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Impact of data on generalization 
of AI for surgical intelligence 
applications
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AI is becoming ubiquitous, revolutionizing many aspects of our lives. In surgery, it is still a promise. 
AI has the potential to improve surgeon performance and impact patient care, from post-operative 
debrief to real-time decision support. But, how much data is needed by an AI-based system to learn 

surgical context with high fidelity? To answer this question, we leveraged a large-scale, diverse, 
cholecystectomy video dataset. We assessed surgical workflow recognition and report a deep learning 
system, that not only detects surgical phases, but does so with high accuracy and is able to generalize 
to new settings and unseen medical centers. Our findings provide a solid foundation for translating AI 
applications from research to practice, ushering in a new era of surgical intelligence.

Surgery is an indispensable element to the treatment of disease. It is estimated that 312.9 million major surgical 
procedures were performed worldwide in 2012, including 36 million in the United States  alone1. To put this in 
context, during an average 85 year lifespan it has been estimated that the average American will undergo more 
than nine surgical  procedures2. It is also well-established that the quality of surgeon performance has a critical 
impact on the quality and overall cost of care, with poor performance resulting in substantial increases in mor-
bidity, reoperation, and  mortality3–5. Yet, much of surgical training and credentialing is still performed as it has 
been for the past 100 years—namely, through mentored one-on-one graduated  training6,7.

Recent advances in arti�cial intelligence (AI) hold potential to enhance surgical training, improve surgeon 
performance and ultimately surgical outcomes. �is is particularly true for minimally invasive surgery (MIS). 
In general surgery for example, the MIS surgeon operates by viewing the surgical �eld via a live video stream 
acquired by a laparoscope, inserted into the abdomen. In these, as well as robotic procedures, most essential 
aspects of surgery are captured by video feed. It has also been established that certain critical parameters of 
surgical performance can be measured from video by human  observers3 these metrics can be used to predict 
patient outcomes. Taken together, this suggests that AI-based systems that are able to provide real-time recom-
mendations during surgery have great potential to support surgeons’ training and their decision-making  process8 
potentially reducing the risk for complications and improving  outcomes9,10.

A key challenge for machine-learning (ML)-driven AI is the need for correctly labeled, representative data 
to drive the learning process. Medicine in general, and surgery in particular, present unique challenges to the 
capture, labeling, and sharing of  data10. As a result, nearly every study of machine learning applied to surgical 
performance has been on a small (typically far less than 100) video recording procedure  set11–15. To date, the larg-
est publicly available dataset is Cholec80, which contains 80 videos of laparoscopic cholecystectomies performed 
by 13 surgeons from a single medical  center11. Given that it is well established that even human surgeons require 
well more the 100 repetitions of the same surgery to reach expert performance  levels16–18 and the fact that typical 
video classi�cation models in other domains are trained on more than 100,000  videos19,20, it seems unlikely the 
results reported on a few dozen videos represent the true potential of AI for surgery.

In this study, we focus on answering two key questions fundamental to the application of AI to surgery: (1) 
How many surgical video recordings are necessary to train an AI system to recognize the major phases of a surgical 
procedure? and (2) How robust is the learned model to new sources (surgeon and/or medical centers) of data? To 
answer these questions, we report the results of state-of-the-art ML on a dataset that contains 1243 videos of 
laparoscopic cholecystectomy—an order of magnitude (10 times) larger than all previously published studies.

We evaluated our ability to train a system to learn surgical context using the benchmark task of surgical 
phase recognition—that is, segmenting a video of surgery into the major steps that constitute the procedure. 
Phase recognition is a foundational step in automating surgical analysis applications and was used previously 
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in surgical modeling  challenges21. �e task of surgical phase recognition is similar to the task of general action 
 recognition19,22,23 but is more challenging due to the need to correctly label every second of surgery with a phase 
of the task, e.g. Dissection, Division, Separation, Packaging, and so forth. It is essential for predicting the next 
surgical task, identifying critical events timing during surgery and rapid navigation within a video, which facili-
tate various use cases such as post-operative debrief. Despite its bene�ts, routine post-operative debrief is not 
common. Mainly because in today’s work environment, reviewing a lengthy procedure, that just took hours to 
complete, is a time-consuming task that no surgeon has time for. �e ability to quickly summarize a video into a 
palatable version, in which every major element can be quickly viewed, is a step in the right direction. Overlay-
ing this, the recognition of particular adverse events, such as bleeding and bile spillage, and linking them to the 
particular phase of the procedure, will provide important analytics that can be the basis for targeted debrie�ng 
and educational interventions to enhance safety.

The challenge of generalization. �e core of our algorithmic approach is the application of recent 
advances in deep learning to video sequences. �e dramatic impact deep learning has had on AI in general, and 
computer vision in particular, is strongly related to the availability of large, representative datasets. In contrast to 
publicly available images and videos in online repositories that contain millions of  samples19,20,24 surgery videos 
are limited due to privacy and regulation issues. Additionally, the process of annotating surgical videos requires 
skilled personnel, making the curation process complex, slow and as a result—expensive.

�e success of deep learning on image-based tasks has led to growing interest in research applying similar 
ideas to video-based problems. Even though the two share many key elements, the main challenge when han-
dling videos is the addition of a temporal dimension, thus increasing the dimensionality and size of the data to 
be processed. A growing collection of large-scale video datasets, such as the work of Kay et al.19 and the work of 
Abu-El-Haija et al.20, have nonetheless enabled the development of state-of-the-art methods in video classi�ca-
tion and action recognition tasks, where the goal is to predict a single label for a given  video22,23.

Compared to general action recognition in video, the task of surgical phase recognition bene�ts from the fact 
that di�erent procedures of the same surgery are similarly structured. �e procedural �ow, the tools used, and the 
surrounding anatomic context are similar no matter where the surgery is performed and who is performing it. 
However, in contrast, in surgical phase recognition we need to detect relatively small di�erences across time—a 
change in tool, a change in anatomic target, or di�erence in how a tool is used. �ese details are sometimes dif-
�cult to discern, even for an expert surgeon. Further, the system must do this correctly for every second of video 
rather than computing a single class label for an entire video. �is makes it di�cult to predict both the amount 
of data necessary to train a model for surgical phase recognition, and the robustness of the model to natural 
variations that will occur in practice, and thus motivates our study.

Methods
Definitions of laparoscopic cholecystectomy phases. Gallbladder removal, or cholecystectomy, is 
performed more than 750,000 times annually in the US alone, mainly for benign gallstone disease which a�ects 
10–15% of  adults25. �e vast majority of gallbladder resections are done in relatively universal and prede�ned 
steps. �ese steps are the standard work�ow a surgeon goes through during surgery and are known as surgical 
phases.

Reviewing a surgical video and classifying each of its parts into the correct phase requires a set of guiding 
rules. �ese rules de�ne the transition between phases and the sub-tasks performed in each phase. Determining 
the right phase anthology is a challenging task. It is important to establish a generic set of rules which eventually 
reduce the potential for subjective judgment when labeling phases during surgery.

In this work, we de�ne seven laparoscopic cholecystectomy phases: Preparation, Adhesiolysis, Dissection, 
Division, Separation, Packaging, and Final inspection. Although phase de�nition is not standardized, phases 
were de�ned based on discussions with expert surgeons and AI researchers, and validated for relevancy by an 
iterative process of hands-on annotations experience, taking into account clinically-relevant and algorithmically-
meaningful considerations. In de�ning phases, we attempted to simulate a surgeon’s common work�ow, focusing 
on the goal or action performed in each phase, and using surgical tools as cues (when possible) to support the 
beginning of each phase.

• Phase 0: Preparation obtaining pneumoperitoneum, trocar placements, optimizing exposure through patient 
positioning and retraction. Generally, this will be the �rst phase, starting once the procedure begins or as 
the camera entered through the trocar. However, some videos lack this phase due to a delay in starting the 
recording and thus start at a later phase.

• Phase 1: Adhesiolysis dividing adhesions. It begins when the surgical tools (like scissors or monopolar hook) 
start separating the adhesions. �is phase is not mandatory and only performed when adhesions exist.

• Phase 2: Dissection dissecting hepatocystic triangle or separating gallbladder lower part from the liver bed. 
It begins when related surgical tools start the dissection and complete a�er achieving optimal visualization 
and skeletonization of key anatomical structures, e.g. cystic duct and cystic artery.

• Phase 3: Division performing cystic structures division. It starts with the introduction of a related surgical 
tool, such as a clip applicator, a ligature to occlude the cystic duct and artery, scissors, stapler, or even an 
energy device.

• Phase 4: Separation gallbladder dissection from the liver bed. �is phase begins when a separating tool enters 
or, in case the tool is already present as part of the previous phase, when it starts dissecting and separating 
the gallbladder from the liver bed.
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• Phase 5: Packaging gallbladder packaging. Phase starts when an endobag enters or �rst shown in the video 
stream. �is phase is not mandatory as surgeons might extract the gallbladder using a strong grasping instru-
ment.

• Phase 6: Final inspection a closing step when the surgeon is completing the operation by reviewing the 
abdominal cavity, extracting the gallbladder, removing instruments and trocars. �is phase begins when any 
act of procedure closure is done.

Although these phases aim to follow the progression of a typical laparoscopic cholecystectomy procedure, 
the order of appearance might change and vary due to di�erent reasons, e.g. phase 5 can occur a�er phase 6 in 
case the gallbladder is packed only at the end of the procedure. Moreover, the surgeon might alternate back and 
forth between phases, e.g. when cystic structures division is performed, the surgeon might choose to keep doing 
the dissection phase in order to further clear the cystic structures surrounding.

Phase de�nition in this work shares some common ground with the work of Twinanda et al.11, but we did 
modify a few phases a�er reviewing our dataset. �is is done in order to provide a more generic set of guidelines. 
We separate phase 2 (Calot triangle dissection) of Twinanda et al.11 into two di�erent phases: Adhesiolysis and 
Dissection. First, there is an application di�erence between adhesiolysis and dissection in terms of the method 
used by the surgeon, the patient’s condition, the excessiveness of adhesions, etc. And second, the fact that 
adhesions are not limited to the gallbladder and might include other organs not related to the Calot triangle. 
In addition, a�er reviewing procedures within our dataset we found that in a large number of cases gallbladder 
retrieval does not necessarily occur at the end of the procedure as in  Cholec8011. �is led to unnatural phase 
jittering between the cleaning phase and the retraction phase. In order to support this variation, we decided to 
combine the �nal visualization of the abdominal cavity and the extraction of the gallbladder as part of the �nal 
inspection phase.

We underline that these sets of guidelines were de�ned independently of any model training or performance 
analysis in order to avoid any biases.

Supplementary Table S4 illustrates phase distribution in our dataset. �e phases are relatively evenly dis-
tributed, with phase 1, which is more patient-speci�c and thus does not always take place, having the lowest 
number of instances.

Video preprocessing. All videos in this study are processed in the same manner. Initially, videos are pro-
cessed using FFmpeg 3.4.6 on Ubuntu 18.04 and all video streams are encoded with libx264, using 25 frames per 
second (FPS). �e video width is scaled to 480 and the height is determined to maintain the aspect ratio of the 
original input video. �e audio signal is removed from all videos.

Since videos are recorded during surgery and are not edited by the sta�, the original video has non-relevant 
segments at the beginning and end of the video �le. We trim o� these segments in order to avoid noise segments 
that are not relevant to the procedure. In order to achieve the trimmed video version, we use a background 
detection model. �is model was trained to identify non-relevant frames that were captured outside the body. 
�e non-relevant frames are then utilized to identify the actual start and end of the procedure in the full video 
and trim it down.

Preprocessing steps and the �nal veri�ed video �les are automatically processed and stored in a compliant, 
private, and secure cloud environment.

Phase classification models. Our method, further detailed below, relies only on surgical phase labeling. 
As a �rst step, it learns from short surgery clips, taking advantage of the temporal context instead of using static 
2D images, then the entire procedure is analyzed as a time series in order to learn long dependencies. In order to 
overcome  over�tting26 and increase the generalization of our approach, we train on a diverse dataset and evalu-
ate the models’ robustness against several key factors.

�e proposed surgical work�ow phase detection system is a two-step framework that consists of two modules, 
short- and long-term temporal context (Fig. 1). �e �rst module analyzes short-term spatio-temporal informa-
tion and generates a probability value for every phase in each second of video by analyzing local information, 
both in the spatial and temporal domain. �e second module is a long-term model that analyzes the entire video 
sequence by sequentially processing the �rst module predictions and outputs a single phase prediction for each 
second in the input.

�e short-term model is based on in�ating a Deep Convolutional Neural Network (DCNN) designed for 2D 
images into a 3D ConvNet model (I3D) designed for video action  recognition22. In practice, this is done by adding 
an additional temporal dimension to the original network. In addition, in order to capture long-range temporal 
dependencies, we use non-local blocks within the I3D  architecture23. �e I3D model is obtained by converting 
a 2D image classi�cation model. In this work, we follow Wang et al.23 and in�ate a ResNet-50  model27. We use 
a pre-trained ResNet-50 weights, trained on  ImageNet24 to initialize our I3D model weights, such initialization 
was shown to be bene�cial when converting 2D models to their 3D  counterpart22. Next, we train the model for 
the video action recognition task on the Kinetics-400  dataset19. �is pre-training step is done in order to achieve 
a temporal baseline model on a large-scale video dataset. Finally, we �netune the baseline model by training on 
the surgery video dataset, replacing the last layer which is a 400-way classi�cation layer with a randomly initial-
ized 7-way layer to match the number of phases in laparoscopic cholecystectomy  surgery22,28.

�e short-term model is trained to predict a single phase for each second of the surgical video. We consider 
each second as an independent sample and the model input is a short 2.56 s clip around that second. As videos 
are encoded at 25 FPS this yields a clip of 64 images. We use a mini-batch size of 16 clips and train on a 4-GPU 
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machine. Each mini-batch samples are randomly formed during training by randomly selecting a video and one 
of its seconds from the training set.

Each sample clip is �rst resized with its shorter side to 256 pixels. �e input spatial size is randomly cropped 
during training and center cropped during evaluation to a 224 × 224 crop. Following a per channel mean and 
standard deviation normalization using preset ImageNet values (mean = [0.485, 0.456, 0.406] and std = [0.229, 
0.224, 0.225]). Further augmentation is done during training, as part of producing the sample’s clip, by randomly 

Figure 1.  High-level �ow. (A) �e surgery input video (1) is divided into clips (2), one per second. Each clip is 
then fed to the short-term model which is based on an in�ated 3D network with non-local blocks architecture 
(3). �e predictions of (3) are sequentially fed to an LSTM network as part of the long-term model (4). �e 
outputs of (4) are phase prediction for each second in the input video. Performance evaluation is done by 
comparing these predictions to the ground truth labels (5). �e ground truth line is slightly indented in the 
y-axis to allow a better view of the results. (B) �e short-term model process each clip independently to obtain 
a So�Max probability vector, which represents a probability value for each phase as captured in the input clip. 
�e probabilities are illustrated by the histograms on the right-hand side. (C) Probability values produced by 
the short-term model are applied to create a sequence of phases that are fed to a single layer LSTM network. �e 
outputs of the long-term model are the �nal phase predictions.
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selecting one anchor (middle) frame from the 25 possible frames within a second. Optimization is done using 
cross-entropy loss and Stochastic Gradient Descent (SGD) with an initial learning rate of 0.01 and a momentum 
of 0.9. �e validation set is evaluated every 250,000 training samples and the learning rate is reduced three times 
by a factor of 10 a�er 10, 20 and 25 validation iterations and stop a�er 30 iterations. �is translates into 2.5 mil-
lion, 5 million, 6.25 million and 7.5 million training samples.

�e model prediction errors can be divided into near errors, e.g. phase 3 is mistakenly predicted as phase 2, 
and distant errors, e.g. phase 0 is mistakenly predicted as phase 6. In order to overcome the latter one, we use a 
progress ratio and calculate a Second Duration Ratio (SDR) by dividing the sample second value with the overall 
video length. �e SDR value is concatenated to the �nal layer before the classi�cation layer. We found this addi-
tion to signi�cantly reduce distant errors.

�e �nal output of the short-term model is obtained from a So�Max layer, which produces a probability vec-
tor per second, assigning a probability value for each phase. �ese vectors are then sequentially stacked together 
to create an L*7 matrix representation for each video, where L is the video length.

�e long-term model is based on a Long Short-Term Memory (LSTM) network. �is type of Recurrent Neural 
Network (RNN) uses special hidden units to maintain and accumulate memory from previous samples, enabling 
the model to learn long-term dependencies between  samples26,29.

Here, a single input sample is considered as a sequence of phases values from an entire video. �e fact that the 
input samples are an entire video sequence limits the training process to a relatively small number of samples. 
In order to avoid over�tting and apply data augmentation to such input, we use a So�Max with temperature 
technique on the phases probability  vectors30. We use a relatively high temperature value, T = 11, which produces 
a so�er probability distribution. �e probability vector is used to create a categorical distribution from which we 
randomly select a phase per second. �e combination of categorical distribution phase selection and So�Max 
with temperature considerably contributes to the model’s robustness and generalization.

�e phases sequence is �rst processed with an embedding layer that works as a lookup table mapping each 
phase in the input to an embedding vector of size 32. Next, a single layer LSTM network with 128 hidden state 
features takes the embeddings as input. We use a bidirectional LSTM which uses past and future information to 
produce a �nal representation for each second in the input sequence. Finally, a linear layer operates as the clas-
si�cation layer and maps the output from the LSTM hidden space, back to the phases space. Cross-entropy loss 
is calculated for each second in the input video and model optimization is done with SGD using a �xed learning 
rate of 0.1 and a momentum of 0.9. We use a mini-batch of one since each video has a di�erent sequence length 
and train the model for 30 epochs on a 1-GPU machine (an epoch is a single pass on the entire training samples).

Both models’ hyperparameters are �rst explored for the largest training dataset and remain �xed for all other 
experiments. For the short-term model, in case the training set number of available seconds is less than 250,000 
the evaluation step is done every epoch and learning rate reduction is done in the same manner as before at 10, 
20 and 25 validation iteration and stop at 30 iterations.

In the �netune for unseen medical center experiments we use only 15 training epochs in order to train the 
baseline model, reducing the learning rate a�er 5, 10 and 13 validation iterations. Although the number of train-
ing samples was 263,494 we ran an evaluation step every epoch. Fine-tuning on a di�erent amount of training 
videos from medical center 1 is done in the same way, only initializing the models’ weights using the baseline 
model.

Our system is implemented with Python 3.6 using PyTorch (1.1.0) as the main deep learning  framework31.

Datasets. �e short-term temporal model is �rst trained on the Kinetics-400  dataset19, this publicly avail-
able dataset contains about 240,000 training videos and about 20,000 validation videos. It was developed to 
facilitate research for human action classi�cation and perform as a benchmark for building video classi�cation 
models. Each video clip in Kinetics was curated from a di�erent YouTube video and lasts around 10  s. It is 
labeled by a speci�c task, such as playing the clarinet, riding a bike, shaking hands, etc.

�e backbone for the 3D temporal  model22 is �rst trained as a 2D  model27 for static image classi�cation. �is 
is done on the publicly available ImageNet  dataset24. ImageNet contains about 1.3 million training images and 
50,000 validation images from 1000 di�erent classes.

In order to train the short- and long-term models for the phase detection task, we use a large laparoscopic 
cholecystectomy dataset. Our complete labeled data set consists of 1243 surgery videos curated from several 
sources, six di�erent medical centers and more than 50 surgeons. It includes 80 videos from  Cholec8011 and the 
rest from our internally proprietary dataset. Supplementary Tables S2 and S3 show detailed information about 
how surgeons and medical centers are distributed in the dataset.

Each video undergoes a rigorous annotation process by two di�erent annotation specialists. Annotators are 
a group of medical students and surgeons who underwent thorough training on labeling the phases. A video 
is randomly assigned to a �rst annotator that reviews the video and manually assigns a surgical phase for each 
second of the video. �e second annotator then validates the labels to reduce manual errors and enforce an 
aligned annotation process. In the case of unclear work�ow or non-typical events, we also consult a group of 
surgeons in order to maintain high-quality labels. Annotation validity was con�rmed by Korndor�er et al.32, 
in which an unbiased group of surgeons reviewed large portions of the cases in our dataset and reported high 
agreement with our annotations.

Although laparoscopic cholecystectomy is a relatively linear structured surgery, not all phases are mandatory 
to take place. We do force full covering of each video, i.e. each second is labeled with one and only one phase.

We apply several criteria for rejecting a video. We excluded videos in which surgery is done in a retrograde 
 approach33 which is not a typical approach in our dataset, or those surgeries which eventually converted to 
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open surgery. We tried to keep videos of both high and low quality, only excluding those in which the video is 
corrupted.

During the training and evaluation process, the video dataset is analyzed on a single second basis. �us, 
the 1243 videos translate into more than 2.3 million second samples. Supplementary Table S1 shows statistical 
measurements of videos durations in the dataset.

�e task of achieving an automated system that is able to recognize surgical phases with high accuracy has 
been explored in recent studies. However, all are limited to a small number of samples and lack the ability to 
generalize well to new  samples11–15. �e limitations mentioned in these previous studies are addressed in our 
work. We use a common practice in ML of dividing our dataset into a training set, composed of hundreds of 
videos, a di�erent group of videos as a validation set to tune our models’ hyperparameters and another separate 
subset as an independent test set to further verify the  results26. First, we randomly allocate 25% of the videos 
to serve as the independent test set. �is test set is never seen during the training and hyperparameter tuning 
process and provides an unbiased evaluation set for the �nal model. �e remaining videos are divided again 
into train and validation sets by an 80/20% ratio. Both short- and long-term models learn from the same train 
set and their hyperparameters are tunes on the same validation set. �is setup yields a train, validation and test 
sets of 745, 187 and 311 videos, respectively. All subsets are randomly created on the video �le level, thus each 
video takes part in only one subset. Both the short- and long-term models are trained on the same training set 
and hyperparameters are tuned on the same validation set.

Results
�e main performance metric throughout this work is per-second accuracy. Each second of video footage is 
annotated with a single surgical phase. Accuracy is calculated by comparing the ground truth annotations with 
the system phase predictions (Fig. 1A–5). Accuracy is the ratio between the correct prediction and the overall 
number of seconds. Since phases do not distribute evenly during surgery (Supplementary Table S4) we also 
measure a mean phase accuracy, in which the accuracy of each phase is calculated separately (Fig. 2C) and a 
mean value over all phases is reported.

Short-long temporal context modeling of surgical workflow. Our system has 90.4% accuracy and 
86.1% mean phase accuracy on the validation set. On the test set it achieves 91.7% accuracy and 87.5% mean 
phase accuracy.

Classi�cation errors can be generally grouped into three types: (1) A temporal shi� where a predicted phase 
starts or ends early or late compared to the true labeled phase, (2) Adding or dropping entire phase segments, 
and (3) Random �ips of a phase label. In order to better understand the nature of our system errors, we examine 
the confusion matrix (Fig. 2C) which illustrates each phase accuracy (diagonal) and its corresponding false 
rates (rows). Unsurprisingly, the model predominantly confuses temporally adjacent phases that share similar 
surgical context.

To more precisely assess the accuracy of phase transition, we establish a temporal window and test whether 
the predicted phase transition occurs with that window of the true transition. We perform this test for temporal 
windows (in seconds) between the prediction and the true start time of each phase for di�erent τ values (τ =  
± 15, ± 30, ± 45, ± 60, ± 90, ± 120, ± 150, ± 180, ± 270, ± 360). Table 1 shows the percentage of phases for di�erent 
τ values. Examining all videos in the validation and test sets shows more than 90% start time alignment at a 
temporal threshold of 45 s. However, this kind of analysis is a�ected by outlier procedures. Reviewing the failure 
modes of our system shows that some of the lowest accuracy videos are in fact unusual videos, e.g. a procedure 
which was converted to open surgery, or a video that was recorded using a single-port laparoscopic setup. Such 
outlier procedures are easy for a human to understand, however, for an ML system that was never trained on 
this type of samples it is not feasible. To reduce the e�ect of such cases on the phase transition accuracy we 
also examine a subset of videos with accuracy above the median accuracy (valid and test set per-video median 
accuracy is 93.67% and 94.15% respectively). �is shows that, at a temporal threshold of 45 s, the alignment is 
above 98%. Examining a subset of videos with accuracy above the 10-percentile accuracy (valid and test set per-
video 10-percentile accuracy is 83.15% and 82.93% respectively) shows an alignment of above 93% at 45 s. To 
complete the quantitative measurement we also show a qualitative comparison between the true labels and the 
predictions of our system (Fig. 3). �is comparison shows one video from the 90th, median and 10th percentile 
of the test set results. �e �nal prediction errors are mainly small temporal shi�s in the phase start time. In the 
low accuracy video, our system also identi�es false phase segments.

�e best performing hyperparameters established on the validation set were used for all model training and 
testing throughout this work. Initially this was done in order to enable a fair comparison between models, but 
we found this set of hyperparameters an important result of our work, making it possible to use our approach 
and train models on relatively small publicly available datasets, without the need of a complex and long hyper-
parameters exploration on large train and validation sets.

Asymptotic performance assessment. Our �rst question was how many surgical videos are needed to 
reliably recognize the phases of surgery. We approach this by examining the change in the system accuracy on 
the test set as a function of training data size. �e validation and test sets are kept �xed in order to maintain a 
fair comparison. Models’ hyperparameters were �rst optimized for the largest training dataset and remain �xed 
for all other experiments.

We start by examining the short-term context model, training the model on a di�erent number of videos, 
ranging from a single video up to 745 videos (Fig. 2A). �e model reaches accuracy greater than 80% at 100 
videos and keeps increasing as the number of samples grows, reaching a near asymptotic value of more than 85% 
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at the endpoint of 745 training videos. Next, the predictions of the short-term context model are used to train 
the long-term model (Fig. 1). �is model reaches 80% accuracy at only 50 training videos and achieves more 
than 90% accuracy at 745 training videos (Fig. 2B,D). �e validation set results are slightly higher than those of 
the test set when training on less than 100 videos. �is is expected because the validation set is used for model 
hyperparameter tuning and is thus biased. However, the test set is kept completely independent and represents 
a blind evaluation set. �e gap decreases as the number of samples in the training set increases, implying the 

Figure 2.  Asymptotic performance assessment. Accuracy values, measured on the validation and test sets, 
when training the models on an increasing number of videos (1, 5, 10, 50, 100, 150, 350, 745). (A) Accuracy for 
the short-term model. �e log-scale version is available in Supplementary Fig. S1. (B) Accuracy for the long-
term model. (C) �e test set confusion matrix for the best long-term model. (D) Accuracy for the long-term 
model for a log-scale training set size.

Table 1.  Phase transition accuracy. Evaluating the e�ect of small temporal shi�s in phase start time. Testing 
whether a predicted phase transition occurs within a temporal threshold (in seconds) of the true transition. 
Numbers state the percentage of phases within the threshold. �e �rst two rows are showing all valid and test 
videos, the last two rows are showing only a subset of videos with per-video accuracy greater than the videos 
median accuracy and the middle two rows are done on a subset without including the bottom 10% videos.

Temporal threshold  ± 15  ± 30  ± 45  ± 60  ± 90  ± 120  ± 150  ± 180  ± 270  ± 360

Valid 80.96 87.84 92.03 94.02 96.36 97.53 98.28 98.69 99.11 99.38

Test 79.95 87.63 91.81 93.73 95.99 97.23 98.04 98.51 99.23 99.4

Valid > 10-percentile 83.49 89.77 93.95 95.5 97.83 98.76 99.38 99.61 99.69 99.77

Test > 10-percentile 81.81 89.16 93.27 94.94 97.09 97.9 98.57 99.0 99.38 99.47

Valid > median 89.84 95.96 98.31 98.96 99.74 100 100 100 100 100

Test > median 88.83 95.48 98.34 98.8 99.45 99.54 99.63 99.72 99.82 99.91
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importance of training such a system on a large dataset and the impact it has on the robustness and generaliza-
tion of the proposed method to new unseen samples.

Figure 2D presents the system’s accuracy as a function of the number of training videos on a log-scale. �is 
clearly shows that there is a substantial increase in performance when training on hundreds of videos compared 
to only tens of videos as done in previous studies. Once reaching near a thousand training videos, we are able 
to cross the 90% accuracy. However, extrapolating from these results, it appears that increasing the number of 
training videos an order of magnitude (to 10′s of thousands) would yield small fraction (1–2%) of remaining 
performance improvement. If the same trend continues for an additional order of magnitude (to 100′s of thou-
sands of videos), it would appear that nearly all of the practical value of training is achieved with more than 100 
but fewer than 1000 videos, for the current model setup.

Model generalization: medical center related bias. �e question of how many videos are needed for 
surgical phase recognition can also be examined as a generalization question. Namely, how e�ectively does the 
system generalize to various data sources—i.e. surgeons or medical centers.

We �rst consider the e�ect of data imbalance related to medical centers (Supplementary Table S2). Our 
dataset is skewed toward medical center 1 (MC1). �is might a�ect the results of other medical centers within 
the dataset. However, videos from medical center 1 were curated over decades and span various surgery styles, 
di�erent surgeons and a variety of recording systems. In order to assess if such bias exists we evaluate the accu-
racy of the best model, trained on 745 videos, for each medical center in our validation and test sets (Fig. 4A,B). 
�e results show relatively consistent performance for all medical centers in the validation and test sets. Medical 
center 4 has the lowest performance. �is might be related to the fact that it had only 23 videos in the training 
set. In addition, the accuracy per medical center is similar to the overall accuracy of the model suggesting that 
the model generalized well to a variety of di�erent medical centers.

Model generalization: surgeon related bias. Here we explore whether our model is biased toward 
speci�c surgeons. �e dataset includes 36 di�erent surgeons (1,042 videos), Cholec80  group11 (80 videos) which 
includes 13 additional surgeons (without a surgeon labeling per video) and an additional group (121 videos) 
missing surgeon labeling (unknown group). In the analysis, we focus on 11 di�erent surgeons, the Cholec80 
group and the unknown group. �ese 13 subsets have more than 10 videos in the dataset (Supplementary 
Table S3).

We measure the accuracy of each surgeon separately within the validation and test sets (Fig. 4C,D). Most 
of the surgeons in our comparison show similar results in the validation and test set. �e last three surgeons 
in the analysis had very few video samples in either the validation or test set so their statistical signi�cance is 
questionable. �e majority of the surgeons’ individual accuracy is consistent with the overall performance of the 
system, demonstrating the robustness of the model to a variety of surgeons and di�erent operating techniques.

Model adaptation: fine-tuning on a new medical center. Model adaptation is an important capabil-
ity that enables fast deployment in new surgical departments and medical centers. Adapting models to a new 
unseen medical center can be done using a �netuning approach, in which the learning process continues on a 
relatively small number of new  samples28. In the scope of this work, as the dataset is skewed toward MC1, which 
has 1002 videos, it is interesting to examine the e�ect of discarding MC1 samples during training. We explore 
how the largest medical center a�ects the overall performance and whether there is a bias toward that speci�c 
medical center.

�e original dataset is divided into two subsets. �e �rst is formed by discarding all MC1 videos which yields 
a training set of 95 videos and a test set of 119 videos. �e second subset contains only videos from MC1 and 
has 650 training videos and 192 test videos.

Next, new baseline models were trained on the �rst subset. �e short- and long-term models achieve 83.15% 
and 89.6% accuracy on the �rst subset test set, respectively. However, these models produce only 73.9% and 79.2% 

Figure 3.  Comparing the true labels vs. model predictions. �ree di�erent videos from the test set are depicted. 
�ese videos represent the 90th percentile (top), median (middle) and 10th percentile (bottom) of the test set 
accuracy values. �e top row of each video represents the sequence of true labels, the middle row represents 
the long-term model predictions and the bottom row represents the short-term model predictions. Each phase 
segment is illustrated with a di�erent color.
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accuracy on the second subset (which has only MC1 videos). �is shows degradation of about 10% compared 
to the �rst subset, and is consistent with what we expect to see on smaller than 100 training videos (Fig. 2A,B).

We adapt the baseline models to the MC1 by continuing the learning process of both models. In order to 
evaluate how many samples are needed, we use an increasing number of training samples from MC1, ranging 
from 5 to 200, �ne-tuning the baseline models and measure the performance on the second subset test set (Fig. 5).

�e short-term model achieves more than 80% accuracy a�er only 50 new videos and was able to reproduce 
the original result at the 200 videos (Fig. 5, Supplementary Fig. S2). �e long-term model shows the same trend, 
able to achieve an 88% accuracy a�er the same 50 new videos and 90% accuracy at 200 new videos (Fig. 5, Sup-
plementary Fig. S2).

�is experiment further supports the fact that training with only tens of videos is not su�cient to achieve a 
generalized model and handle unseen samples. �e �ne-tuned model reaches 90% accuracy only a�er training 
on hundreds of new videos from MC1.

Discussion and conclusions
In this work, we follow previously suggested guidelines for ML to overcome “barriers to deployment” and have 
an actual impact on  healthcare34. Our study aims to support the transition from bench to bedside and help 
translate research into tools that aid surgeons, practically, in their daily routine. �e viewpoint by Wang et al.35 
discusses the challenges of integrating deep learning applications into the clinician’s work�ow. Challenges such 
as data quantity and quality and model generalizability are addressed in this study. Since our dataset is more 
than an order of magnitude larger than any previous study it provides in-depth knowledge of surgical work�ow 

Figure 4.  Medical centers and surgeons generalization evaluation. Accuracy boxplot for validation and test sets 
for di�erent medical centers and surgeons. (N =) state the number of validation or test videos for each subset. 
(A) Validation set accuracy for each medical center (MC). (B) Test set accuracy for each medical center. MC3 
is the Cholec80 dataset. Absolute number of procedures for each medical center is presented in Supplementary 
Table S2. Only MC1-MC4 are shown since MC5-6 have only one sample each. (C) Validation set accuracy for 
surgeons. (D) Test set accuracy for surgeons. Absolute number of procedures for each surgeon is presented in 
Supplementary Table S3. Only surgeons with more than 10 videos are analyzed. �e red line marks the median 
value, the box extends from the lower to the upper quartile values, the whiskers extend from the box to show 
the range of the data (not including outlier) and the circle points are marking data outliers (outliers are based on 
1.5IQR).
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characteristics. In addition, as ML systems are o�en considered as a “black-box”, we train our approach based on 
prede�ned phase mapping, agreed to by a group of experts in the �eld. �is ensures that healthcare professionals 
understand and can interpret the results.

In summary, the contributions of this work are threefold. First, we leverage a large and diverse surgical video 
dataset and apply state-of-the-art methods for video analysis to introduce a deep learning system that achieves 
more than 90% accuracy in detecting the correct surgical phase. In order to support future research in this 
�eld, we report the set of hyperparameters learned and optimized with our dataset, allowing to train models on 
smaller but publicly available datasets. Second, we report a comprehensive analysis, assessing the likely asymp-
totic performance of our phase detection system and evaluating the generalization of our approach to di�erent 
medical centers and a diverse surgeon population. �ird, given a set of unseen videos from a new medical center, 
we demonstrate that by �ne-tuning on a relatively small number of new samples, our model can converge to a 
similar high performance.

Examining the number of videos needed in order to learn the surgical work�ow shows high return in per-
formance when going from tens to hundreds of training videos, where a diminishing e�ect in accuracy is start-
ing to appear. We do note that our performance assessment was done using a �xed model capacity. Increasing 
the available data to thousands or even tens of thousands of videos may o�er additional improvements by also 
increasing the model capacity.

As opposed to elite athletes who can review performance and analyze every roll, pitch and yaw post-compe-
tition, surgeons lack objective tools to routinely debrief and analyze performance. �e current level of accuracy 
allows for the creation of surgical highlight reels that can be returned to a surgeon quickly a�er exiting the 
operating room. Higher levels of accuracy will be required in order to leverage such capabilities for real-time 
decision support.

�e results in this report are limited to one speci�c surgical procedure, laparoscopic cholecystectomy, which 
has a relatively linear phase progression. Further analysis is needed in order to ensure the transferability of the 
ideas presented here to less structured or lengthy procedures. In addition, both modules do not assume any 
causality constraints and design to operate o�ine on the entire surgical video. However, enforcing such con-
straints can easily be done by adjusting the models to “look” at past inputs only. �e evaluation of such models 
is not within the scope of this work. Although procedures from MC1 were curated over decades and capture 
high surgical variability, the dataset is still skewed towards this single center. Our generalization exploration 
focuses on high-level biases, which might occur due to di�erent medical centers, surgeons and techniques. Once 
su�ciently labeled, future exploration should be done to assess both patient-level bias factors such as age, BMI, 
ethnicity, sex, anatomy variance, etc. and medical-center-level bias, e.g. by grouping procedures based on visu-
alization hardware, instruments, or on the period or date of performing the surgery. Our models are also limited 
in handling outliers, such as very low video quality or in case a new surgical tool, never seen before, is used.

�e hyperparameters described for the short- and long-term approach enable training robust models on 
relatively small, but publicly available, datasets such as  Cholec8011 and  EndoTube36. �e ability to detect surgical 
phases with high accuracy can promote the development of other surgical applications and support continuous 
research in this �eld. In addition, robust phase detection models can be the catalyst for studies of intraoperative 
event detection or applying transfer learning on other types of laparoscopic procedures.

�ere are many opportunities for ML-based AI in the operating  room10. Regardless of the use case, a foun-
dational step in integrating AI systems into routine surgeon work�ow is the ability to analyze and successfully 
discern between di�erent surgical phases. �us, surgical phase detection is a key benchmark problem to assess 
the ability of AI to successfully learn surgical context.

Figure 5.  Finetune on a new medical center. Fine-tuning both the short- and long-term baseline models, which 
were initially trained on a dataset excluding videos from medical center 1, on an increasing number of videos 
from medical center 1. Log-scale version is available in Supplementary Fig. S2.
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We believe our analysis can further accelerate computer vision-based research and applications for laparo-
scopic surgery to the point of integrating AI systems in the surgical work�ow routine, assisting in the decision-
making processes and ultimately improving surgeon experience and patient care.

Data availability
�e data that support the �ndings of this study constitute of published data and restricted data. Published data 
are available from the reported references. Restricted data are under a non-published license and are not publicly 
available.
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