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Sperm cryopreservation is a powerful tool for the livestock breeding program. Several

technical attempts have been made to enhance the efficiency of spermatozoa

cryopreservation in different farm animal species. However, it is well-recognized that

mammalian spermatozoa are susceptible to cryo-injury caused by cryopreservation

processes. Moreover, the factors leading to cryo-injuries are complicated, and the

cryo-damage mechanism has not been methodically explained until now, which

directly influences the quality of frozen–thawed spermatozoa. Currently, the various

OMICS technologies in sperm cryo-biology have been conducted, particularly

proteomics and transcriptomics studies. It has contributed while exploring the molecular

alterations caused by cryopreservation, identification of various freezability markers and

specific proteins that could be added to semen diluents before cryopreservation to

improve sperm cryo-survival. Therefore, understanding the cryo-injury mechanism of

spermatozoa is essential for the optimization of current cryopreservation processes.

Recently, the application of newly-emerged proteomics and transcriptomics technologies

to study the effects of cryopreservation on sperm is becoming a hotspot. This review

detailed an updated overview of OMICS elements involved in sperm cryo-tolerance and

freeze-thawed quality. While also detailed a mechanism of sperm cryo-injury and utilizing

OMICS technology that assesses the sperm freezability potential biomarkers as well as

the accurate classification between the excellent and poor freezer breeding candidate.
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INTRODUCTION

Sperm cryopreservation has become a popular technique for the
long-lasting semen preservation of genetically superior animals,
related transgenic lines, and mammalian endangered species
(1, 2). Besides, cryopreservation assists the wide spread of
genetic diversity, and contributed greatly into the extension
of reproductive technologies worldwide, such as artificial
insemination and in-vitro fertilization (3).

However, cryopreservation can have a detrimental effect
on the normal physiology of sperm, causing damage and
modifications that eventually lead to the death of the sperm,
thereby reducing freeze-thawed quality parameters (2).
Furthermore, the conflicts in sperm size, shape, and lipid-protein
content among the species demonstrate that cryopreservation
methods are not fairly efficient in all species (4). It has been
recorded by Grötter et al. (5) that farm animals like bull, ram,
and boar produce more cryo-sensitive spermatozoa than human,
rabbit, cat, and dog. In addition to the interspecies variability,
many other variables such as freezing-thawing rates, type of
semen extenders or cryo-protectants, the origin of spermatozoa
(epididymal or ejaculate sperm), seasonal fluctuations, and even
inter-or intra-individual variations also influence the success of
the cryopreservation method (6, 7).

In 1937, glycerol was used as freezing medium for semen of
bull, ram, stallion, boar, and rabbit at cooling (−21◦C) phase.
The good cryo-protective effects were obtained when the glycerol
concentrations ranged from 0.5 to 2M (8). Then, about 10
years later, the Polge et al. (9) further confirmed the positive
effects of glycerol on frozen poultry semen. However, the glycerol
causes toxicity in sperm by denaturation of protein, alteration
via actin interactions, and induction of plasma membrane
fragility during cryopreservation (9–11). Another significant
breakthrough was achieved during the 1950s, when dry ice
was replaced by liquid nitrogen as a freezing medium; since
sperm can be preserved viable at −196◦C unlimitedly. On the
contrary, dry ice cannot completely stop the metabolic activity
of mammalian cells (12). However, it should be noted that
some drawbacks still exist about the concept whether storage in
liquid nitrogen is completely harmless to the viability of frozen
sperm (13, 14).

Impact of cryopreservation on sperm biology produced
novel consequences; and has led to the development of
modern cryopreservation techniques where particular proteins,
antioxidants, and cryo-protective agents are integrated into the
freezing medium to enhance the cryo-survival of spermatozoa
(15). There has been no genetic selection of the breeding stocks
for semen cryopreservation in animal breeding programs, even
though improvement has been found in outlining the major
genes involved in spermatozoa cryo-biological function (16).
Although it has been proved that some sperm protein markers
are correlated with high cryo-tolerance, their function is reliant
on the presence of mRNA (7). It has been recommended that
spermatozoa RNAs evaluation provides valuable information on
their biological function (16, 17).

However, to date, there is a limited collection of
literature about the associations of OMICS with spermatozoa

freeze-thawed quality of farm animals. The spermatozoa freeze-
thawing resilience varies based on their physical characteristics,
such as size, shape, and lipid content. Therefore, it is difficult
to establish a standardized freezing technique for the breeding
management in various species of animal. The review explored
how cryopreservation alters the structural and molecular
integrity of freeze-thawed spermatozoa. Additionally, the review
also details the current understanding of the OMICS element
present in the farm animal spermatozoa and their potential use
in predicting sperm cryo-tolerance.

CRYOPRESERVATION DETERIORATES
SPERMATOZA FREEZE-THAWED QUALITY

Cryopreservation damages the sperm in a variety of ways such as
ultra-structural damage and sub-lethal damages that encourage
oxidative and osmotic stresses, which amend lipid and protein
configuration, decrease motility and viability, cause injury to
mitochondria and spermatozoa tail, and intensify sperm DNA
fragmentation, leading to a decline in freeze-thawed sperm
quality as shown in Figure 1 (2, 18). A spermatozoon consists
of several membranes, such as plasma membrane, mitochondrial
membrane, and the acrosomal membrane. These membranes
act as physiological barriers that must remain intact to ensure
sperm viability, particularly after cryopreservation (13, 19).
Cryopreservation induces structural damages of mitochondria,
altering the biochemical processes involved in ATP production
and ultimately reducing spermatozoa freeze-thawed viability and
motility (20).

Structural and Molecular Integrity of
Freeze-Thawed Spermatozoa
The spermatozoa plasma membrane is the midline between the
inner and outer environments. The plasma membrane plays
a vital role for male and female gametes, displaying receptors
responsible for sperm–oocyte interactions (21). Integrity of
membrane-intact spermatozoa is required for survival in the
female genital tract. Alterations in membrane structures may
be associated with dysregulation of the lipids, resulting in
oxidative stress (22). The higher ratio of unsaturated to saturated
fatty acid in the plasma membrane makes more susceptible to
cryopreservation-related damage and peroxidation (23). More
damage has been detected in the plasma membrane and
acrosome membranes during freezing-thawing cycle because
these parts are more exposed to cryo-environment and thus
suffering from ultra-structural biochemical and functional
changes. These changes inhibit spermatozoa movement in
the female reproductive tract, reducing fertility in animal
species (24).

The structural and functional integrity of the spermatozoa
acrosome is considered necessary to attain high fertility; however,
cryopreservation can damage the acrosomal layer, diminishing
the ability of spermatozoa to penetrate the zona pellucida
(25). Cryopreservation can affect the acrosomal membrane and
induce a pre-acrosomal reaction, thus influencing the viability
and quality of the spermatozoa. Sperm freeze-thawing induces
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FIGURE 1 | Scheme represents cryopreservation damages in the sperm cell, whereas an excess induction of oxidative stress in resulting ROS production can

deteriorate the sperm plasma membrane and acrosomal membrane and eventually alter the molecular structure (DNA). ROS, Reactive oxygen species; H2O2,

Hydrogen peroxide; •O−

2 , Superoxide radical; NADPH, Nicotinamide adenine dinucleotide phosphate; ONOO−, Peroxy nitrate, NO; Nitric oxide.

capacitation, and sudden occurrence of acrosome reaction-like
changes in mammalian spermatozoa (1, 2). The acrosomal
reaction further assists the sperm to achieve fertilization, hence
sperm cell quality is evaluated based on proper capacitation,
acrosomal reaction, regular fertilization, and early embryonic
development (26).

Spermatozoa DNA integrity is considered very important
because it protects the genetic material and transfers the paternal
characteristics into offspring, It has been found that damaged
DNAmay harm fertilization, embryogenesis, and the healthy live
birth rate in mammals (27). Spermatozoa DNA disintegration

is characterized by single and double-stranded DNA breaks,
which occur during or after DNA wrapping; some of these
breaks might escape the DNA repairing mechanism and be
transferred into mature spermatozoa. Aberrant spermatozoa
chromatin packaging, oxidative stress, and abortive apoptosis are
the etiological factors that lead to DNA strand breaks (28, 29).
For successful fertilization after sperm penetrates the oocyte, the
spermatozoa chromatin material must undergo de-condensation
(30). Cryopreservation can damage spermatozoa DNA integrity,
influencing the sperm functional potential and the successful fetal
development (31).
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The Mechanism of Spermatozoa
Cryo-Injury in the Cryopreservation
Methods
During the cryopreservation process, the mammalian
spermatozoa have to endure various types of stresses caused
by ice formation, chemical toxicity, and oxidative stress, which
mainly damage cytoplasm membrane, consequently leading to a
lower post-thawed quality and fertility (10, 32, 33). According to
the traditional theory, the cryo-damages of mammalian cells are
mainly derived from ice crystal formation and chemical toxicity.
However, different from other somatic cells, spermatozoa cells
contain lower water content and higher protein concentration.
In general, the water content in spermatozoa is ∼60% and lower
than that of typical somatic cells (>80%) (34). Therefore, it is
presumed that the effects of ice formation on spermatozoa may
be less as compared to other somatic cells. However, despite
the above hypothesis, some researchers still think that it is
necessary to prevent ice formation in spermatozoa. Some specific
protectants, such as antifreeze proteins (35, 36) or synthetic
ice blockers (37) were used to modify ice crystal shape during
sperm cryopreservation. But, it should be noted that disputes
related to ice formation still exist. Additionally, the sperm plasma
membrane is extremely sensitive to osmotic stress. However, ice
formation can aggravate the effects of osmotic stress on sperm
during freezing (38). In addition to cited factors, the oxidative
stress caused by cryopreservation should not be neglected,
because long-time exposure to oxygen cannot be completely
avoided during cooling or freezing (39–41).

When reactive oxygen species (ROS) exceeds the defense
mechanisms of sperm, consequent damage occurs in the cell
membrane structure and molecular modification as well. This
damage can reduce post-thawed fertility of spermatozoa, and
the zygotes or embryo often fail to be carried through to full-
term pregnancy (42, 43). The equine spermatozoa have the
potential to produce ROS, and the average level of ROS plays a
vital role in the signaling events that control sperm capacitation
(31, 44), spermatozoa acrosome reaction, hyper-activation, and
sperm–oocyte fusion (45). High levels of ROS production can
cause polypeptide chains in the spermatozoa to become fractured
that may reduce ATP production, which leads to inadequate
axonemal phosphorylation, increased lipid peroxidation, and loss
of motility.When the equilibrium between ROS and antioxidants
is disturbed, leading to malformed spermatozoa and eventually
male infertility (46, 47), and it is considered the main causative
factor for spermatozoa DNA damage (39). The only reactions
that can occur in frozen aqueous systems at −196◦C are
photophysical events such as the formation of free radicals and
the production of breaks in macromolecules, and these events
support the damaging of sperm DNA material (48). However,
the expected increase occurs in ROS production during freeze-
thawing; thus cells become under rescue and facing oxidative
stress. ROS manufactured as byproducts of redox reactions, it
is essential for cellular function and acts as signaling agents, the
stimulation of specific transcription factor-like “NF-kB and AP-
1” to sustain energy metabolism and hence to rescue the cell (49).
The manufacturing of ROS during spermatozoa freezing is well-
reputable, although the freezing and thawing cycle altered the

electron transport chain in mitochondria and oxidase NADPH
in the plasma membrane (50).

RELEVANCE OMICS EXPLORATION AND
SPERMATOZOA CRYO-TOLERANCE

Semen from bulls, boars, and rams were tested for motility
parameters using the computer-assisted sperm analyzer (CASA)
and found to be statistically significant, although there are still
major variations in their ability to develop viable embryos, both
in vitro and in vivo (51, 52). The transcriptome and proteome
monitor the genome expression, and along with phenotypic
traits and environmental knowledge provide an opportunity
for a systematic OMICS approaches to understanding normal
and abnormal cell biology (53). Identification and validation
of OMICS biomarkers, such as genes, transcripts, proteins,
and metabolites, primarily associated with seminal plasma and
spermatozoa of livestock species, have a great potential to
improve the reproductive efficiency of farm animals. Single
nucleotide polymorphisms (SNPs) are the most frequent type
of mutation in the genome, and these single base substitutions
are correlated with perceived genetic features in the DNA code
(54, 55). For example, nucleotide substitutions in the coding
region of FSHβ, the beta-subunit follicle-stimulating hormone
(FSH) gene, were associated with reduced semen quality, sperm
cryosurvival, and conception rates in beef cattle (56). Metabolites
such as 2-oxoglutaric acid and fructose are potential biomarkers
of the quality and fertility of the frozen sperm of the bull (57).
The proteome (PEBP4) also appears to be a reservoir of potential
biomarkers related to bull spermatozoa—freezing and fertility
(58). Increasing evidence suggests that transcriptoms such as
mRNA, microRNA (miRNA), small non-coding RNAs, and piwi-
interacting RNA (piRNA) may have a functional role in early
embryogensis and serve as biomarkers of male reproductive
performance. To that purpose, RNA sequencing (RNA-Seq) and
other approaches have been used to assess the occurrence and
quantity of RNA in animal freeze-thawed spermatozoa (59–
61). The use of current omics technology in cellular biology
is the need of the day and an excellent tool for exploring
spermatozoa molecular occupation. Cryo-biology plays a crucial
role in the preservation of genetics, but it can degrade the
consistency of spermatozoa. The wide range of genetic variations
in freezing-thawing spermatozoa has encouraged the selection
of breeding animals whose semen can tolerate cryopreservation
stresses (Figure 2).

Proteomics May Provide an Opportunity
for the Elucidation of Spermatozoa
Cry-Tolerance
Currently, seminal plasma proteins are considered the basic
units in advanced reproductive technology, and it is evident
that proteins are involved in different spermatozoa biological
mechanisms such as energy production, the glycolysis cycle,
the citric acid cycle, and oxidative phosphorylation, which
maintain the sperm in a physically active state (62). Some studies
illustrate common issues regarding frozen stimulus damages of
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FIGURE 2 | Schemes showed five important phases of sperm biotechnology: Phase I highlighted the semen collection from farm animals, phase II showed semen

cryo-storage at liquid nitrogen where temperature is −196◦C and produces various stresses which changed the omics elements, phase III highlighted the sperm

thawing process, phase IV suggested utilization of OMICS tools for development of cryo-markers, and the last phase supposed the sperm cryo-tolerance efficacy and

led to successful fertilization. OS, Osmotic stress; CS, Cold shock; ICIC, Intracellular ice crystal Formation; ROS, Reactive oxygen species.

bovine spermatozoa. A former study matched protein levels in
pre- and post-thawed sperm using isobaric tags for comparative
and complete quantitation (iTRAQ) technology and found that
variations in the identified proteins affected the quality of freeze-
thawed sperm, probably decreasing the fertilizing capacity in
swine (63). There are some definite spermatozoa proteomic
markers of the good freezer and bad freezer animals that have
been identified in domestic animals (64); a higher level of voltage-
dependent anion channel 2, heat shock protein 90, and low level
of triosephosphate isomerase is associated with good freezability
in boar sperm (65, 66).

There is considerable variability in spermatozoa ability
to withstand cryopreservation procedures between and
within ejaculates. Some sperm-specific proteins have been
identified as associated with the post-thawing phenomena,
and their expression patterns are involved with cell resistance
against freeze-thaw damage. Furthermore, the differential
expression patterns of seminal plasma and sperm proteins
could be developed as freezability biomarkers (63, 64, 67).
Vilagran et al. (68) recognized VDAC2 as a possible positive
biomarker of spermatozoa cryopreservation in swine, whereas
the occurrence of VDAC2 in higher quantities in good
cryo-tolerance spermatozoa suggests its contribution in
the protection of spermatozoa from changes in membrane
fluidity through improved regulation of ion transportation

across the membrane during cold shock trials in the
cryopreservation process. The higher level of fertility-linked
28-30-kDa heparin-binding proteins (HPBs) in seminal
plasma enhances the conception rate by 13% while comparing
to lack of these proteins, and also provides better cryo-
protective support during the cryopreservation (69). It has
been reported that the higher levels of fertility-linked 28–
30-kDa heparin-binding proteins (HPBs) in semen could
provide better cryo-protective support to sperm morphology
and membrane integrity, achieving a 13% higher conception
rate compared with that induced by semen lacking these
proteins (22).

We acknowledged some enzymes in the good freezability
semen that guarded sperm against oxidative stress, and it found
in two forms (Rho and Pi) of glutathione S-transferase (GST)
group. Hence, an enrichment of defensive intracellular proteins
and membrane enzymes in spermatozoa of good freezability
would be a great advantage, as these sperm cells are wide-open to
ROS production during cryo-stimulus and their function could
be related to enhanced protection of spermmembrane (70). Boar
spermatozoa genomics analysis indicated that the protein level
of outer dense fiber 2 (ODF2), heat shock protein (HSP90AA1),
A-kinase-anchoring proteins 3 and 4 (AKAP3 and AKAP4),
voltage-dependent anion channel 2 (VDAC2), triosephosphate
isomerase 1 (TP1), and acrosin-binding protein (ACRBP), were
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associated with good freezability semen (63, 64). AKAP4 and
AKAP3 were found in the fibrous sheath of spermatozoa
flagellum and are involved in sperm motility and morphology.
High expression of AKAP4 or AKAP3 in freeze-thawed
spermatozoa was linked with premature capacitation (71).

Adenylate kinase isoenzyme 1 (AK1) and
phosphatidylethanolamine-binding protein 1(PEBP1) were
found abundantly in bull, horse, and boar spermatozoa with
higher cryo-associated rates. In contrast, the T-complex protein 1
subunits (CCT5 and CCT8), epididymal sperm-binding protein
E12 (ELSPBP1), proteasome subunit α type-6, and binder of
sperm 1 (BSP1) were predominately found in bull spermatozoa
with lower fertility and freeze-thawing rates (72). In cattle bull,
many studies have attempted to identify protein markers of
sperm cryo-tolerance or freeze-thawed semen fertility by the
quantifying seminal plasma proteins (73–75). These studies
identified BSPs as negatively related to the freezing ability or
fertility in sperm cell either in seminal plasma (76, 77). The
sperm-enriched proteomes identified based on access code,
regulation, location, and function in different mammals are
shown in Table 1.

Could the Spermatozoa Transcriptomics
Profiling Provide Some Inspirations?
The underline mechanisms behind the effect of cryopreservation
on sperm characteristics are not entirely understood. Genes and
mRNA stability, protein expression, and epigenetic content of
spermatozoa are thought to be modulated during the freezing-
thawing process. Though, Ostermeier et al. (89), trusted that
transcripts were expressed during spermatogenesis and that
resistant transcript are assisted the sperm in struggling against
the injury persuaded by the freezing-thawing cycle, the other
residents of sperm transcripts were promptly degraded in
response to cryo-stimulus. Some constraints of their study
were that the authors could not elucidate why some novel
transcripts were present. Some transcripts were upregulated after
the freezing and thawing cycle (89).

Cryopreservation can affect the expression of critical genes
such as genes encoding α, and β inhibin are potential candidates
as fertility markers because both are significantly associated with
sperm acrosomal integrity and motility (90). The embryogenesis-
linked BCL2 like 11 (BCL2L11), BRCA1, and DNA that repair
linked full-length transcripts in fresh bull semen were found
abundantly in spermatozoa and are associated with structural
components of ribosomes, while the transcripts detected in the
lowest amounts are connected with ion transporter activity (91).
Xue-Bing (92) described the ribosomal protein L31 (RPL31),
which belongs to the ribosome multipart and is situated
in the 60S subunit of the ribosome, as being differentially
expressed between fresh and frozen-thawed sperm. The authors
concluded that the RPL31 gene could be among other growth
regulation genes in early embryonic growth. Nonetheless,
the high expression of RPL31 in cryopreserved sperm may
be a result of cold stress and demands further exploration.
Sperms are susceptible to oxidative damage due to their high
polyunsaturated fatty acid content. Hence, glutamate-cysteine

ligase catalytic subunit (GCLC) gene regulation in freeze-thawed
sperm could be a protective comeback of the sperm to cold
shock and oxidation stress. Besides, we found in a preceding
work that the protein glutathione transferase mu5 (GSTM5), a
fellow of the glutathione metabolic pathways, was upregulated in
freeze–thawed sperm (93).

The role of transcriptomes such as sperm motility cation
channel sperm associated 1 (CATSPER1) and sperm associated
antigen 1 (SPAG1) in fertility and development of sperm
hyperactivated motility has been clearly demonstrated in infertile
male candidates; the knockout studies indicated that these
transcripts are indispensable for the structural integrity of
sperm (94, 95). Chen et al. (96) discovered four novel genes
(e.g., R1A10, R1C4, R4A1, and R4D2), in fresh and cryo-
preserved bull spermatozoa, were differentially expressed, and
sequence results declared all four genes are regulated by
ncRNAs transcripts, which may play a significant role during
the freezing-thawing cycle and require further study (96).
Cytochrome c oxidase polypeptide 5 (COX5 A) and (COXI1) are
essential for mitochondrial function (24, 97). Duringmammalian
sperm and oocyte fusion, phospholipase C zeta1 (PLCZ1) and
phospholipase C beta1 (PLCB1) monitor the calcium signaling
and aid sperm activation. High levels of PLCZ1 were found
in spermatozoa, which are associated with phosphatidylinositol-
linked enhancement of oocyte maturation via Ca2+ oscillations
(98). The freeze-thawed sperm enriched transcripts related to
fertility and cryo-sensitivity identified with a gene symbol, gene
name, and functions are shown in Table 2.

The Potential Metabolomics Profiling and
Sperm Cryo-Tolerance
A wide range of metabolomics biomarkers have been identified
in sperm cells from boars (99), bulls (100), and goats (101),
and these studies indicated that seminal fluid and spermatozoa
metabolites might suggestively be connected to male breeding
capability. The metabolites are assessed through developmental
biological studies and thereby serve as metabolomics markers. In
mouse sperm, the role and interaction of glycolytic metabolites
with tyrosine phosphorylation were analyzed, whereas the
outcome of this interaction is energy production which is
vital for sperm freeze-thawed viability and motility (102).
Amino acids play important roles in cellular physiology while
also participating in the crucial phase of sperm cryobiology
(103). In ram sperm, amino acid provides protection and
regulation of metabolic activity and protects spermatozoa during
cryopreservation, thereby decreasing lipid peroxidation and
injury caused by free radicals (104).

In the meanwhile, carbohydrates are also present in the
seminal plasma of animals and solely utilized in spermatozoa
energy metabolism pathway (105). Spermatozoa consumed
the surrounding seminal nutrients available in semen
plasma and that nutrient metabolites, one way or another,
control the signaling pathways and elaborate in spermatozoa
hyperactivation, motility, capacitation, acrosomal reaction,
freeze-thawing cycle, and spermatozoa–oocyte combination
(106). Spermatozoa can be genetically (e.g., transcription and
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TABLE 1 | The freeze-thawed sperm enriched proteomes identified based on access code, regulation, location, and function in different farm animals and could be

evaluated as a cryo-tolerance biomarkers.

Protein name Protein

symbol

Organism Access

code

Protein

regulation

Location Function during

cryopreservation

References

Dihydrolipo amidedehydrogenase

precursor

DLD Sus scrofa P09622 Up Mitochondria Hyperactivation of

spermatozoa during

capacitation and

acrosome reaction

(78)

Inositol-1(or 4)- Monophosphatase IMPA1 Bos Taurus/Sus

scrofa

P29218 Up Cytosol Key enzyme of the

phosphatidylinositol

signaling pathway

(78)

S100 calcium binding protein A9 S100A9 Bos taurus/Sus

scrofa

P06702 Down Cytosol Ca2+ binding protein (78)

Soluble adenylyl cyclase (sAC) ADCY10 Oryctolagus

cuniculus

Q8C0T9 Fibrous sheet cAMP production (79)

β1,4galactosyltransferase 1 (GalT) B4GALT1 Bos taurus P15535 Apical Region ZP3 (N-acetyl

glucosamine)

(80)

Cysteine rich secretory protein 1 CRISP1 Bos taurus/Equus

caballus/Sus

scrofa

Q03401 Equatorial

segment in

capacitated sperm

Sperm-Oolemma

Penetration

(81)

Cysteine rich secretory protein 1 CRISP2 Capra hircus/Bos

taurus/Sus scrofa

P16563 Inner acrosome

membrane

Sperm-Oolemma

Penetration

(81)

ADAM metallopeptidase domain 2 ADAM2 Bos

taurus/Oryctolagus

cuniculus

Q99965 Integral membrane

protein

Sperm-Oolemma

Penetration

(82)

ADAM metallopeptidase domain 3A ADAM3 Bos taurus/Sus

scrofa

Q62287 Integral membrane

protein

Sperm-Oolemma

Penetration

(83)

Tektin 1 TEKT1 Bos taurus/Sus

scrofa

Q969V4 Down Flagella Flagella- related (84)

Septin 4 SEPT4 Bos taurus O43236 Down Annulus Flagella- related (85)

Isocitrate dehydrogenase subunit α IDH3A Bos taurus P50213 Down Mitochondria Energy- Related (139)

Izumo sperm-egg fusion 1 IZUMO1 Bos taurus/Capra

hircus/Sus scrofa

Q9D9J7 Sperm cell-surface

protein

Fertilization (64)

Prostaglandin D2 synthase PTGDS Ovis aries/Sus

scrofa/Bos Taurus

O02853 Testis, epididymis

and prostate

Male reproductive

system

(71)

Outer dense fiber protein 2 ODF2 Sus scrofa/Bos

taurus

Q6AYX5 Sperm tail outer

dense fibers

Association- with

semen freezability

(64)

Voltage-dependent anion channel 2 VDAC2 Sus scrofa Bos

taurus

CAB94711 Testis Semen freezability (63)

Phosphatidylethanolamine-binding

protein 1

PEBP1 Bos taurus NP001028795 Spermatozoa Related to conception (86)

Seminal plasma protein PDC-109

precursor

BSP1 Bos taurus NP001001145 Plasma membrane Sperm capacitation (86)

Sperm acrosome associated 1 SPACA1 Sus scrofa/Bos

taurus

Q9HBV2 Sperm acrosomal

membrane-

associated

protein

Association with sperm

freezability

(87)

Epididymal sperm-binding protein 1 ELSPBP1 Bubalus

bubalis/Sus scrofa

Q96BH3 Epididymal origin Sperm fertility (88)

translation events) switched off, but metabolically is always
switched on (107). The metabolic biomarker like “2-oxoglutarate
aminotransferase” was mainly spotted in the boar spermatozoa
(108), and was significantly found in low viable freeze-thawed
sperm (109). The bioinformatics tools showed that metabolic
pathways are playing an essential role in sperm cryopreservation,
and hereby include the following pathways–citrate cycle “TCA
cycle,” gluconeogenesis, dicarboxylate metabolism, glyoxylate,
pyruvate metabolism, and galactose metabolism (110).

Single Nucleotide Polymorphisms Markers
Can Be Used for the Study of Sperm
Cryo-Tolerance
The genome-wide association studies (GWAS) observed a
sequence variation in the genome so-called SNPs, together with
the pedigree and phenotypic evidence, thereby performing an
association analysis and identifying genes or regulatory omics
element that are significant for the trait of interest. GWAS
approaches are much needed and practical in humans while
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TABLE 2 | The freeze-thawed spermatozoa enriched transcripts identified based on their functions, location, transcripts per million (TPM), and unique gene reads (UGR)

and can be evaluated as freezability biomarkers in farm animals.

Gene Symbol Gene Name Access Code Function during

cro-preservation

Organism Location TPM UGR

PRM1 Protamine 1 NM_174156 Sperm progressive motility Bos taurus/Sus

scrofa

Chromosome25/

Chromosome 03/

8,659 120

YWHAZ Tyrosine 3-

monooxygenase/tryptophan

5-monooxygenase

activation protein, zeta

NM_174814 Association with Y

chromosome

Bos taurus/Sus

scrofa/Equus

caballus

Chromosome

14/Chromosome

04/Chromosome 09

3,050 84

FABP1 Fatty acid binding protein 1 NM_001443 Sperm metabolism Bos taurus/Sus

scrofa

Chromosome

11/Chromosome 03/

2,923 1,074

SCP2D1 Sterol-binding domain

containing 1

NM_001040507 Bos taurus/Equus

caballus

Chromosome

13/Chromosome 22

2,726 182

THSD4 Thrombo spondin type 1

domain containing 4

NM_001078030 Hydrolase, peptidase

activity

Bos taurus/Equus

caballus

Chromosome

10/Chromosome 01

1,961 2,506

CHMP5 Charged multi vesicular

body protein 5

NM_001034682 Inhibit apoptosis Bos taurus/Sus

scrofa/Equus

caballus

Chromosome

08/Chromosome

10/Chromosome 23

1,693 260

NR2E3 Nuclear receptor subfamily2

group E member 3

NM_001167900 Maintenance of proper cell

function

Bos taurus Chromosome 10/ 1,610 1,241

SV2C Synaptic vesicle

glycoprotein 2C

NM_001192019 Positively regulates the

releasable pool of secretory

vesicles

Bos taurus/Equus

caballus

Chromosome

10/Chromosome 14

1,518 2,592

MGC137055 Det1and ddb1 associated NM_001077080 Oxygen binding and carrier

activity

Bos taurus Chromosome 19 1,434 74

GTSF1L Gametocyte specific factor

1-like

NM_001079601 Spermatogenesis Bos taurus/Equus

caballus

Chromosome

13/Chromosome 22

1,416 155

TOE1 Target of EGR1, member1

(nuclear)

NM_001075594 Cellular signaling, growth

and proliferation

Bos taurus/Gallus

gallus/Equus

caballus

Chromosome

03/Chromosome

08/Chromosome 02

1,359 1,743

SLC16A7 Solute carrier family 16

member 7

NM_001076336 Monocarbooxylic acid

trans-membrane transporter

activity

Bos taurus Chromosome 05/ 1,284 2,831

MCOLN2 Mucolipin 2 NM_001192734 Carbonate dehydratase

activity and zinc ion binding

Bos taurus/Equus

caballus

Chromosome

03/Chromosome 05

1,231 1,756

UNC119 Unc-119 lipid binding

chaperone

NM_001034645 Role in the mechanism of

photoreceptor

neurotransmitter release

through the synaptic vesicle

cycle

Bos taurus/Equus

caballus

Chromosome

19/Chromosome 11

1,136 790

CXCR4 C-X-C motif chemokine

receptor 4

NM_174301 Chemokine activity and

heparin binding

Bos taurus Chromosome 2/ 1,095 975

PAG5 Pregnancy-associated

glycoprotein 5

NM_176616 Aspartic-type endopeptidas

activity

Bos taurus/Ovis

aries/Capra hircus

Chromosome

29/Chromosome

21/Chromosome 13/

971 962

MMP2 Matrix metallopeptidase 2

(gelatinase A, 72-kDa

gelatinase, 72-kDa type IV

collagenase)

NM_174745 Stimulating Ca2+ ATPase

activity

Bos taurus/Sus

scrofa

Chromosome

18/Chromosome 06

933 1,417

ITPA Inosine triphosphatase

(nucleoside triphosphate

pyrophosphatas)

NM_001076282 Chromosome organization Bos taurus/Equus

caballus

Chromosome

13/Chromosome 22/

919 458

CCDC181 Coiled-coil domain

containing 181

NM_001205801 Coiled-coil proteins are

important for the function of

the centrosome, and help

cell division

Bos taurus/Capra

hircus/Sus scrofa

Chromosome

16/Chromosome

16/Chromosome 04

919 144

DNAJB12 DNAJ heat shock protein

family (Hsp40) member B12

NM_001017946 Regulate molecular

chaperone activity by

stimulating ATPase activity

Bos taurus/Bos

indicus

Chromosome

28/Chromosome 28/

914 2315
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also required in farm animals to develop SNPs biomarkers
for phenotypic traits (111). Hering et al. (112) conducted the
GWAS study upon high and low semen motility of Holstein
bulls groups and identified the candidate gene INCENP, which
is closely located to SNPs markers (rs109416157), associated
with semen freezing quality. The progressive advancement in
OMICS techniques made possible to measure the link between
gene polymorphism and sperm freeze-thawed activity. RNA-
Seq datasets were used to identify SNPs, and a total of 40
SNPs were genotyped, while several polymorphisms in MS4A2,
MAP3K20, and ROBO1 genes were significantly associated with
sperm motility, membrane integrity, reduced cryo-induced lipid
per-oxidase, and DNA damage in the boar spermatozoa (17). The
genotyping frequencies are different among the genotype groups,
while the Gene Ontology terminology (e.g., stress response) is
relevant to polymorphisms, such as MAP3K20 (rs340643892),
APPL1 (rs339379734), and MS4A2 (rs339836492) and play an
important role in the cryopreservation stresses (113). Different
reports and evidence highlighted that polymorphisms in boar
spermatozoa could be used as SNPs markers for semen quality
(114). Nikbina et al. (137) performed a molecular experiment
and analyzed the four SNPs related to caprine LHβ genes in
exon3; these markers regulate the fresh and freeze-thawed semen
quality characteristics of the boar. The most powerful SNPs such
as FSHβ3 SNPs, FSHβ3-c, and FSHβ loci polymorphisms have
been tested and investigated by Dai et al. (56) in semen freeze-
thawed consistency characteristics and libido in goats. The results
were consistent with previously available reports showing the
impact of (FSHβ3) SNPs on semen quality in cattle bulls (56).
Five SNP markers have been identified and are closely correlated
with sperm freeze-thawed consistency and possible GnRH gene
polymorphism in Chinese water buffalo. An association study
found that g.3424T > C and g.3462C > A were used as high
ejaculate volume markers, while g.991T > C, g.1041T > C,
g.3424T > C, and g.3462C > A were used for decreasing sperm
abnormality markers (115). Although evidence is present among
the 3-UTR variants of the targeted mRNA, an association with
semen quality has been shown (116).

BIOINFORMATICS TOOLS FOR
CRYO-MARKERS DISCOVERY

Transcriptomic Tools
Advances in bioinformatics techniques have made it possible to
isolate high-quality RNA from sperm and to develop novel non-
invasive approaches to evaluate cryo-tolerance and post-thawed
quality biomarkers in animals (86, 117).

Spermatozoa contain a subset of RNAs, including mRNAs,
non-coding RNAs [ncRNA including microRNAs (miRNAs)],
mitochondrial (mtRNA), and ribosomal RNAs (rRNAs) that can
be routinely isolated from the sperm of several species including
bulls, horses, and pigs (16, 72, 118). This novel approach
is based on sperm RNA-sequencing (RNAseq) data analysis,
by comparing the mRNA profile between higher and lower
post-thawing semen to identify marker genes for mammalian
semen post-thawing (16, 17).

The bovine spermatozoa transcript profile remains
incomplete because previous studies have relied on
hybridization-based techniques and did not provide information
about full-length transcripts. In contrast, RNA-Seq studies
based on high-throughput sequencing technology can assemble
complete transcript sequences, including full-length mRNAs,
and identify novel splicing junctions (119–121). RNA-seq (e.g.,
Illumina RNA-seq), using high-throughput next-generation
sequencing (HT-NGS) technology that provides more excellent
resolution for transcriptome profiling compared with other
microarray technologies (122) and can identify candidate
genes associated with more or less cryo-tolerant sperm.
Gene annotation and gene analysis enable the researchers to
investigate the genes relevant to multiple spermatozoa functions.
Furthermore, the multiple candidate genes need to be validated
for their link with high semen cryopreservation potential (61).

Differentially expressed genes are validated by quantitative
real-time PCR (qRT-PCR), whereas the KASPTM assay analyzes
SNP biomarkers. Combined studies of the transcriptome and
proteome provide a clear picture of the genome, which could
differentiate individuals likely to have high and low sperm
cryo-tolerance (64). Microarray technology has been used to
study the molecular mechanisms of spermatogenesis and the
genomic etiology ofmale infertility. High-throughput technology
has been effectively used for global gene profiling for mouse
and bovine spermatozoa. A bovine oligonucleotide microarray
(Affymetrix Bovine Gene-Chip) has been used to profile the
transcript “fingerprints” of spermatozoa collected from high
low-fertility bulls (117). Bioinformatics tools were used to
select the differentially express genes and putative SNP markers
potentially associated with good post-thawing and low post-
thawing spermatozoa quality (113).

Next-generation sequencing (NGS) is the most reliable
method to determine the small RNA profile in bull and
pig spermatozoa. The sequencing of miRNAs and piRNAs in
the semen of the bull was performed concerning different
traits such as fertility, cryo-tolerance, and normal embryonic
development (123).

Proteomics Tools
High-throughput proteomic technology is especially useful
to discover the biomarkers. Once the clinical value of
proteomics markers are confirmed that it should be possible to
develop the other cheaper tools, such as protein microarrays,
mass spectrometry selective reaction monitoring (SRM), or
multiplexed ELISA for routine biomarkers testing in the
reproductive clinics (124). Proteins adenylate kinase isoenzyme1
(AK1), phosphatidyl ethanolamine-binding protein 1 (PEBP1),
epididymal sperm-binding protein E12 (ELSPBP1), and binder
sperm1 (BSP1) were noticed abundantly in the spermatozoa
from the bulls with higher artificial insemination (AI) fertility
rates and confirmed their differential expression by Western
blotting analyses. Moreover, a linear regression model was
also used to determine the link between the fertility rate and
protein abundance. This model investigated proteins like such
as CCT5 and AK1, both of which influence spermatozoa cryo-
tolerance and fertility rates in higher AI rates (88). Mass
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spectrometry-based targeted proteomics approaches such as
selected reaction monitoring are developed as a gifted tool for
the verification of candidate proteins in biological and biomedical
submissions. The unbiased “discovery” proteomics examination,
e.g., “shotgun’ proteomics,” can now deliver genome-scale
coverage and quantification of both proteomics and post-
translational modifications using extensive fractionation and
stable isotope labeling (125).

Differential labeling followed by the LC-MS/MS technique
was used to carry out proteomic analysis, and high numbers
of differentially expressed proteins were identified in
asthenozoospermia patients. The other non-proteomic
techniques such as ELISA, immunofluorescence, enzymatic
activity, flow cytometry, immunochemistry, and Western
blotting were also used to detect differentially expressed sperm
protein (126–128). More significantly, proteins are the primary
driving force in almost all cellular developments. Hence, protein
microarrays were established as a high-throughput apparatus
to overcome the constraint of DNA microarrays and provide
a direct platform for protein function analyses. At about the
same time, an additional protein microarray was settled through
the immobilization of purified proteins on glass slides. To
discriminate this type of array from the antibody arrays, they are
separated into analytical and functional (138).

Lipidomics and Metabolomics Tools
Like all tiny molecules, lipids are produced and metabolized
by enzymes that are influenced by the environmental factors
of a given biological system, for instance, by the nutrition
and temperature. Initial reports of mass spectrometric analysis
using soft ionization techniques such as matrix-assisted laser
desorption ionization (MALDI) and electrospray ionization of
multifaceted lipid mixtures were published by Wenk (129). The
foremost objective of lipidomics is the complete classification
of different lipid species and their natural roles concerning
the expression of proteins involved in lipid metabolism
and function, including gene regulation (130). Lipidomics is
relatively a new area of research that has seen rapid progress
in analytical technologies such as mass spectrometry (MS),
fluorescence spectroscopy, dual-polarization interferometry,
spectroscopy of NMR, and computational methods that help
the identification of the position of molecular species of lipids
(131). The phospholipids and fatty acid configurations of boar
spermatozoa for cryo-resistance are compared by using matrix-
assisted laser desorption and ionization time-of-flight mass
spectrometry (MALDI-TOF MS) in combination with thin-layer
chromatography and 31P NMR spectroscopy. Metabolomics
techniques like NMR and GC-MS have been widely used to
identify possible biomarkers for freeze-thawed sperm fertility
in cattle bulls (132) and men (133–135). Two well-known
techniques are used to study metabolomics biomarkers on
a wide range, MS-based methods and NMR spectroscopy-
based methods. Organic acids, carbohydrates, amino acids,
and lipid anti-oxidants are the major metabolites in seminal
fluids, and these classes were measured by spectrophotometric,

colorimetric, and thin-layer chromatography methods such as
“TLC” and NMR. High-resolution proton NMR spectroscopy
has proved to be one of the most potent bio-fluid and intact
tissue analysis technologies, providing a wide-ranging profile
of metabolite signals without isolation, derivatization, and pre-
selected parameters of measurement (136).

CONCLUSIONS AND FUTURE
PERSPECTIVE

The OMICS profiling data from various spermatozoa freezability
groups, in combinationwith advanced bioinformatics technology
consisting of Illumina RNA-seq, high-throughput next-
generation sequencing (HT-NGS) technology, multiplexed
ELISA, should be used to identify the routine biomarkers for
good and poor cryo-tolerance farm animals. Combining these
powerful technologies would provide a deeper insight into the
molecular and cellular changes induced by the freezing-thawing
process, and would allow data analysis in different cryopreserved
samples to determine the spermatozoa freezing capacity of farm
animal species. Besides, a validation technique is required to
approve whether candidate genes and putative SNP markers
may contribute to high cryo-tolerance of sperm. This useful
knowledge, which has been extensively presented in this report,
is important for the identification of potential biomarkers to
predict spermatozoa freezability more accurately and for the
development of new policies to improve the results of cryo-
preserved spermatozoa. Nevertheless, systematic analysis of the
specific genetic markers that may facilitate the post-thawing cycle
would be a feasible approach to distinguish amale breeding stock,
which has the excellent genetic potential for cryopreservation.
A long-lasting follow-up study on the subsequent offspring
obtained from good cryo-resistance freeze-thawed spermatozoa
is suggested for future works.
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