vaccine or a specific anti-viral treatment therapy to prevent

or manage COVID-19, although several studies on vaccine invention are ongoing [5,7].

Thus, control measures against the disease transmission are focusing on the use of basic

non-pharmaceutical control interventions [8,17]. These include movement control order,

early detection, good hygiene practices [8], social distancing, use of face masks in public,

quarantine of the suspected exposed individuals, isolation of positive (or confirmed) cases for

prompt treatment, contact tracing [5,8,17], mandatory lockdowns, avoiding crowded events,
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imposing a maximum number on individuals in any gathering (religious and social) [5].

Currently, the most widely used control strategy for mitigating the pandemic spread is self-

quarantine, wearing face masks while in public and social distancing [1]. To effectively reduce

the spread and the prevalence of the disease in the affected countries, the concerned authorities

have implemented many of these control intervention measures. However, individual nation

also has its own policy in curbing the transmission dynamics of the disease in its territory

[16].

To curb COVID-19 pandemic in Malaysia, a targeted testing approach has been announced

by the government through the Ministry of Health in order to optimize the use of the limited

medical resources available in the country. In targeted testing, tests are conducted on only

high-risk groups at COVID-19 hotspot zones. However, some medical practitioners have

questioned this approach, which reckon that COVID-19 testings should be conducted as

wide as possible so that most (if not all) of the possible cases in the country would be

detected. Then, the possible patients could be placed on a 14-day quarantine and be treated

so as to contain the spread of the disease [18].

On 16 March 2020, the Malaysian Government announced a nationwide movement con-

trol order (MCO) to last between 18 and 31 March 2020 in order to mitigate the spread of

COVID-19 through social distancing. The restricted activities prohibit all mass movements

and gatherings across the country, including religious, sports, social, and educational activi-

ties. The movement control order was implemented in several stages with strict enforcement

increasing with each stage to gain the public compliance to the restrictions [10]. MCO had

been extended for a number of times [4].

From mathematical point of view, the transmission and control dynamics of several infec-

tious diseases have been described by compartmental models governed by autonomous sys-

tems of ordinary differential equations (ODEs) in various works [1,3,5,6,8–10,16–38]. These

models help to facilitate the understanding of the mechanisms involved in the transmission

dynamics of the diseases and gain insightful information about the efficacy of any imple-

mented control intervention strategies in controlling their spread in a population. Several

mathematical models have been formulated and analysed specifically for the dynamics of

COVID-19 population in various countries ([1,3,6,9,10,18,20–25]), while the effects of

different control intervention measures on the disease spread in a community have been

evaluated using autonomous systems of ODEs in many other previous studies (e.g. see

[5,8,16,17,26–38] and some of the references therein).

Using fractional differential operator approach, a mathematical model governing the evo-

lution of COVID-19 epidemic in Italy was developed in [22]. Theoretical analysis of the

fractional model suggests that the disease is stable if the basic reproduction number R0 is

below unity. This result can be helpful in introducing appropriate interventions and design

a suitable strategy for control implementation to effectively contain the disease transmis-

sion in the country. Similarly, Cooper et al. [1] used a mathematical model as a theoretical

framework to examine the transmission dynamics of COVID-19 within a community. The

model was applied to the disease outbreaks in six different countries that are China, South

Korea, India, Australia, USA, and Italy. The model fitting makes use of the reported data

between January and June 2020 (covering the period of movement control order and control

measures) from each country. It was deduced from the study that the dynamics of COVID-19

can be under control in each of the communities under consideration, if proper restrictions

and timely implementation of strong control policies are put in place to control the rates of

infection.

In [20], a compartmental model was analysed to predict the dynamical behaviour of

the infected individual subpopulation in the second wave of COVID-19 epidemic in Iran.
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Numerical simulations depict that the second wave of the disease will be more severe than

the first. The authors observed that increasing the recovery rate of the infected humans by

adopting necessary pharmaceutical measures is an essential strategy to prevent the disease

incidence of a number of people. Also, Alsayed et al. [10] constructed a mathematical model

to predict the peak and the number of infected cases of COVID-19 epidemic in Malaysia. The

results of simulations show that the epidemic peak could be reached in the period ranging

from 12 July to 11 August 2020, and last until the period ranging from 22 November 2020

to 12 January 2021.

The classical SIR model was adapted to analyse the epidemic of COVID-19 in Italy by

D’Arienzo and Coniglio [25]. The model was analysed to assess the basic reproduction num-

ber, R0, associated with the model based on the reported data from the early phase of the

disease outbreak in the country. The R0 value was estimated to range between 2.43and3.10,

indicating the potential of the disease to invade the population. In a similar study [21], a

compartmental mathematical model based on SEIR modelling structure was proposed for

COVID-19 disease by specifically focusing on the super-spreaders individuals transmissi-

bility. The local asymptotic dynamics of the model was discussed in terms of R0 associated

with the model. The model was trained in data from reported cases of the epidemic outbreak

in Wuhan, China.

Furthermore, a comparative assessment of the evolution of COVID-19 outbreaks in China,

Italy, and France using a compartmental model based on SIR model framework was carried

out in [6]. The model was used to analyse the effect of lockdown on the disease spread in

the population for the time window 22 January to 15 March 2020. Numerical simulations

indicate that implementation of lockdown control policy can help in reducing the epidemic

peak and mortality rate in the countries under investigation.

In [5], a mathematical model was formulated and analysed to assess the impact of effective

social distancing and face mask usage on COVID-19 population dynamics in Lagos, Nigeria.

The simulated results of the model revealed that the disease will be eliminated in the pop-

ulation if about 55% of the population comply with the regulation of social distancing and

about 55% of the population make effective use of face mask while in public. Liu et al. [26]

also used a compartmental model to forecast the evolution of COVID-19 population with

reference to the South Korea, Italy, and Spain epidemics. The model incorporates a time-

varying disease transmission rate capturing the effect of government and social distancing

control interventions. The study reveals that it is possible to contain the disease spread in the

three countries. The authors warned that an early reduction in social distancing control pol-

icy or too extensive implementation of the control measure can lead to the disease epidemic

entering a new phase.

A compartmental model incorporating the effects of vaccination and isolation interven-

tion measures for the dynamics of COVID-19 population in Indonesia was proposed in [16].

The global asymptotic behaviour of the model was discussed in terms of its R0. The simula-

tion results indicate that administration of vaccination control can accelerate the healing of

COVID-19 infections and the disease spread can be slow down drastically by implementing

the maximum effort of isolation control measure. In another work [9], a mathematical model

taking into account the impact of healthcare capacity was formulated for the population

dynamics of COVID-19 and control in Italy. Qualitative analysis of the model was carried

out to reveal the global stability of the disease. The study suggests that the numbers of beds,

ventilators, and intensive care units should be increased to considerably reduce the number

of COVID-19 infections in the country.

Also, an intelligent computing paradigm based on Levenberg–Marquardt artificial neural

networks was developed for the solution of mathematical model for COVID-19 population
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dynamics in metropolitans of Pakistan and China by Cheema et al. [54]. Ciufolini and Paolozzi

[56,60] carried out mathematical studies by using Gauss error function type to predict the

evolution in time of the number of positive cases for COVID-19 outbreaks in Italy. In [61],

two mathematical models were formulated to separately analyse the fast-growth phase and

interpret the whole data set for China and South Korea COVID-19 outbreaks between 22

February and 20 May 2020. It was concluded that the models can be used in interpreting data

and as prediction guide for the disease.

A deterministic model based on SIR framework was proposed to understand the evolu-

tion of COVID-19 outbreaks during lockdown and social distancing policy in Germany and

Italy by Ianni and Rossi [57]. Similarly, Köhler-Rieper et al. [58] proposed a new approach

to mathematical modelling of COVID-19 transmission dynamics by constructing a single

ordinary integro-differential equation. It was shown that the model has similarities with the

classical SIR model, and capable of predicting the disease outbreaks for a period of about 4

weeks.

Olaniyi et al. [59] formulated a deterministic model governing an autonomous system

of ODEs for the dynamics of COVID-19 population in Nigeria. The study reveals that R0

value for the disease outbreak in the country can be reduced below one if the current disease

effective transmission rate is lowered by 50%. Owing to this fact, the authors further used

Pontryagin maximum principle to analyse the impacts of time-dependent preventive and

management control measures in mitigating the spread of the disease. It was found that the

number of infectious individuals can be reduced drastically by implementing the combined

effort of the two control interventions.

It is evident that increasing the recovery rate of the infected humans by adopting necessary

pharmaceutical measures is also an essential strategy to prevent COVID-19 incidence of a

number of people in a population [20]. However, none of the previous studies has investigated

the impacts of combining pharmaceutical and non-pharmaceutical measures in a bid to curtail

the spread of COVID-19 in the community. Hence, a mathematical model involving an

autonomous system of ODEs for COVID-19 population dynamics, which does not only

used to assess the effect of non-pharmaceutical control measures but also pharmaceutical

control interventions on the disease spread in Malaysia, is proposed in the present study.

First, a basic COVID-19 model is developed and the nonlinear least square curve fitting

approach is employed to estimate the model parameters by providing a good fit to the daily

COVID-19-confirmed cases in Malaysia. Further, the basic model is modified to include

five different control parameters accounting for personal protection (such as the use of hand

sanitizer, face mask wearing, and social distancing policy), contact tracing and testing on the

exposed individuals, and treatment controls of the timely diagnosed, delayed diagnosed, and

hospitalized individuals to assess an effective strategy in mitigating the spread of COVID-19

in a population.

The remainder of this paper is organized in the following order: Sect. 2 presents the

model description and formulation. Qualitative analysis of the basic properties of the model

is discussed in Sect. 3. Model fitting is also considered. In Sect. 4, numerical simulations of

the model are performed, and the results are also presented. This is followed up by detail

discussions of results in Sect. 5. Section 6 provides a concluding remark of this study.
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2 Model description and formulation

2.1 Basic COVID-19 mathematical model

In formulating the compartmental model describing COVID-19 transmission dynamics, it is

assumed that the total population is subgrouped into eight disjoint compartments at any time

t . These are susceptible individuals, denoted as S(t), self-quarantined susceptible individuals,

represented by Sq(t), exposed (infected but not yet infectious) individuals, denoted as E(t),

symptomatic (infectious) individuals, denoted as I (t), asymptomatic individuals, represented

by A(t), quarantined individuals, denoted by Q(t), hospitalized individuals, denoted by H(t),

and recovered individuals, represented as R(t). Thus, the total population at any time t ,

denoted as N (t), is given by

N (t) = S(t) + Sq(t) + E(t) + I (t) + A(t) + Q(t) + H(t) + R

where N (t) has a variable size due to the consideration of the disease-induced death rate

(d �= 0).

Subpopulation of susceptible human is increased either by the recruitment of individuals

at a rate of Λ or by the fraction εSq of the self-quarantined susceptible individuals, where ε is

the rate at which the self-quarantined susceptible individuals become susceptible to COVID-

19 infection again. The subpopulation is decreased by the effective contact β(I +ηA+ρH)S,

where β is the effective transmission rate of COVID-19 virus from I , A and H classes to

S, and η and ρ are the modification parameters accounting for the relative infectiousness of

individuals in classes A and H in relation to the individuals in class I . Further, it is decreased

by fraction ωS, where ω is the migration rate of the susceptible individuals from class S

to class Sq , and by natural death at rate μ. Hence, the rate of change of susceptible human

subpopulation is described by the differential equation given as

d S

dt
= Λ + εSq − β(I + ηA + ρH)S − ωS − μS.

Self-quarantined susceptible individual subpopulation is generated at the rate of ω and

decreased either at the rate of ε or natural death rate μ. Thus, the rate of change of subpopu-

lation of self-quarantined susceptible human is represented as

d Sq

dt
= ωS − εSq − μSq .

Also, subpopulation of exposed (latently infected) individual is generated through the

effective contact rate β(I + ηA +ρH)S. It is decreased by the rate σ of exposed individuals

either becoming symptomatic, asymptomatic, or hospitalized infected individuals and by

natural death at rate of μ. So, the rate of change of exposed individual subpopulation is given

as

d E

dt
= β(I + ηA + ρH)S − σ E − μE .

Subpopulation of symptomatic infectious (delayed diagnosed) individual is generated by

rate θ1σ E , where θ1 is the fraction of exposed individuals that move to the symptomatic infec-

tious class I . It is decreased by the hospitalized rate αi , recovery rate γi , COVID-19-induced

death rate d , and natural death rate μ. Consequently, the rate of change of symptomatic

infectious individual subpopulation is expressed as

d I

dt
= θ1σ E − αi I − γi I − d I − μI.
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Similarly, asymptomatic infectious (early diagnosed) individual subpopulation is gen-

erated by the rate θ2σ E , where θ2 is the fraction of exposed individuals that progress to

asymptomatic class A. The subpopulation is either decreased by the recovery rate of γa or by

natural death rate μ. Thus, the rate of change of subpopulation of asymptomatic infectious

individual is described by

d A

dt
= θ2σ E − γa A − μA.

In this case, the inflow rate is θ2σ while the outflow rate is γa + μ.

Moreover, quarantined infectious individual subpopulation is generated by the rate θ3σ E ,

where θ3 = 1 − θ1 − θ2 is the fraction of exposed individuals that progress to quarantined

class Q. It is either decreased by the hospitalized rate αq , by recovery rate of γq , or by

natural death rate μ. Therefore, the rate of change of subpopulation of quarantined infected

individual is represented as

d Q

dt
= θ3σ E − αq Q − γq Q − μQ.

Here, the inflow rate is θ3σ and αq + γq + μ is the outflow rate.

Subpopulation of hospitalized infected individuals is generated by the inflow rate of αi I +

αq Q. The subpopulation is decreased by an outflow rate including the recovery rate γh ,

disease-induced death rate d , and natural death rate μ. It follows that the rate of change of

hospitalized infected individual subpopulation is described by the differential equation given

as

d H

dt
= αi I + αq Q − γh H − d H − μH.

Finally, the size of recovered individual subpopulation increases as a result of the recovery

of hospitalized, quarantined, symptomatic, and hospitalized infected individuals at rates γi ,

γa , γq , and γh , respectively. It is decreased by natural death rate μ. Hence, ODE governing

the dynamic of recovered individual subpopulation is given by

d R

dt
= γi I + γa A + γq Q + γh H − μR.

Following the description above and the flow diagram of the COVID-19 model presented

in Fig. 1, the model governing the system of eight mutually exclusive ODEs for COVID-19

population dynamic denotes as model (1) is expressed as

d S

dt
= Λ + εSq − β(I + ηA + ρH)S − ωS − μS, (1a)

d Sq

dt
= ωS − εSq − μSq , (1b)

d E

dt
= β(I + ηA + ρH)S − σ E − μE, (1c)

d I

dt
= θ1σ E − αi I − γi I − d I − μI, (1d)

d A

dt
= θ2σ E − γa A − μA, (1e)

d Q

dt
= θ3σ E − αq Q − γq Q − μQ, (1f)

d H

dt
= αi I + αq Q − γh H − d H − μH, (1g)
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Fig. 1 Flow diagram of COVID-19 model (1), where λ = β(I + ηA + ρH)

d R

dt
= γi I + γa A + γq Q + γh H − μR, (1h)

where θ3 = 1 − θ1 − θ2. The parameters used in model (1) are defined in Table 1.

2.2 COVID-19 mathematical model with effect of control

To examine the impact of both pharmaceutical and non-pharmaceutical control measures on

the dynamics of COVID-19 population, we introduce five different bounded control param-

eters φi (i = 1, 2, . . . , 5) defined as follows:

0 ≤ φ1 ≤ 1: Effective effort of personal protection control measure (involving the use

of hand-sanitizer, wearing face mask, and observing social distancing at any time they

are in public) adopted by the population,

0 ≤ φ2 ≤ 1: Control effort that accounts for contact tracing and testing on the exposed

individuals to identify new cases,

0 ≤ φ3 ≤ 1: Treatment control of timely diagnosed infected individuals,

0 ≤ φ4 ≤ 1: Treatment control of delayed diagnosed infected individuals,

0 ≤ φ5 ≤ 1: Treatment control measure of hospitalized infected individuals.

Incorporating the five control parameters above into basic COVID-19 model (1) leads

to an autonomous system of ODEs governing the dynamics of transmission and control of

COVID-19 denoted by model (2) given as

d S

dt
= Λ − λS − (ω + μ)S + εSq , (2a)

d Sq

dt
= ωS − (ε + μ)Sq , (2b)
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Table 1 Description of the parameters for COVID-19 models (1) and (2)

Parameter Description

Λ Recruitment rate of susceptible individuals

β Transmission probability of the virus

0 ≤ η < 1 Modification parameter accounting for the relative

infectiousness of asymptomatic individuals in relation

to symptomatic (infectious) individuals

0 ≤ ρ < 1 Modification parameter accounting for the relative

infectiousness of hospitalized individuals in relation to

symptomatic individuals

ω Progression rate of susceptible individuals to

self-quarantined compartment

ε The rate of self-quarantined individuals to become

susceptible to the virus again

μ Human lifespan

σ Transition rate from exposed to infected classes

γa Recovery rate of asymptomatic individuals

θ1, θ2, θ3 Fractions of exposed individuals that move to infectious,

asymptomatic and quarantined classes, respectively

αi , γi Transition rates of individuals from symptomatic

(infectious) compartment to quarantined, hospitalized

and recovered classes, respectively

αq , γq Progression rates of quarantined individuals to

hospitalized and recovered compartments, respectively

γh Recovery rate of hospitalized individuals

d Disease-induced death rate

φ1 Human personal protection (involving the use of

hand-sanitizer, wearing face mask, and observing

social distancing)

φ2 Rate of contact tracing and testing on exposed

individuals

φ3 Treatment rate of timely diagnosed individuals

φ4 Treatment rate of delayed diagnosed individuals

φ5 Treatment rate of hospitalized individuals

d E

dt
= λS − (σ + μ + φ2)E, (2c)

d I

dt
= θ1σ E − (αi + γi + d + μ + φ4)I, (2d)

d A

dt
= θ2σ E − (γa + μ + φ3)A, (2e)

d Q

dt
= θ3σ E − (αq + γq + μ)Q + φ2 E, (2f)

d H

dt
= (αi + φ4)I + φ3 A + αq Q − (γh + d + μ + φ5)H, (2g)

d R

dt
= (γh + φ5)H + γq Q + γi I + γa A − μR, (2h)

123



  237 Page 10 of 35 Eur. Phys. J. Plus         (2021) 136:237 

where λ = (1 −φ1)β(ηA + I +ρH) and θ3 = 1 − θ1 − θ2. Table 1 also gives the definitions

of the parameters used in model (2).

3 Model analysis

3.1 Positivity and boundedness of solutions

For COVID-19 model (2) to be epidemiologically meaningful, it is necessary to show that

all its state variables are positive for all time. In other words, the solutions of the model with

positive initial data will remain positive for all time t > 0.

Lemma 1 Let the initial data X (0) ≥ 0, where X (t) = (S(t), Sq(t), E(t), I (t), A(t), Q(t),

H(t), R(t)). Then, the solutions X (t) of COVID-19 model (2) are positive for all time t > 0.

In addition,

lim sup N (t)
t→∞

≤
Λ

μ
,

where N (t) = S(t) + Sq(t) + E(t) + I (t) + A(t) + Q(t) + H(t) + R(t).

Proof Let t1 = sup {t > 0 : X (t) > 0 ∈ [0, t]}. Thus, t1 > 0. It follows from Eq. (2a) that

d S(t)

dt
= Λ + εSq(t) − λ(t)S(t) − (ω + μ)S(t). (3)

Then, Eq. (3) can be written as

d

dt

{
S(t) exp

(∫ t1

0

λ(ζ )dζ + (ω + μ)t

)}
= (Λ + εSq(t)) exp

(∫ t1

0

λ(ζ )dζ + (ε + μ)t

)
.

Hence,

S(t1) exp

(∫ t1

0

λ(ζ )dζ + (ω + μ)t1

)
− S(0)

=

∫ t1

0

(Λ + εSq(τ )) exp

(∫ τ

0

λ(ζ )dζ + (ω + μ)τ

)
dτ,

so that

S(t1) = S(0) exp

[
−

(∫ t1

0

λ(ζ )dζ + (ω + μ)t1

)]

+ exp

[
−

(∫ t1

0

λ(ζ )dζ + (ω + μ)t1

)]∫ t1

0

(Λ + εSq(τ ))

× exp

(∫ t1

0

λ(ζ )dζ + (ω + μ)t1

)
dτ,

≥ 0.

Thus, S(t1) is positive since it is a sum of positive terms. Similarly, it can be shown that

Sq(t) ≥ 0, E(t) ≥ 0, I (t) ≥ 0, A(t) ≥ 0, Q(t) ≥ 0, H(t) ≥ 0, and R(t) ≥ 0.

For the later part of the proof, note that 0 < S(0) ≤ N (t), 0 ≤ Sq(0) ≤ N (t), 0 ≤

E(0) ≤ N (t), 0 ≤ I (0) ≤ N (t), 0 ≤ A(0) ≤ N (t), 0 ≤ Q(0) ≤ N (t), 0 ≤ H(0) ≤ N (t),
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0 ≤ R(0) ≤ N (t). Adding the components of COVID-19 model (2) gives

d N (t)

dt
= Λ − μN − d(I + H),

≤ Λ − μN .

Hence,

lim sup N (t)
t→∞

≤
Λ

μ

as required to be shown. ⊓⊔

3.2 Invariant regions

The analysis of COVID-19 model (2) will be conducted with respect to a biologically feasible

region as follows. Let Ω ⊂ R8
+, where Ω is defined by Eq. (4) as

Ω =

{
(S(t), Sq(t), E(t), I (t), A(t), Q(t), H(t), R(t)) : N (t) ≤

Λ

μ

}
. (4)

Lemma 2 The region Ω in Eq. (4) is positively invariant for COVID-19 model (2) with

non-negative initial conditions inR8
+.

Proof By summing the equations of COVID-19 model (2), it follows that

d N (t)

dt
= Λ − μN − d(I + H),

≤ Λ − μN .

Hence, d N (t)
dt

≤ 0, if N (0) ≥ Λ
μ

. Thus, N (t) ≤ N (0) exp {−μt} + Λ
μ

(1 − exp {−μt}),

implying that N (t) → Λ
μ

as t → ∞. In particular, N (t) ≤ Λ
μ

if N (0) ≤ Λ
μ

. Thus, the region

Ω is positively invariant set. Furthermore, if N (0) > Λ
μ

, then either the solutions enter the

region Ω in finite time, or N (t) approaches Λ
μ

asymptotically. Hence, the region Ω attracts

all the solutions inR8
+. ⊓⊔

Therefore, it is sufficient to consider COVID-19 transmission dynamics governed by

model (2) in the biologically feasible region, Ω , where the model is both mathematically and

epidemiologically well posed.

3.3 Existence of equilibrium points, basic reproduction number, and stability analysis

The equilibrium points associated with model (2) are defined such that there is no variations

in the state variables S, Sq , E , I , A, Q, H , and R with respect to time, t .

Definition 1 An octuple E =
(
S, Sq , E, I, A, Q, H, R

)
∈ R8 is said to be an equilibrium

point for COVID-19 model (2) if it satisfies

Λ − λS − (ω + μ)S + εSq = 0, (5a)

ωS − (ε + μ)Sq = 0, (5b)

λS − (σ + μ + φ2)E = 0, (5c)

θ1σ E − (αi + γi + d + μ + φ4)I = 0, (5d)
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θ2σ E − (γa + μ + φ3)A = 0, (5e)

θ3σ E − (αq + γq + μ)Q + φ2 E = 0, (5f)

(αi + φ4)I + φ3 A + αq Q − (γh + d + μ + φ5)H = 0, (5g)

(γh + φ5)H + γq Q + γi I + γa A − μR = 0, (5h)

where λ = β(1 − φ1)(I + ηA + ρH) and θ3 = 1 − θ1 − θ2.

It is important to note that equilibrium point E is biologically meaningful if and only if E ∈ Ω .

E can be a covid-free equilibrium (CFE) or covid-present equilibrium (CPE) depending on E ,

I , A, Q, and H . If COVID-19 is not present in the system (i.e. E = I = A = Q = H = 0),

then E is said to be CFE. Otherwise, if E > 0, I > 0, A > 0, Q > 0 or H > 0, then E is

called CPE.

To obtain CFE, it requires setting E = I = A = Q = H = R = 0 in system (5).

Consequently, CFE, denoted as E f , is obtained as

E f =
(

S∗, S∗
q , 0, 0, 0, 0, 0, 0

)
=

(
Λ(ε + μ)

μ(ε + ω + μ)
,

Λω

μ(ε + ω + μ)
, 0, 0, 0, 0, 0, 0

)
. (6)

Stability of CFE, E f , can be established by calculating the effective reproduction number,

denoted as Rc, using the next generation operator method studied in depth in [39] on COVID-

19 model (2). Thus, Rc associated with model (2) is presented by Theorem 1.

Theorem 1 The effective reproduction number, Rc, of COVID-19 model (2) is given as

Rc =
(1 − φ1)β(g2g4g6ηθ2σ + g3g4g5ρθ1σ + g2g3ρθ3σαq + g2g4ρθ2σφ3 + g3g4g6θ1σ + g2g3ραq φ2)S∗

g1g2g3g4g6
, (7)

Rc =
(1 − φ1)β(g2g4g6ηθ2σ + g3g4g5ρθ1σ + g2g3ρθ3σαq + g2g4ρθ2σφ3 + g3g4g6θ1σ + g2g3ραq φ2)Λ(ε + μ)

g1g2g3g4g6μ(ε + ω + μ)
,

(8)

where g1 = σ + μ + φ2, g2 = αi + γi + d + μ + φ4, g3 = γa + μ + φ3, g4 = αq + γq + μ,

g5 = αi + φ4, g6 = γh + dμ + φ5, and θ3 = 1 − θ1 − θ2.

Proof Taking E, I, A, Q and H as the infected compartments and then using the notation

in [39], COVID-19 model (2) can be expressed as

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E

I

A

Q

H

S

Sq

R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λS

0

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(σ + μ + φ2)E

(αi + γi + d + μ + φ4)I − θ1σ E

(γa + μ + φ3)A − θ2σ E

(αq + γq + μ)Q − θ3σ E − φ2 E

(γh + d + μ + φ5)H − (αi + φ4)I + φ3 A + αq Q

λS + (ω + μ)S − Λ − εSq

(ε + μ)Sq − ωS

μR − γi I − γa A − γq Q − (γh + φ5)H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

The next generation matrices are obtained from Eq. (9) as

F(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λS

0

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(σ + μ + φ2)E

(αi + γi + d + μ + φ4)I − θ1σ E

(γa + μ + φ3)A − θ2σ E

(αq + γq + μ)Q − θ3σ E − φ2 E

(γh + d + μ + φ5)H − (αi + φ4)I + φ3 A + αq Q

λS + (ω + μ)S − Λ − εSq

(ε + μ)Sq − ωS

μR − γi I − γa A − γq Q − (γh + φ5)H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where xT = (E, I, A, Q, H). Then, infection matrix F and transition matrix V are the

corresponding Jacobian matrices evaluated at E f and are given as

F =

⎛
⎜⎜⎜⎜⎝

0
(1−φ1)βΛη(ε+μ)

μ(ε+ω+μ)
(1−φ1)βΛη(ε+μ)

μ(ε+ω+μ)
0

(1−φ1)βΛρ(ε+μ)
μ(ε+ω+μ)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,

V =

⎛
⎜⎜⎜⎜⎝

g1 0 0 0 0

−θ1σ g2 0 0 0

−θ2σ 0 g3 0 0

−θ3σ − φ2 0 0 g4

0 −g5 −φ3 −αq g6

⎞
⎟⎟⎟⎟⎠

,

where g1 = σ + μ + φ2, g2 = αi + γi + d + μ + φ4, g3 = γa + μ + φ3, g4 = αq + γq + μ,

g5 = αi + φ4, g6 = γh + d + μ + φ5, and θ3 = 1 − θ1 − θ2.

Therefore, the effective reproduction number Rc is

Rc = ̺
(
FV −1

)
=

(1 − φ1)β(g2g4g6ηθ2σ + g3g4g5ρθ1σ + g2g3ρθ3σαq + g2g4ρθ2σφ3 + g3g4g6θ1σ + g2g3ραq φ2)S∗

g1g2g3g4g6
,

Rc =
(1 − φ1)β(g2g4g6ηθ2σ + g3g4g5ρθ1σ + g2g3ρθ3σαq + g2g4ρθ2σφ3 + g3g4g6θ1σ + g2g3ραq φ2)Λ(ε + μ)

g1g2g3g4g6μ(ε + ω + μ)
,

where g1 = σ + μ + φ2, g2 = αi + γi + d + μ + φ4, g3 = γa + μ + φ3, g4 = αq + γq + μ,

g5 = αi + φ4, g6 = γh + d + μ + φ5, θ3 = 1 − θ1 − θ2, and ̺ is the spectral radius. ⊓⊔

Furthermore, using Theorem 2 in [39], the result in Lemma 3 immediately follows based

on the expression Rc.

Lemma 3 If Rc < 1, then CFE, E f , of COVID-19 model (2) is locally asymptotically stable

(LAS), and unstable if Rc > 1.

Remark 1 From the expression Rc in Eq. (8), the basic reproduction number, denoted as

R0, for the worst scenario of no control implementation (that is, φi = 0, i = 1, 2,…, 5) is

obtained as

R0 = Rc|φi =0, i=1,2,...,5 =
βσ(ε + μ)(κ2κ4κ5ηθ2 + κ3κ4αi ρθ1 + κ2κ3ρθ3αq + κ3κ4κ5θ1)Λ

κ1κ2κ3κ4κ5μ(ε + ω + μ)
,

(10)

R0 = R0I + R0A + R0H ,

R0 =
βσ(ε + μ)θ1Λ

κ1κ2μ(ε + ω + μ)
+

βσ(ε + μ)ηθ2Λ

κ1κ3μ(ε + ω + μ)
+

βσ(ε + μ)ρ(κ4αi θ1 + κ2αqθ3)Λ

κ1κ2κ4κ5μ(ε + ω + μ)
, (11)

where κ1 = σ +μ, κ2 = αi + γi + d +μ, κ3 = γa +μ, κ4 = αq + γq +μ, κ5 = γh + d +μ

and θ3 = 1 − θ1 − θ2. Consequently, the expression R0 in (10) corresponds to the basic

reproduction number of the uncontrolled COVID-19 model (1). The terms R0I , R0A and

R0H in Eq. (11) represent the respective average numbers of new COVID-19 infections

produced when the symptomatically, asymptomatically, and hospitalized infected individuals

are introduced into a completely susceptible population.

123



  237 Page 14 of 35 Eur. Phys. J. Plus         (2021) 136:237 

Next, we determine the impact of each control measure in reducing COVID-19 disease

burden in the population by following a similar idea in [40,53]. Taking partial derivatives of

reproduction number Rc with respect to control parameters φi (for i = 1, 2, . . . , 5) gives

∂Rc

∂φ1

= −
β(ηg2g4g6σθ2 + g2g3ρσαqθ3 + g2g4ρσφ3θ2 + g3g4g5ρσθ1 + g2g3ραqφ2 + g3g4g6σθ1)Λ(ε + μ)

g1g2g3g4g6μ(ε + ω + μ)
< 0,

∂Rc

∂φ2
=

(1 − φ1)βραq Λ(ε + μ)

g1g4g6μ(ε + ω + μ)

−
(1 − φ1)β(ηg2g4g6σθ2 + g2g3ρσαq θ3 + g2g4ρσφ3θ3 + g3g5ρσθ1 + g2g3ραq φ2 + g3g4g6σθ1)Λ(ε + μ)

g2
1 g2g3g4g6μ(ε + ω + μ)

< 0,

∂Rc

∂φ3
= −

(1 − φ1)β(ηg6 − ρ(γa + μ))σθ2Λ(ε + μ)

g1g2
3 g6μ(ε + ω + μ)

< 0,

∂Rc

∂φ4
= −

(1 − φ1)β(g6 − ρ(γi + d + μ))σθ1Λ(ε + μ)

g1g2
2 g6μ(ε + ω + μ)

< 0,

∂Rc

∂φ5

=
(1 − φ1)β(g2g4ησθ2 + g3g4σθ1)Λ(ε + μ)

g1g2g3g4g6μ(ε + ω + μ)

−
(1 − φ1)β(g2g4g6ησθ2 + g2g3ρσαqθ3 + g2g4ρσθ2φ3 + g3g4g5ρσθ1 + g2g3ραqφ2 + g3g4g6σθ1)Λ(ε + μ)

g1g2g3g4g2
6μ(ε + ω + μ)

< 0.

It follows that Rc is a decreasing function of φi (where i = 1, 2, . . . , 5). This shows the

effect of the five control measures in reducing the effective reproduction number Rc. It is

clear from Eqs. (8) and (10) that the introduction of controls φi implies that Rc ≤ R0 for

0 ≤ φi ≤ 1. Thus, if R0 < 1, then Rc < 1.

It is desirable to examine the solutions of COVID-19 model (2) when the virus is present in

the population. Thus, the existence of CPE of COVID-19 model (2) is claimed in Theorem 2.

Theorem 2 If Rc > 1, then COVID-19 model (2) admits a unique (and positive) covid-

present equilibrium (CPE) Ep = (S∗∗, S∗∗
q , E∗∗, I ∗∗, A∗∗, Q∗∗, H∗∗, R∗∗), where

S∗∗ =
Λ(ε + μ)

μ(ε + μ + ω)Rc

,

S∗∗
q =

Λω

μ(ε + μ + ω)Rc

,

E∗∗ =
Λ(Rc − 1)

g1Rc

,

I ∗∗ =
Λθ1σ(Rc − 1)

g1g2Rc

,

A∗∗ =
Λθ2σ(Rc − 1)

g1g3Rc

,

Q∗∗ =
Λ(θ3σ + φ2)(Rc − 1)

g1g4Rc

,

H∗∗ =
ΛA(Rc − 1)

g1g2g3g4g6Rc

,

R∗∗ =
ΛB(Rc − 1)

g1g2g3g4g6μRc

,

(12)

with A = g3g4g5θ1σ + g2g4φ3θ2σ + g2g3αq(θ3σ + φ2), g7 = γh + φ5, and B =

g3g4θ1σ(g5g7 + g6γi ) + g2g4θ2σ(g7φ3 + g6γa) + g2g3(θ3σ + φ2)(g7αq + g6γq). Oth-

erwise, there is no CPE.
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Proof Here, system (5) is solved for the case E > 0, I > 0, A > 0, Q > 0, and H > 0. Then,

the steady solutions S∗∗ and S∗∗
q are calculated by solving Eqs. (5a) and (5b) simultaneously

to obtain

S∗∗ =
Λ(ε + μ)

(λ∗∗ + μ)(ε + μ) + ωμ
(13)

and

S∗∗
q =

Λω

(λ∗∗ + μ)(ε + μ) + ωμ
(14)

It follows from Eq. (5c) that

E∗∗ =
λ

g1
S∗∗

and consequently,

E∗∗ =
λ∗∗Λ(ε + μ)

g1[(λ∗∗ + μ)(ε + μ) + ωμ]
. (15)

From Eq. (5d),

I ∗∗ =
θ1σ

g2
E∗∗. (16)

Also, from Eq. (5e),

A∗∗ =
θ2σ

g3
E∗∗. (17)

From Eq. (5f),

Q∗∗ =
(θ3σ + φ2)

g4
E∗∗. (18)

Moreover, from Eq. (5g),

H∗∗ =
A

g2g3g4g6
E∗∗, (19)

where A = g3g4g5θ1σ + g2g4φ3θ2σ + g2g3αq(θ3σ + φ2). From Eq. (5h),

R∗∗ =
1

μ

[
g7A + g2g3g6γq(θ3σ + φ2) + g3g4g6γiθ1σ + g2g4g6γaθ2σ

]
E∗∗. (20)

Hence, the use of appropriate results in

λ∗∗ = (1 − φ1)β(I ∗∗ + ηA∗∗ + ρH∗∗) (21)

leads to

λ∗∗ = (1 − φ1)β

(
θ1σ

g2
+

ηθ2σ

g3
+

ρA

g2g3g4g6

)
E∗∗,

λ∗∗ = (1 − φ1)β

(
g3g4g6θ1σ + g2g4g6ηθ2σ + ρA

g2g3g4g6

)
λ∗∗Λ(ε + μ)

g1[(λ∗∗ + μ)(ε + μ) + ωμ]
,

g1g2g3g4g6(ε + μ)λ∗∗ + μ(ε + μ + ω)g1g2g3g4g6

− Λ(1 − φ1)β(ε + μ)(g3g4g6θ1σ + g2g4g6ηθ2σ + ρA) = 0.
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This implies that

g1g2g3g4g6(ε + μ)λ∗∗ + μ(ε + μ + ω)g1g2g3g4g6

− Λ(1 − φ1)β(ε + μ)(g3g4g6θ1σ + g2g4g6ηθ2σ + ρA) = 0,

g1g2g3g4g6(ε + μ)λ∗∗ + μ(ε + μ + ω)g1g2g3g4g6[
1 −

Λ(1 − φ1)β(ε + μ)(g3g4g6θ1σ + g2g4g6ηθ2σ + ρA)

μ(ε + μ + ω)g1g2g3g4g6

]
= 0.

Hence,

g1g2g3g4g6(ε + μ)λ∗∗ + μ(ε + μ + ω)g1g2g3g4g6(1 − Rc) = 0,

Cλ∗∗ + D = 0, (22)

where C = g1g2g3g4g6(ε + μ) and D = μ(ε + μ + ω)g1g2g3g4g6(1 − Rc).

Now, we deduce the condition for which λ∗∗ is positive in Eq. (22). It should be noted

from Eq. (22) that λ∗∗ = −D

C
≤ 0 if D ≥ 0 at Rc ≤ 1, and no CPE exists. Contrarily,

λ∗∗ = −D

C
> 0 if D < 0 at Rc > 1. Thus, a CPE exists only at Rc > 1. Hence, solving for

λ∗∗ in the linear Eq. (22) yields

λ∗∗ =
μ(ε + μ + ω)

(ε + μ)
(Rc − 1). (23)

Now, using the expression λ∗∗ presented by Eq. (23) in Eq. (15) yields

E∗∗ =
Λ(Rc − 1)

g1Rc

. (24)

Finally, substituting the expressions λ∗∗ and E∗∗ in Eqs. (23) and (24), respectively, into

Eqs. (13), (14), (16)–(20) accordingly leads to the results defined by Eq. (12). ⊓⊔

Global asymptotic stability of the covid-free equilibrium E f

Since it has been demonstrated that CFE (E f ) and CPE (Ep) of COVID-19 model (2) are

the unique equilibria, whose existence strongly depends on the Rc value, from the above

discussion, the global asymptotic properties of CFE are explored in this section. To this aim,

the idea of direct Lyapunov function used in [5,41–43] is employed to show that CFE, E f , is

globally asymptotically stable as follows. First, the following positive constant coefficients

are defined:

a1 = g6,

a2 =
(1 − φ1)βΛ(ε + μ)(g5ρ + g6)

g2μ(ε + μ + ω)
,

a3 =
(1 − φ1)βΛ(ε + μ)(g6η + φ3ρ)

g3μ(ε + μ + ω)
,

a4 =
(1 − φ1)βΛ(ε + μ)ραq

g4μ(ε + μ + ω)
,

a5 =
(1 − φ1)βΛ(ε + μ)ρ

μ(ε + μ + ω)
.

(25)

Now, consider the Lyapunov function L given as

L = a1 E + a2 I + a3 A + a4 Q + a5 H. (26)
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The time derivative of L in Eq. (26) is given by

dL

dt
= a1

d E

dt
+ a2

d I

dt
+ a3

d A

dt
+ a4

d Q

dt
+ a5

d H

dt
,

= [a2θ1σ + a3θ2σ + a4(θ3σ + φ2) − a1g1] E +
[
a1(1 − φ1)βS + a5g5 − a2g2

]
I

+
[
a1(1 − φ1)βηS + a5φ3 − a3g3

]
A + (a5αq − a4g4)Q +

[
a1(1 − φ1)βρS − a5g6

]
H.

(27)

Replacing ai (i = 1, . . . , 5) by their respective terms in Eq. (25) and using the fact that

S ≤ S∗ =
Λ(ε+μ)

μ(ε+ω+μ)
in the feasible region Ω , we obtain

dL

dt
≤ g1g6(Rc − 1). (28)

From Eq. (28), we have dL

dt
≤ 0 if Rc ≤ 1, with dL

dt
= 0 if Rc = 1 or E = 0. Also,

whenever E = 0, we have I = 0, A = 0, Q = 0 and H = 0. Substituting E = I = A =

Q = H = 0 in the first, second, and the last equations of COVID-19 model (2) gives

S(t) → S∗, Sq(t) → S∗
q and R(t) → 0 as t → ∞.

Thus,

(
S(t), Sq(t), E(t), I (t), A(t), Q(t), H(t), R(t)

)
→ E f as t → ∞.

Consequently, from LaSalle’s invariance principle [41,43–45], every solution of COVID-19

model (2) with initial data in Ω converges to CFE, E f , as t → ∞. Therefore, CFE E f is

GAS in Ω if Rc ≤ 1. Thus, we claim the result summarized in Theorem 3.

Theorem 3 If Rc ≤ 1, then CFE (E f ) of COVID-19 model (2) is GAS in Ω . Otherwise, it

is unstable.

3.4 Parameter estimation and model fitting

The present section investigates data fitting using the basic model (1) to the confirmed reported

COVID-19-infected cases in Malaysia. The available data for daily COVID-19-confirmed

cases from 03 March 2020 (when the cases of the disease have continuously been reported

per day) till 31 December 2020 reported in Malaysia are considered in this work. The data

are obtained from [11] as given in Table 5. The data include the reported confirmed cases

during the second and third waves of COVID-19 outbreaks in the country. The basic model

(1) is parameterized using two approaches: Some of the initial conditions and demographic

parameters are estimated from the literature. It is assumed that the time unit is days, and the

estimation procedure for the initial conditions and parameters is described as follows:

(i) On March 3, there were 7 reported cases (see Table 5); a total of 36 had so far been

infected with 22 recovered and 14 active cases. So, we set I (0) = 7, H(0) = 14, and

R(0) = 22.

(ii) Natural death rate (μ): μ is estimated as μ = 1
75.93

per year, where 75.93 is the average

lifespan in Malaysia [46]. Thus, μ = 1
75.93×365

per day.

(iii) The birth or recruitment rate (Λ): Since the total population of Malaysia as at 2019

was 32581.4 (per thousands) [47], it is then assumed that Λ
μ

= 32581.4 is the limiting

total human population in the absence of the disease, so that Λ = 1.17561 per day.
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Fig. 2 Graphical illustration of the fitted cumulative number of reported COVID-19 cases

The remaining biological parameters and the likely values of the other initial conditions

are trained with the reported infected cases presented in Table 5. To do this, we use the

nonlinear least square curve fitting technique followed in [7,40,48,49].

3.4.1 Results of the model fitting

Using the nonlinear least square curve fitting technique, fitting of model (1) to the daily

reported COVID-19-infected cases in Malaysia is investigated. We consider the cumulative

cases from the data presented in Table 5. The model is solved numerically in MATLAB with

ode45 solver which is based on the fourth-order Runge–Kutta method. In [50], it is well

established that this method is stable. So, the model is fit to real data, and the parameters

are estimated by implementing the lsqcurvefit package. Figure 2 depicts the best fit to

the reported data using model (1). It is observed that there is a good agreement between the

model simulation and the real data. Also, Table 2 provides the estimated and fitted parameters

values.

3.5 Estimated R0 value and herd immunity

Using the model parameter values as given in Table 2, the estimated value of R0 is approxi-

mately R0 = 2.287. From biological view point, this threshold value indicates that COVID-

19 will invade the population if no control effort is implemented to curtail the transmission

and spread of the disease.

Based on the calculated R0 value, it is important to determine the fraction of the population

that needs to be immunized in order to halt large outbreaks of COVID-19 in Malaysia. When

high proportion of a population is immunized against a contagious infectious disease (either

via vaccination or recovery from the disease infection), an indirect protection is provided

to the proportion that is not immune to the disease. This kind of protection is called herd

immunity [55,62,63]. Herd immunity plays a key role in epidemic control. For instance, it can

be helpful in gaining insightful information about how effective a vaccination administration

would be without reaching 100% population coverage.
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Table 2 Estimated parameter values and initial conditions for COVID-19 model (1)

Parameter Range Baseline value (per day) Source

Λ 1.17561 Estimated

μ 1
75.93×365

[46]

β 0.1–1 2.6576 × 10−5 Fitted

η 0–0.90 0.7228 Fitted

ρ 0–0.90 0.6526 Fitted

ω 0–0.45 0.3938 Fitted

ε 0–0.40 0.1945 Fitted

σ 0–0.2403 0.1282 Fitted

θ1 0–0.2929 0.0044 Fitted

θ2 0.1–0.3922 0.0579 Fitted

θ3 0–0.99 0.9377 Fitted

αi 0.1–0.4015 0.3155 Fitted

αq 0.1–0.2368 0.0462 Fitted

d 0.01–0.022 0.0100 Fitted

γa 0–0.8060 0.0806 Fitted

γi 0–0.6214 0.0621 Fitted

γq 0.1–0.4971 0.0300 Fitted

γh 0.1–0.5967 0.0400 Fitted

State variable Range Baseline value (per thousands) Source

S0 0–32500 3.2499 × 104 Fitted

Sq0 0–32500 70.7018 Fitted

E0 0–32500 6.9158 × 10−4 Fitted

A0 0–32500 2.1247 Fitted

Q0 0–32500 1.8528 Fitted

Following [44,63], the critical level of population immunity, denoted as p̂, is calculated

with respect to the estimated R0 value for Malaysia COVID-19 outbreaks as

p̂ = 1 −
1

R0
= 0.56,

implying that if 56% of the population is immune to COVID-19, then the disease will not

spread in the population. Hence, successful vaccination of about 56% of the entire population

may lead to eradication of the disease in Malaysia.

4 Numerical simulations and results

4.1 Uncertainty and global sensitivity analysis

Contrary to the local sensitivity analysis of model parameters approach [19,43,48], which is

most often performed to assess the effect of each parameter included in the response function

R0 at a particular point in a parameter space without considering the combined variability

owing to the simultaneous consideration of all the input parameters, a global sensitivity

123



  237 Page 20 of 35 Eur. Phys. J. Plus         (2021) 136:237 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

1

2

i

q

d

i

a

q

h

Fig. 3 PRCC values for COVID-19 model (1) using R0 as the response function with respect to the parameter

range and baseline values given in Table 2

analysis is discussed here. This helps to investigate the response of COVID-19 model (1) to

parameter variation within a wider range in the parameter space.

Following the approach adopted in [5,7], a Latin Hypercube Sampling (LHS) is conducted

because of the uncertainties that may come up in the parameter estimates used in the numer-

ical simulations. For the sensitivity analysis, a Partial Rank Correlation Coefficient (PRCC)

between the values of the parameters in the response function and those of the response

function obtained from the sensitivity analysis is carried out. Using the basic reproduction

number R0 as the response function, parameters with the highest PRCC values have the

largest impact on R0. Therefore, the key parameters influencing R0 are separated into those

that decrease R0 when increased (bars extending to the left for negative PRCC values) and

those that cause R0 to increase when increased (bars extending to the right for positive PRCC

values). Performing 1000 runs of the LHS, the graphical PRCC results of COVID-19 model

(1) relative to the parameters forming R0 are shown in Fig. 3. Figure 3 observes that the

top-ranked sensitive parameter with high positive PRCC value that drives the dynamics of

the model transmission is β, followed by Λ, ρ, ε, αq , σ , θ2, η, and θ1. Similarly, the model

parameters with competitive most high negative PRCC value are μ, then ω, γh , γq , d , γi , αi ,

and γa .

In addition, the sensitivity indices of the model parameters are presented in Table 3. On

the one hand, the positive sign suggests that increasing (or decreasing) any of the model

parameter values in this category will lead to a corresponding increase (or decrease) in R0

value. The negative sign, on the other hand, indicates that increasing (or decreasing) each
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Table 3 Sensitivity indices of

the basic reproduction number

R0 to the parameters of model

(1)

Parameter Sensitivity index

Λ + ve

β + ve

η + ve

ρ + ve

ω −ve

ε + ve

μ −ve

σ + ve

γa −ve

θ1 + ve

θ2 + ve

αi −ve

αq + ve

γi −ve

γq −ve

γh −ve

d −ve

model parameter value in this category will yield a corresponding decrease (or increase) in

R0 of the model.

It is important to identify these key parameters because they can be helpful to the deci-

sion makers and the public health practitioners in formulating effective control intervention

strategies required to contain the disease spread in the community. Particularly, the results

obtained from the sensitivity analysis indicate that a control intervention strategy aims at

reducing the model parameters with positive PRCC values (that is, η, ε, β, θ2, ρ, θ1, Λ, αq ,

and σ ) will considerably mitigate the spread of COVID-19 in the community. In addition,

the transmission dynamics of COVID-19 can be effectively curtailed in a community by

implementing a control strategy that increases the model parameters having negative PRCC

values (that is, ω, γa , d , μ, γh , γi , αi , and αq ).

4.2 Assessing the effects of control intervention strategies

This section discusses the numerical simulations of controlled COVID-19 model (2) to assess

the impacts of using control interventions φ1 (human personal protection including the use

of hand-sanitizer, wearing face mask and observing social distancing whenever in public),

φ2 (efforts of contact tracing and testing on exposed individuals), φ3 (treatment of timely

diagnosed individuals), φ4 (treatment of delayed diagnosed individuals), and φ5 (treatment

of hospitalized individuals) on the spread of COVID-19 in the population.

4.2.1 Effects of control interventions on the effective reproduction number Rc

According to the epidemiological interpretation of Lemma 3 and Theorem 3, COVID-19

will eventually die out in the population when Rc < R0 < 1, and invades the population

whenever R0 > Rc > 1. Since R0 = 2.287 > 1 in the case of no control interventions for

COVID-19 outbreaks under investigation, we specifically explore the effects of using two

different control intervention strategies simultaneously in putting the effective reproduction
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Fig. 4 Contour plots of Rc

number Rc expressed in Eq. (8) below unity. Figure 4a–c demonstrates the effects of using

control strategies which combine controls φ1 and φ2, φ3 and φ5, and φ4 and φ5, respectively.

Figure 4a shows that the reduction in effective reproduction number Rc below unity is

possible by combining about 0.56 (56%) effort each of controls φ1 and φ2. This suggests

that it is possible to eliminate COVID-19 in the population if about 56% of the population

comply with personal protection control and about 56% of the exposed individuals that are

early diagnosed (through the implementation of control φ2) effectively comply with the com-

pulsory quarantine policy per day. Also, it is observed that the simultaneous implementation

of about 0.07 (7%) proportion of controls φ3 and φ5 (Fig. 4b) effectively impacts Rc to

decrease below unity. The result indicates that it is possible to eliminate COVID-19 in the

population, if about 7% of the hospitalized individuals get timely treatment support and about

7% of early diagnosed exposed individuals receive treatment support throughout the control

implementation period. Figure 4c shows the effective impact of combining about 0.09 (9%)

proportion of controls φ4 and φ5 by reducing Rc below the acceptable level (Rc < 1). This

implies that eradication of COVID-19 in the population is possible if about 9% of delayed

diagnosed (symptomatic infected) individuals and about 9% of the hospitalized individuals

are treated daily over the simulation period.

4.2.2 Effects of different control strategies A–E on COVID-19 population dynamics

Here, we evaluate the effects of using combination of at least two of controls φi (i =

1, 2, . . . , 5) on the transmission dynamics of COVID-19 in the community. For this aim, five

different control strategies are defined with consideration of only non-pharmaceutical, only

pharmaceutical, and combination of pharmaceutical and non-pharmaceutical control mea-

sures implementation scenarios. The strategies are: Strategy A (non-pharmaceutical measure

only; which combines the use of human personal protection, φ1, and contact tracing and

testing, φ2, controls), Strategy B (pharmaceutical measure only; combined efforts of treat-

ment control of timely diagnosed individuals, φ3, with treatment control of hospitalized
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individuals, φ5), Strategy C (pharmaceutical measure only; simultaneous implementation of

treatment control of delayed diagnosed individuals, φ4, and treatment control of hospitalized

individuals, φ5), Strategy D (pharmaceutical measure only; which combines the treatment

control efforts of early diagnosed individuals, φ3, treatment control of delayed diagnosed

individuals, φ4, and treatment control of hospitalized individuals, φ5) and Strategy E (phar-

maceutical and non-pharmaceutical measures; combination of personal protection control,

φ1, contact tracing and testing control, φ2, treatment control of early diagnosed individu-

als, φ3, treatment control of delayed diagnosed individuals, φ4, and treatment control of

hospitalized individuals, φ5).

To illustrate the effect of implementing Strategies A–E, the time series solutions of self-

quarantined individual subpopulation (Sq ), subpopulation of symptomatic infectious individ-

ual (I ), the disease prevalence (including the numbers of exposed, E , asymptomatic infected,

A, symptomatic infected, I , quarantined, Q, and hospitalized, H , individuals), and recovered

individual subpopulation (R) are presented.

Strategy A: combination of use of personal protection (φ1) and contact-tracing policy (φ2)

Figure 5 shows the dynamics of COVID-19 population with the use of Strategy A and when

no control is implemented. It is observed that the number of self-quarantined individuals

peak between 1 and 10 days from the beginning of pandemic outbreak and the subpopulation

with control is more consistently maintained at the peak value over the remaining simula-

tion period than the subpopulation without control (see Fig. 5a). Figure 5b and c reveals

that there are three pandemic peaks, where the first one occurs between 250 and 400 days

(from March 3, 2020) in the absence of personal protection and contact-tracing and testing

policy controls implementation, the second occurs after 350 days (by February 2021) when

20% of the entire population observe personal protection control measure and 20% of the

detected exposed individuals comply with compulsory self-quarantine policy while the third

occurring after 600 days (by October 2021) when 40% of the population comply with per-

sonal protection regulation and 40% of the exposed individuals that are detected comply with

compulsory self-quarantine policy. The peak vanishes when 60% of the population make use

of personal prevention measure and 60% of the detected exposed individuals comply with

self-quarantine policy. The number of symptomatic infectious individuals and the size of the

disease prevalence in the population diminish more rapidly and quickly with control strat-

egy than when there is no control (as shown in Fig. 5b and c), leading to fewer number of

individuals recovering from COVID-19 infection (as shown in Fig. 5d).

This control strategy reveals that, if about 60% of the population comply with the personal

protection control policy (such as the use of hand sanitizer, observing social distancing and

effective wearing of face mask in public), at least 60% of the exposed individuals that are

detected comply with the compulsory quarantine policy, and with strict enforcement of self-

quarantine (lockdown) on the entire population, then it is possible to eliminate the pandemic

in the community.

4.2.3 Strategy B: combination of use of treatment of timely diagnosed individuals (φ3) and

treatment of hospitalized individuals (φ5)

In Fig. 6, the effect of implementing Strategy B on the dynamics of COVID-19 population is

illustrated. Figure 6a indicates that the self-quarantined subpopulation peaks between 1 and

10 days (counting from March 3, 2020), and the subpopulation with control is consistently
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(a) (b)

(c) (d)

Fig. 5 Simulations of model (2) with Strategy A and without control

(a) (b)

(c) (d)

Fig. 6 Simulations of model (2) with strategy B and without control

sustained at the peak value throughout the remaining intervention period. It can be seen

that COVID-19 incidence and prevalence diminish when timely treatment is administered

on about 20% of early diagnosed individuals and about 20% of hospitalized individuals per

day (see Fig. 6b and c). Further, the use of this strategy causes fewer number of individuals

to recover from COVID-19 infection as shown in Fig. 6d. Hence, the results obtained from

implementing this control strategy suggest that it is possible to flatten COVID-19 pandemic

curve if about 20% of early diagnosed individuals and about 20% of hospitalized individuals

receive treatment support per day, with strictly enforced self-quarantined (lockdown) on the

entire population.
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(a) (b)

(c) (d)

Fig. 7 Simulations of model (2) with strategy C and without control

4.2.4 Strategy C: combination of use of treatment of delayed diagnosed individuals (φ4)

and treatment of hospitalized individuals (φ5)

Figure 7 depicts the effect of combining treatment controls of delayed diagnosed and hospi-

talized individuals (Strategy C) on the dynamics of COVID-19 population. It is observed that

the number of self-quarantined individual is peaked between 1 and 10 days from the begin-

ning of the pandemic outbreak, and the number with control is more continuously maintained

at the peak value over the remaining intervention period as shown in Fig. 7a. Figure 7b and

c depicts that the use of about 20% each of controls φ4 and φ5 diminishes the incidence and

prevalence of COVID-19 in the population. In addition, the number of recovered individuals

is significantly reduced with an increased combined efforts of control implementation as

observed in Fig. 7d. Hence, this strategy indicates that it is possible to eradicate COVID-19

in the population, if about 20% of both the delayed diagnosed and hospitalized individuals in

the population get treated per day and self-quarantine policy is strictly enforced on the entire

population.

4.2.5 Strategy D: combination of use of treatment of timely diagnosed, delayed diagnosed

and hospitalized individuals (φ3, φ4 and φ5)

Figure 8 demonstrates the effect of the use of Strategy D (combined efforts of controls φ3,

φ4 and φ5) on the transmission dynamics of COVID-19 in the population. It is seen that

using about 20% of each control, the number of self-quarantined is consistently sustained

at the peak value for almost the entire intervention period when compared with the case

of no control implementation (see Fig. 8a). Also, Fig. 8b and c shows one pandemic peak

occurring between 250 and 400 days (counting from March 3, 2020) when no pharmaceutical

measures are implemented. However, this pandemic peak disappears over the simulation

period by implementing about 20% each of the treatment controls of timely diagnosed,

delayed diagnosed and hospitalized individuals on a daily basis. Consequently, a high number
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(a) (b)

(c) (d)

Fig. 8 Simulations of model (2) with strategy D and without control

of infections are averted with control implementation as the size of recovered individual sub-

population significantly decreases when compared with the worst scenario of no control

implementation in the population as observed in Fig. 8d. Therefore, the use of Strategy D

suggests that if self-quarantine policy is strictly enforced on the entire population with about

20% each of early diagnosed, delayed diagnosed, and hospitalized individuals given timely

treatment per day, then it is possible to eliminate COVID-19 in the population in the long

run.

4.2.6 Strategy E: combination of use of personal protection (φ1), contact-tracing policy

(φ2), and treatment of timely diagnosed, delayed diagnosed and hospitalized

individuals (φ3, φ4 and φ5)

The dynamics of COVID-19 population with and without the implementation of control

Strategy E is illustrated in Fig. 9. Figure 9a shows that with the use of about 20% each

of controls φi (i = 1, 2, . . . , 5), the size of self-quarantined subpopulation is consistently

maintained at the peak value after about 10th day till the end of intervention period. Also,

the peaks of symptomatic infectious individual sub-population and the disease prevalence

occurring between 250 and 400 days (counting from March 3, 2020) in the case of no control

implementation disappeared from the onset of control implementation till the end of control

implementation period by using 20% of each control (as shown in Fig. 9b and c) leading to no

individuals recovering from COVID-19 infections in the population (see Fig. 9d). It therefore

follows from the implementation of this control strategy that elimination of COVID-19 in

the population is possible if the self-quarantined policy (lockdown) is strictly enforced on

the whole population with about 20% of the population complying with personal protec-

tion control policy, about 20% of the detected exposed individuals obeying the compulsory

quarantine policy, about 20% of the early diagnosed, delayed diagnosed, and hospitalized

individuals receiving medical treatment per day.
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(a) (b)

(c) (d)

Fig. 9 Simulations of model (2) with strategy E and without control

4.3 Effectiveness analysis

Graphical solutions illustrated in Figs. 6, 7, 8, 9 show that implementations of Strategies B–E

have similar impacts on the dynamics of COVID-19-infected subpopulations and the disease

prevalence. Thus, it is necessary to compare the efficacy of control intervention strategies A–

E in reducing COVID-19 prevalence in the population by performing effectiveness analysis

in the current section. This helps us in our decision making on the best control intervention

strategy. Following [51–53], we compare the efficacy of the five strategies under investi-

gation in reducing COVID-19 prevalence (including exposed, asymptomatic, symptomatic,

quarantined, and hospitalized individuals) in the population. To this aim, effectiveness index

is defined as [51–53]:

Ci =

(
1 −

Cs

Co

)
× 100% (29)

where Cs =
∫ T

0 (E + A + I + Q + H)dt and Co =
∫ T

0 (E + A + I + Q + H)dt measure

the cumulative number of infected individuals (COVID-19 prevalence) in the time interval

t ∈ [0, T ], T = 1400 days, with and without any control intervention, respectively. Thus,

the best control strategy will be the one with the biggest Ci value [51,53].

Using the simulation results for control strategies A–E (as shown in Figs. 5, 6, 7, 8, 9)

and fixing controls φi (i = 1, 2, . . . , 5) at 0.60(60%) since the disease spread is significantly

curtailed at this level of control implementation for each control strategy, the results of

effectiveness index are summarized in Table 4.

Table 4 shows that Strategy E (which combines personal protection, contact tracing and

testing of exposed individuals, treatment of early diagnosed individuals, treatment of delayed

diagnosed individuals, and treatment of hospitalized individuals control efforts) is the most

effective, followed by Strategy D (which combines treatment controls of early diagnosed,

delayed diagnosed, and hospitalized individuals), Strategy B (combination of treatment con-

trols of early diagnosed and hospitalized individuals), Strategy C (which combines the efforts

of treatment control of delayed diagnosed and hospitalized individuals), then Strategy A
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Table 4 Effectiveness index

Control strategy Cs Ci (%)

No control 8.96227 × 105 0

Strategy A(φ1, φ2) 1.30408 × 103 99.85449

Strategy C(φ4, φ5) 2.81098 × 102 99.96864

Strategy B(φ3, φ5) 1.02212 × 102 99.98860

Strategy D(φ3, φ4, φ5) 1.01919 × 102 99.98862

Strategy E(φ1, φ2, φ3, φ4, φ5) 5.10150 × 101 99.99431

(combination of personal protection and contact tracing and testing of exposed individuals

controls). In other words, the control strategy that averts the highest number of infections in

the population is Strategy E. Strategy D is the next strategy that averts the highest number

of COVID-19 infections, followed by Strategies B and C, while Strategy A averts the least

number of infections in the population.

5 Discussion

In this work, we consider the daily confirmed COVID-19 cases from 3 March 2020 (the first

day from when the disease started to be reported continuously on daily basis) to 31 December

2020 in Malaysia. Since it has been demonstrated that deterministic models fit well to cumu-

lative COVID-19-infected cases in several previous studies [5,7,48], the parameters of the

autonomous system (1) are fitted using the cumulative version of the data set given in Table

5. Using the fitted parameter values along with the initial values in Table 2, the projection of

the number of infected individuals (I ), recovered individuals (R), and the disease prevalence

(including the exposed individuals E , symptomatic infectious individuals, I , asymptomatic

infectious individuals, A, quarantined individuals, Q, and hospitalized individuals, H ) in

Figs. 5, 6, 7, 8,9 reveals that it may take about 600 days (counting from 3 March 2020) before

the number of COVID-19-confirmed cases diminishes, while it takes about 650 days (from

3 March 2020) before the disease infection could be cleared in the population after all the

patients having recovered from infection in the case of no control implementation. Also, the

estimated basic reproduction number R0 value is approximately R0 = 2.287. This threshold

value is an epidemiological indicator that COVID-19 will persist in the population when no

control effort is implemented. Hence, it is desirable to investigate a control strategy that puts

R0 below one.

To this aim, five control parameters accounting for personal protection (such as the use of

hand sanitizer, effective wearing of face mask whenever in public, observing social distanc-

ing), contact tracing and testing to quarantine the latently infected (exposed) individuals, and

treatment controls of the timely diagnosed, delayed diagnosed and hospitalized individuals

are introduced into the model. First, we use the corresponding effective reproduction number

Rc as a response function to examine the impact of different control strategies involving the

use of exactly two control measures with no consideration for combining a pharmaceuti-

cal control measure (either treatment of early diagnosed, delayed diagnosed, or hospitalized

individuals) with any non-pharmaceutical control measures (human personal protection or

case detection through contact tracing and testing). Figure 4 shows that Strategies A (use
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of non-pharmaceutical control measures only), B (use of pharmaceutical controls; treatment

controls of early diagnosed and hospitalized individuals only) and C (use of pharmaceuti-

cal controls; treatment controls of delayed diagnosed and hospitalized individuals) are all

sufficient to put Rc below unity within the bound imposed on the control parameters (i.e.

φi ∈ [0, 1], i = 1, 2, . . . , 5). However, least combined effort of controls (about 0.07 of each

control) is needed in lowering Rc below unity using Strategy B, while the use of Strategies

C and A requires more and most combined effort of controls involved (about 0.09 and 0.58,

respectively) in reducing Rc below the acceptable level for disease elimination in the com-

munity. The observed significant impact of applying non-pharmaceutical control measures

on Rc agrees with the results in [5], which revealed that the implementation of combined

efforts of face mask and social distancing control measures is enough to bring Rc below one

in the long run.

Moreover, we investigate the effects of Strategies A–E on the dynamics of COVID-19

population. We observed that the number of symptomatic infectious individuals as well as

the disease prevalence can be reduced considerably in the population using any of the five

control strategies (see Figs. 5, 6, 7, 8, 9). It is possible to flatten the epidemic curve using about

0.20 (20%) combined control effort involved in Strategies B–E per day, while a covid-free

population can be achieved using Strategy A by stepping up the combined effort of controls

to 0.60 (60%) per day over the simulation period. It is shown that a positive attitude of the

entire population toward self-isolation may enhance the efficacy of the implemented personal

protection, contact tracing and testing on exposed individuals, and treatment control measures

using any of Strategies A–E analysed in this work (see Figs. 5a, 6a, 7a, 8a and 9a). The effect

of the six control strategies is analysed at 0% to 60% levels of implementations because

it is more realistic to admit the possibility of the public compliance with human personal

protection and the use of other practical control measures (treatment and contact tracing and

testing) at these levels than their higher levels of implementations (i.e. 61%–100%).

6 Conclusion

This work has formulated and analysed an appropriate mathematical model which involves an

autonomous system of ODEs governing the dynamics of COVID-19 population in Malaysia.

The model is used to evaluate the impact of different control strategies for the use of pharma-

ceutical control measures (particularly, treatment of early diagnosed, delayed diagnosed and

hospitalized individuals) and non-pharmaceutical interventions (human personal protection,

such as the use of hand-sanitizer, social distancing policy and wearing of face mask, and

case detection through contact tracing ad testing on the exposed individuals) on the disease

spread dynamics.

Qualitative analysis of the model reveals that the model has a CFE, which is LAS whenever

Rc < 1 and GAS if Rc ≤ 1. It is also shown that the model admits a unique CPE if Rc > 1,

and no CPE otherwise.

Sensitivity analysis of the model parameters reveals that the transmission probability of

the virus (β), progression rate of susceptible individuals to self-quarantined compartment (ω),

the rate of self-quarantined individuals to become susceptible to COVID-19 virus again (ε),

human recruitment rate (Λ), modification parameter representing the relative infectiousness

of hospitalized individuals (ρ), progression rate of quarantined individuals to hospitalized

compartment (αq ), human natural death rate (μ), COVID-19 induced death rate (d), recovery

rate of hospitalized individuals (γh), and recovery rate of quarantined individuals (γq ) among

other parameters are the dominant parameters influencing the basic reproduction number R0.
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By performing numerical simulations of the model, the effects of using control Strategies

A–E (where Strategy A is the combination of personal protection and contact tracing and test-

ing control measures, Strategy B is the simultaneous administration of treatment control on

early diagnosed and hospitalized infected individuals, Strategy C is the combined efforts of

treatment controls administered on the delayed diagnosed and hospitalized infected individ-

uals, Strategy D combines the treatment controls of early diagnosed, delayed diagnosed, and

hospitalized infected individuals, while Strategy E is the combination of personal protection,

contact tracing and testing on exposed individuals, and treatment controls of early diagnosed,

delayed diagnosed and hospitalized individuals) on the dynamics of COVID-19 spread in

the community are analysed. It is found that using Strategy A (non-pharmaceutical control

measures only), COVID-19 will eventually die out in the population if at least 60% of the

population comply with personal protection policy such as effective use of face mask while

in public, observing social distancing, regular use of hand sanitizer among others with about

60% of detected exposed individuals comply with the compulsory quarantine policy. Also,

it is possible to eliminate the disease in the population when only pharmaceutical measures

are implemented, if about 20% of early diagnosed individuals is given timely treatment with

at least 20% of the hospitalized individuals being provided with timely treatment (Strategy

B), if at least 20% of the delayed diagnosed individuals receives timely treatment and timely

treatment is administered on about 20% of the hospitalized individuals (Strategy C), or if

about 20% of early diagnosed individuals is given timely treatment with at least 20% of each

of the delayed diagnosed and hospitalized individuals given timely treatment. However, it is

most effective to eliminate the disease in the population using combination of pharmaceutical

and non-pharmaceutical control measures (Strategy E), if about 20% of the population com-

ply with personal protection regulation with about 20% of the detected exposed individuals

comply with quarantine policy, and early treatment is administered on at least 20% of each

early diagnosed, delayed diagnosed and hospitalized individuals.

Therefore, this work suggests combination of pharmaceutical and non-pharmaceutical

measures including strict enforcement of personal protection (such as the use of hand sanitizer,

social distancing compliance and use of face mask among others), population screening and

testing to detect new cases, provision of a timely treatment support for the early diagnosed,

delayed diagnosed and hospitalized infected individuals along with lockdown imposed on

the population as a strict measure to be taken by Malaysian authority and policy makers to

effectively curtail COVID-19 spread in the country.

The present model is formulated to incorporate five control parameters to analyse the effect

of different strategies for their implementation on the dynamics of COVID-19 population.

However, further studies may take into consideration the development of non-autonomous

version of the model to derive the optimal control profiles that are required for each strategy

to effectively minimize the spread of COVID-19 population in Malaysia using Pontryagin’s

Maximum Principle. Also, cost-effectiveness analysis may be performed to derive the cost-

benefits associated with control strategy implementations.
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