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Abstract—The problem of characterizing impacts of data quality

on real-time locational marginal price (LMP) is considered. Be-
cause the real-time LMP is computed from the estimated network

topology and system state, bad data that cause errors in topology

processing and state estimation affect real-time LMP. It is shown
that the power system state space is partitioned into price regions

of convex polytopes. Under different bad data models, the worst

case impacts of bad data on real-time LMP are analyzed. Numer-
ical simulations are used to illustrate worst case performance for

IEEE-14 and IEEE-118 networks.

Index Terms—Bad data detection, cyber security of smart grid,

locational marginal price (LMP), power system state estimation,
real-time market.

I. INTRODUCTION

T HE deregulated electricity market has two interconnected

components. The day-ahead market determines the lo-

cational marginal price (LMP) based on the dual variables of

the optimal power flow (OPF) solution [1], [2], given generator

offers, demand forecast, system topology, and security con-

straints. The calculation of LMP in the day-ahead market does

not depend on the actual system operation. In the real-time

market, on the other hand, an ex-post formulation is often

used (e.g., by PJM and ISO-New England [3]) to calculate the

real-time LMP by solving an incremental OPF problem. The

LMPs in the day-ahead and the real-time markets are combined

in the final clearing and settlement processes.

The real-time LMP is a function of data collected by the su-

pervisory control and data acquisition (SCADA) system. There-

fore, anomalies in data, if undetected, will affect prices in the

real-time market. While the control center employs a bad data

detector to “clean” the real-time measurements, miss detections

and false alarms will occur inevitably. The increasing reliance

on the cyber system also comes with the risk that malicious data

may be injected by an adversary to affect system and real-time

market operations. An intelligent adversary can carefully design

a data attack to avoid detection by the bad data detector.
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Fig. 1. Change of real-time LMPs due to bad data. (a) Bad meter data.
(b) Topology error.

Regardless of the source of data errors, it is of significant

value to assess potential impacts of data quality on the real-

time market, especially when a smart grid may in the future

deploy demand response based on real-time LMP. To this end,

we are interested in characterizing the impact ofworst case data

errors on the real-time LMP. The focus on the worst case also

reflects the lack of an accurate model of bad data and our desire

to include the possibility of data attacks.

A. Summary of Results and Organization

We aim to characterize the worst effects of data corruption on

real-time LMP. By “worst”, we mean the maximum perturba-

tion of real-time LMP caused by bad or malicious data, when a

fixed set of data is subject to corruption. The complete charac-

terization of worst data impact, however, is not computationally

tractable. Our goal here is to develop an optimization based ap-

proach to search for locally worst data by restricting the network

congestion to a set of lines prone to congestion. We then apply

computationally tractable (greedy search) algorithms to find the

worst data and evaluate the effects of worst data by simulations.

In characterizing the relation between data and real-time

LMP, we first present a geometric characterization of the

real-time LMP. In particular, we show that the state space of

the power system is partitioned into polytope price regions,

as illustrated in Fig. 1(a), where each polytope is associated

with a unique real-time LMP vector, and the price region is

defined by a particular set of congested lines that determine the

boundaries of the price region.

Two types of bad data are considered in this paper. One is the

bad data associated with meter measurements such as the branch

power flows in the network. Such bad data will cause errors in

state estimation, possibly perturbing, as an example, the correct

state estimate in to in [as shown in Fig. 1(a)]. The

analysis of the worst case data then corresponds to finding the
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worst measurement error such that it perturbs the correct state

estimation to the worst price region.

The second type of bad data, one that has not been carefully

studied in the context of LMP in the literature, is error in dig-

ital measurements such as switch or breaker states. Such errors

lead directly to topology errors therefore causing a change in the

polytope structure as illustrated in Fig. 1(b). In this case, even

if the estimated system state changes little, the prices associated

with each region change, sometimes quite significantly.

Before characterizing impacts of bad meter data on LMP, we

need to construct appropriate models for bad data. To this end,

we propose three increasingly more powerful bad data models

based on the dependencies on real-time system measurements:

state independent bad data, partially adaptive bad data, and fully

adaptive bad data.

In studying the worst case performance, we adopt a widely

used approach that casts the problem as one involving an adver-

sary whose goal is to make the system performance as poor as

possible. The approach of finding the worst data is equivalent to

finding the optimal strategy of an attacker who tries to perturb

the real-time LMP and avoid being detected at the same time.

By giving the adversary more information about the network

state and endowing him with the ability to change data, we are

able to capture the worst case performance, sometimes exactly

and sometimes as bounds on performance.

Finally, we perform simulation studies using the IEEE-14

and IEEE-118 networks. We observe that bad data indepen-

dent of the system state seems to have limited impact on real-

time LMPs, and greater price perturbations can be achieved by

state dependent bad data. The results also demonstrate that the

real-time LMPs are subject to much larger perturbation if bad

topology data are present in addition to bad meter data.

While substantial price changes can be realized for small

networks by the worst meter data, as the size of network grows

while the measurement redundancy rate remains the same, the

influence of worst meter data on LMP is reduced. However,

larger system actually gives more possibilities for the bad

topology data to perturb the real-time LMP more significantly.

Our simulation results also show a degree of robustness pro-

vided by the nonlinear state estimator. While there have been

many studies on data injection attacks based on DC models,

very few consider the fact that the control center typically em-

ploys the nonlinear WLS state estimator under the AC model.

Our simulation shows that effects of bad analog data designed

based on DCmodel may be mitigated by the nonlinear estimator

whereas bad topology data coupled with bad analog data can

have greater impacts on LMP.

The rest of the paper is organized as follows. Section II briefly

describes a model of real-time LMP and introduces its geo-

metric characterization in the state space of the power system.

Section III establishes the bad data models and summarizes

state estimation and bad data detection procedures at the con-

trol center. In Section IV, a metric of impact on real-time LMP

caused by bad meter data is introduced. We then discuss the al-

gorithms of finding worst case bad meter data vector in terms of

real-time price perturbation under the three different bad data

models. Section V considers the effect of bad topology data on

real-time LMP. Finally, in Section VI, simulation results are pre-

sented based on IEEE-14 and IEEE-118 networks.

B. Related Work

Effects of bad data on power system have been studied exten-

sively in the past; see [4]–[6]. Finding the worst case bad data is

naturally connected with the problem of malicious data. In this

context, the results presented in this paper can be viewed as one

of analyzing the impact of the worst (malicious) data attack.

In a seminal paper by Liu, Ning, and Reiter [7], the authors

first illustrated the possibility that, by compromising enough

number of meters, an adversary can perturb the state estimate

arbitrarily in some subspace of the state space without being

detected by any bad data detector. Such attacks are referred to

as strong attacks. It was shown by Kosut et al. [8] that the condi-

tion for the existence of such undetectable attacks is equivalent

to the classical notion of network observability.

When the adversary can only inject malicious data from a

small number of meters, strong attacks do not exist, and any

injected malicious data can be detected with some probability.

Such attacks are referred to as weak attacks [8]. In order to affect

the system operation in some meaningful way, the adversary

has to risk being detected by the control center. The impacts of

weak attack on power system are not well understood because

the detection of such bad data is probabilistic. Our results are

perhaps the first to quantify such impacts. Most related research

works focused on DCmodel and linear estimator while only few

have addressed the nonlinearity effect [9], [10].

It is well recognized that bad data can also cause topology

errors [11], [12], and techniques have been developed to detect

topology errors. For instance, the residue vector from state es-

timation was analyzed for topology error detection [12], [11],

[13]. Monticelli [14] introduced the idea of generalized state

estimation where, roughly speaking, the topology that fits the

meter measurements best is chosen as the topology estimate.

The impacts of topology errors on electricity market have not

been reported in the literature, and this paper aims to bridge this

gap.

The effect of data quality on real-time market was first con-

sidered in [15] and [16]. In [16], the authors presented the fi-

nancial risks induced by the data perturbation and proposed a

heuristic technique for finding a case where price change hap-

pens. While there are similarities between this paper and [16],

several significant differences exist: 1) This paper focuses on

finding the worst case, not only a feasible case. 2) This paper

considers a more general class of bad data where bad data may

depend dynamically on the actual system measurements rather

than static. 3) This paper considers a broader range of bad data

that also include bad topology data, and our evaluations are

based on the AC network model and the presence of nonlinear

state estimator.

II. STRUCTURES OF REAL-TIME LMP

In this section, we present first a model for the computation of

real-time LMP. While ISOs have somewhat different methods
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of computing real-time LMP, they share the same two-settle-

ment architecture and similar ways of using real-time measure-

ments. In the following, we will use a simplified ex-post real-

time market model, adopted by PJM, ISO New England, and

other ISOs [17], [3]. We view this model as a convenient mathe-

matical abstraction that captures the essential components of the

real-time LMP calculation. For this reason, our results should be

interpreted within the specified setup. Our purpose is not to in-

clude all details; we aim to capture the essential features.

In real-time, in order to monitor and operate the system, the

control center will calculate the estimated system conditions (in-

cluding bus voltages, branch flows, generation, and demand)

based on real-time measurements. We call a branch congested

if the estimated flow is larger than or equal to the security limit.

The congestion pattern is defined as the set of all congested

lines, denoted as . Note that we use hat (e.g., ) to denote

quantities or sets that are estimated based on real-time measure-

ments. Details of state estimation and bad data detection are dis-

cussed in Section III-B.

One important usage of state estimation is calculating the

real-time LMP. Given the estimated congestion pattern , the

following linear program is solved to find the incremental OPF

dispatch and associated real-time LMP, [17]:

(1)

where is the vector of incremental dispatchable

load, the vector of incremental generation dis-

patch, and the corresponding real-time

marginal cost of generations and dispatchable loads, and

the lower and upper bounds for incremental generation

dispatch, and the lower and upper bounds for in-

cremental dispatchable load, and the sensitivity of branch

flow on branch with respect to the power injection at bus .

The real-time LMP at bus is defined as the overall cost in-

crease when one unit of extra load is added at bus , which is

calculated as

(2)

where is the dual variable for the load-generation equality

constraint, and is the dual variable corresponding to the line

flow constraint in (1).

Note that in practice, the control center may use the ex-ante

congestion pattern, which is obtained by running a 5 min ahead

security-constrained economic dispatch with the state estima-

tion results and the forecasted loads (for the next five-minute in-

terval) and choosing the lines congested at the dispatch solution

[17], [3]. However, to avoid the complication due to ex-ante dis-

patch calculation, we assume that real-time pricing employs the

estimated congestion pattern obtained from state estimation

results. By doing so, we attempt to find direct relations among

bad data, the state estimate, and real-time LMPs. Notice that

once the congestion pattern is determined, the whole incre-

mental OPF problem (1) no longer depends on the measurement

data.

Under the DC model, the power system state, , is defined as

the vector of voltage phases, except the phase on the reference

bus. The power flow vector is a function of the system state

(3)

where is the sensitivity matrix of branch flows with respect

to the system state.

Assume the system has buses. Then,

, where represents the state space. Any system state

corresponds to a unique point in . From (3), the branch flow

is determined by the system state . Comparing the flows with

the flow limits, we obtain the congestion pattern associated

with this state. Hence, each point in the state space corresponds

to a particular congestion pattern.

We note that the above expression in (2) appears earlier in [1]

where the role of congestion state in LMP computation was dis-

cussed. In this paper, our objective is to make explicit the con-

nection between data and LMP. We therefore need a linkage be-

tween data and congestion. To this end, we note that the power

system state, the congestion state, and LMP form a Markov

chain, which led to a geometric characterization of LMP on the

power system state space, as shown in the following theorem.

Theorem 1 (Price Partition of the State Space): Assume that

the LMP exists for every possible congestion pattern.1 Then, the

state space is partitioned into a set of polytopes where

the interior of each is associated with a unique congestion

pattern and a real-time LMP vector. Each boundary hyper-

plane of is defined by a single transmission line.

Proof: For a particular congestion pattern defined by a

set of congested lines, the set of states that gives is given by

where is the th row of [see (3)], and the flow limit

on branch . Since is defined by the intersection of a set of

half spaces, it is a polytope.

Given an estimated congestion pattern , the envelop the-

orem [18] implies that for any optimal primal solution and dual

solution of (1) that satisfy the KKT conditions, (2) always gives

the derivative of the optimal objective value with respect to the

demand at each bus, which we assume exists, i.e., each conges-

tion pattern is associated with a unique real-time LMP vector

. Hence, all states with the same congestion pattern share the

same real-time LMP, which means each polytope in cor-

responds to a unique real-time LMP vector.

Theorem 1 characterizes succinctly the relationship between

the system state and LMP. As illustrated in Fig. 1(a), if bad data

are to alter the LMP in real-time, the size of the bad data has

to be sufficiently large so that the state estimate at the control

center is moved to a different price region from the true system

state.

1This is equivalent to assuming that the derivative of the optimal value of (1)
with respect to demand at each bus exists.
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On the other hand, if some lines are erroneously removed

from or added to the correct topology, as illustrated in Fig. 1(b),

it affects the LMP calculation in three ways.2 First, the state es-

timate is perturbed since the control center employs an incorrect

topology in state estimation. Secondly, the price partition of the

state space changes due to the errors in topology information.

Third, the shift matrix in (1), which is a function of topology,

changes thereby altering prices attached to each price region.

III. DATA MODEL AND STATE ESTIMATION

A. Bad Data Model

1) Meter Data: In order to monitor the system, various meter

measurements are collected in real time, such as power injec-

tions, branch flows, voltage magnitudes, and phasors, denoted

by a vector .3 If there exists bad data among the mea-

surements, the measurements with bad data, denoted by , can

be expressed as a function of the system states

(4)

where represents the random measurement noise.

We make a distinction here between the measurement noise

and bad data; the former accounts for random noise indepen-

dently distributed across all meters whereas the latter repre-

sents the perturbation caused by bad or malicious data. We as-

sume no specific pattern for bad data except that they do not

happen everywhere. We assume that bad data can only happen

in a subset of the measurements, . We call as set of sus-

pectable meters, which means the meter readings with in

may subject to corruption. If the cardinality of is , the fea-

sible set of bad data is a -dimensional subspace, denoted as

.

Wewill consider three bad data models with increasing power

of affecting state estimates.

M1. State independent bad data: This type of bad data is in-

dependent of real-time measurements. Such bad data may be the

replacement of missing measurements.

M2. Partially adaptive bad data: This type of bad data may

arise from the so-called man in the middle (MiM) attack where

an adversary intercepts the meter data and alter the data based

on what he has observed. Such bad data can adapt to the system

operating state.

M3. Fully adaptive bad data: This is the most powerful type

of bad data, constructed based on the actual measurement

.

Note that M3 is in general not realistic. Our purpose of con-

sidering this model is to use it as a conservative proxy to obtain

performance bounds for the impact of worst case data.

2In addition to these, the change in topology will affect contingency anal-
ysis. Such effect will appear as changes in contingency constraints in real-time
LMP calculation (1) [17]. However, dealing with contingency constraints will
significantly complicate our analysis and possibly obscure the more direct link
between bad data and real-time LMP. Hence, we consider only line congestion
constraints in (1).

3Notice here both conventional measurements and PMU measurements can
be incorporated. Although PMU data seem to have more direct impact on state
estimation and real-time LMP calculation, we won’t differentiate the types of
measurements in the following discussion.

We assume herein a DC model in which the measurement

function in (4) is linear. Specifically

(5)

where is the measurement matrix. Such a DC model, while

widely used in the literature, may only be a crude approxima-

tion of the real power system. By making such a simplifying

assumption and acknowledging its weaknesses, we hope to ob-

tain tractable solutions in searching for worst case scenarios. It

is important to note that, although the worst case scenarios are

derived from the DC model, we carry out simulations using the

actual nonlinear system model.

2) Topology Data: Topology data are represented by a binary

vector , where each entry of represents the state of

a line breaker (0 for open and 1 for closed). The bad topology

data is modeled as

(6)

where is the set of possible bad data.When bad data

are present, the topology processor will generate the topology

estimate corresponding to , and this incorrect topology esti-

mate will be passed to the following operations unless detected

by the bad data detector.

B. State Estimation

We assume that the control center employs the standard

weighted least squares (WLS) state estimator. Under DC model

(7)

where is the covariance matrix of measurement noise , and

.

If the noise is Gaussian, the WLS estimator is also the

maximum likelihood estimate (MLE) of state . By the invariant

property of MLE, from (3), the maximum likelihood estimate of

the branch flows is calculated as

(8)

The congestion pattern used in real-time LMP calculation (1)

is directly from state estimation and consists of all the estimated

branch flows which are larger than or equal to the branch flow

limits, i.e.,

(9)

where is the flow limit on branch .

In the presence of bad meter data , the meter measurements

collected by control center is actually . By

using , the WLS state estimate is

(10)

where is the “correct” state estimate without the pres-

ence of the bad data (i.e., ).

Equation (10) shows that the effect of bad data on state esti-

mation is linear. However, because is confined in a -dimen-

sional subspace , the perturbation on the actual system state is

limited to a certain direction.
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When bad data exist both in meter and topology data, the con-

trol center uses a wrong measurement matrix , corresponding

to the altered topology data, and the altered meter data . Then,

the WLS state estimate becomes

(11)

where . Note that unlike the linear

effect of bad meter data, bad topology data affects the state es-

timate by altering the measurement matrix to .

C. Bad Data Detection

The control center uses bad data detection to minimize the

impact of bad data. Here, we assume a standard bad data de-

tection used in practice, the -detector in [5]. In particular,

the -detector performs the test on the residue error,

, based on the state estimate . From the WLS state es-

timate (7), we have

(12)

where .

The -detector is a threshold detector defined by

(13)

where is the threshold calculated from a prescribed false alarm

probability, and . When the measurement data

fail to pass the bad data test, the control center declares the ex-

istence of bad data and takes corresponding actions to identify

and remove the bad data.

In this paper, we are interested in those cases when bad data

are present while the -detector fails to detect them.

IV. IMPACT OF BAD DATA ON LMP

In this section, we examine the impact of bad data on LMP,

assuming that the topology estimate of the network is correct.

One thing to notice is that in searching for the “worst” case,

we take the perspective of the control center, not that of the at-

tacker. In particular, we look for the worst congestion pattern for

the LMP computation, even if this particular congestion pattern

is difficult for the attacker to discover. So the focus here is not

how easy it is for an attacker to find a locally worst congestion

pattern; it is how much such a congestion pattern affects the

LMP.

A. Average Relative Price Perturbation

In order to quantify the effect of bad data on real-time price,

we need to first define the metric to measure the effect. We de-

fine the relative price perturbation (RPP) as the expected per-

centage price perturbation caused by bad data. Given that LMP

varies at different buses, RPP also varies at different locations.

Let be the data received at the control center and

the LMP at bus . The RPP at bus is a function of bad data ,

given by

(14)

where the expectation is over random state and measurement

noise.

To measure the system-wide price perturbation, we define the

average relative price perturbation (ARPP) by

(15)

where is the number of buses in the system.

The worst case analysis to be followed can be used for other

metrics (e.g., price increase ratios or price decrease ratios,

which are closely related to the market participants’ gain

or loss). Similar results can be showed following the same

strategies. However, the comparison among different metrics is

beyond the scope of this paper.

B. Worst ARPP Under State Independent Bad Data Model

First, we consider the state independent bad data model (M1)

given in Section III-A. In this model, the bad data are indepen-

dent of real-time measurements.

In constructing the state independent worst data, it is useful

to incorporate prior information about the state. To this end, we

assume that system state follows a Gaussian distribution with

mean , covariance matrix . Typically, we choose as the

day-ahead dispatch since the nominal system state in real-time

varies around its day-ahead projection.

In the presence of bad data , the expected state estimate and

branch flow estimate on branch are given by

(16)

(17)

where is the corresponding row of branch in .

Our strategy is to make this expected state estimate into the

region with the largest price perturbation among all the pos-

sible regions, . From (9), this means making all the expected

branch flows satisfy the boundary condition of

(18)

However, due to the uncertainty (from both system state and

measurement noise ), the actual estimated state after attack, ,

may be different from . Therefore, we want to make

at the “center” of the desired price region, i.e., maximizing the

shortest distance from to the boundaries of the polytope

price regions while still holding the boundary constraints. The

shortest distance can be calculated as

(19)

However, the existence of bad data detector prevents the bad

data vector from being arbitrarily large. According to (12), the

weighted squared residue with is

(20)

since

Heuristically, since has zero mean, the term can be

used to quantify the effect of data perturbation on estimation

residue. Then we use to control the detection prob-

ability in the following optimization.
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Therefore, for a specific congestion pattern , the adversary

will solve the following optimization problem to move the state

estimate to the “center” of the price region and keeping the

detection probability low:

(21)

which is a convex program that can be solved easily in practice.

We call a region feasible if it makes problem (21) feasible.

Among all the feasible congestion patterns, the worst region

is chosen as the one giving the largest ARPP:

(22)

where is the LMP at bus if the is the system state, and

the set of all the feasible congestion patterns. Hence, the worst

case constant bad data vector is the solution to optimization

problem (21) by setting the congestion pattern as .

C. Worst ARPP Under Partially Adaptive Bad Data

For bad data model M2, only part of the measurement values

in real-time are known to the adversary, denoted as . The ad-

versary has to first make an estimation of the system state from

the observation and prior distribution, then make the attack de-

cision based on the estimation result.

Without the presence of bad data vector, i.e., , the

system (5) gives

(23)

where is the rows of corresponding to the observed mea-

surements and the corresponding part in the measurement

noise .

The minimum mean square error (MMSE) estimate of

given is given by the conditional mean

(24)

Then, the flow estimate on branch after attack is

(25)

Still, we want to move the estimation of state to the “center”.

On the other hand, the expected measurement value

. Again, we need a pre-designed parameter to

control the detection probability. Therefore, the solution to the

following optimization problem is the best attack given conges-

tion pattern

(26)

This problem is also a convex optimization problem, which

can be easily solved. Among all the ’s which make the above

problem feasible, we choose the one with the largest price per-

turbation, denoted as . The solution to problem (26) with

as the congestion pattern is the worst bad data vector.

D. Worst ARPP Under Fully Adaptive Bad Data

Finally, we consider the bad data model M3, in which the

whole set of measurements is known to the adversary. The

worst bad data vector depends on the value of . Different from

the previous two models, with bad data vector , the estimated

state is deterministic without uncertainty. In particular

(27)

and the estimated flow on branch after attack is also

deterministic

(28)

Similar to the previous two models, congestion pattern is

called feasible if there exists some bad data vector to make

the following conditions satisfied:

(29)

Among all the feasible congestion patterns, we choose the

one with the largest price perturbation, . Any bad data vector

satisfying condition (29) can serve as the worst fully adaptive

bad data.

E. Greedy Heuristic

The strategies presented above are based on the exhaustive

search over all possible congestion patterns. Such approaches

are not scalable for large networks with a large number of pos-

sible congestion patterns. We now present a greedy heuristic ap-

proach aimed at reducing computation cost. In particular, we

develop a gradient like algorithm that searches among a set of

likely congestion patterns.

First, we restrict ourselves to the set of lines that are close to

their respective flow limits and look for bad data that will affect

the congestion pattern. The intuition is that it is unlikely that

bad data can drive the system state sufficiently far without being

detected by the bad data detector. In practice, the cardinality of

such a set is usually very small compared with the systems size.

Second, we search for the worst data locally by changing one

line in the congestion pattern at a time. Specifically, suppose that

a congestion pattern is the current candidate for the worst data.

Given a set of candidate lines that are prone to congestions, we

search locally by flipping one line at a time from the congested

state to the un-congested state and vice versa. If no improvement

can be made, the algorithm stops. Otherwise, the algorithm up-

dates the current “worst congestion pattern” and continue. The

effectiveness of this greedy heuristic is tested in Section VI-C.
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V. BAD TOPOLOGY DATA ON LMP

So far, we have considered bad data in the analog measure-

ments. In this section, we include the bad topology data, and

describe another bad data model.

We represent the network topology by a directed graph

where each denotes a bus and each

denotes a connected transmission line. For each physical trans-

mission line (e.g., a physical line between and ), we assign

an arbitrary direction [e.g., ] for the line, and is in

if and only if bus and bus are connected.

Bad data may appear in both analogmeasurements and digital

(e.g., breaker status) data, as described in Section III-A:

(30)

As in Section IV, we employ the adversary model to describe

the worst case. The adversary alters to by adding from the

set of feasible attack vectors such that the topology

processor produces the “target” topology as the topology es-

timate. In addition, the adversary modifies by adding

such that looks consistent with .

In this section, we focus on the worst case when the adversary

is able to alter the network topology without changing the state

estimate.4 We also require that such bad data are generated by

an adversary causing undetectable topology change, i.e., the bad

data escape the system bad data detection. For the worst case

analysis, we will maximize the LMP perturbation among the

attacks within this specific class. Even though this approach is

suboptimal, the simulation results in Section VI demonstrate

that the resulting LMP perturbation is much greater than the

worst case of the bad meter data.

Suppose the adversary wants to mislead the control center

with the target topology , a topology obtained by

removing5 a set of transmission lines in (i.e.,

). We assume that the system with is observable: i.e., the

corresponding measurement matrix has full column rank.6

The adversarial data modification aimed at perturbing the

topology estimate at the control center was studied in [19]. Sup-

pose that the adversary changes the breaker status such that

the target topology is observed at the control

center. Simultaneously, if the adversary introduces bad data

, then

(31)

which means that the meter data received at the control center

are completely consistent with the model generated from .

Thus, any bad data detector will not be effective.

4In general, the adversary can design the worst data to affect both the state
estimate and network topology. It is, however, much more difficult to make such
attack undetectable.

5Line addition by the adversary is also possible. However, compared to line
removal attacks, line addition attacks require the adversary to observe a much
larger set of meter measurements to design undetectable attacks. In addition, the
number of necessary modifications in breaker data is also much larger: to make
a line appear to be connected, the adversary should make all the breakers on the
line appear to be closed. Please see [19] for the detail.

6Without observability, the system may not proceed to state estimation and
real-time pricing. Hence, for the adversary to affect pricing, the system with the
target topology has to be observable.

Fig. 2. and : Each row is marked by the corresponding meter ( for
injection at and for flow from to ).

Fig. 3. Attack modifies local measurements around the line in .

It is of course not obvious how to produce the bad data , es-
pecially when the adversary can only modify a limited number
of measurements, and it may not have access to the entire state
vector . Fortunately, it turns out that can be generated by
observing only a few entries in without requiring global infor-
mation (such as the state vector ) [19].
A key observation is that and differ only in a few

entries corresponding to the modified topology (lines in )
as illustrated in Fig. 2. Consider first the noiseless case. Let
denote the entry of corresponding to the flow measurement
from to . As hinted from Fig. 2, it can be easily seen that

has the following sparse structure [19]:

(32)

where denotes the line flow from to when the line is
connected and the system state is , and is the column of
the measurement-to-branch incidence matrix, that corresponds
to : i.e., is an -dimensional vector with 1 at the
entries corresponding to the flow from to and the injection at
, and at the entries for the flow from to and the injection
at , and 0 at all other entries. Absence of noise implies that

, which leads to

(33)

With (33) in mind, one can see that setting and
adding to is equivalent to the following simple procedure:
as described in Fig. 3, for each in :
1) Subtract and from and , respectively;
2) Set and to be 0
where is the entry of corresponding to the injection mea-
surement at bus .
When measurement noise is present (i.e., ),

the idea of the attack is still the same: to make approximate
so that is close to . Since

is an unbiased estimate of for each , and
this implies that is an unbiased estimate
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of . Hence, we set to be

, the same as in the noiseless setting, and

the attack is executed by the same steps as above.
For launching this attack to modify the topology estimate

from to , the adversary should be able to 1) set such that
the topology processor produces instead of and 2) observe
and modify , and for all . The attack is
feasible if and only if and contain the corresponding attack
vectors.
To find the worst case LMP perturbation due to undetectable,

state-preserving attacks, let denote the set of feasible s, for
which the attack can be launched with and . Among the fea-
sible targets in , we consider the best target topology that re-
sults in the maximum perturbation in real-time LMPs. If ARPP
is used as a metric, the best target is chosen as

(34)

where denotes the real-time LMP at bus when the
attack with the target is launched on , and is the
real-time LMP under no attack.

VI. NUMERICAL RESULTS

In this section, we demonstrate the impact of bad data on
real-time LMPs with the numerical simulations on IEEE-14 and
IEEE-118 systems. We conducted simulations in two different
settings: the linear model with the DC state estimator and the
nonlinear model with the AC state estimator. The former is usu-
ally employed in the literature for the ease of analysis whereas
the latter represents the practical state estimator used in the
real-world power system. In all simulations, the meter measure-
ments consist of real power injections at all buses and real power
flows (both directions) at all branches.

A. Linear Model With DC State Estimation

We first present the simulation results for the linear model
with the DC state estimator. We modeled bus voltage mag-
nitudes and phases as Gaussian random variables with the
means equal to the day-ahead dispatched values and small
standard deviations. In each Monte Carlo run, we generated
a state realization from the statistical model, and the meter
measurements were created by the DC model with Gaussian
measurement noise. Once the measurements were created,
bad data were added in the manners discussed in Sections IV
and V. With the corrupted measurements, the control center
executed the DC state estimation and the bad data test with
the false alarm probability constraint 0.1. If the data passed
the bad data test, real-time LMPs were evaluated based on the
state estimation results. For IEEE-14 and IEEE-118 system, the
network parameters7 are available in [20].

7In addition to the network parameters given in [20], we used the following
line limit and real-time offer parameters. In the IEEE-14 simulation, the gener-
ators at the buses 1, 2, 3, 6, and 8 had capacities 330, 140, 100, 100, and 100
MW and the real-time offers 15, 31, 30, 10, and 20 $/MW. Lines (2, 3), (4,
5), and (6, 11) had line capacities 50, 50, and 20 MW, and other lines had no
line limit. In the IEEE-118 simulation, the generators had generation costs ar-
bitrarily selected from and generation capacities
arbitrarily selected from . Total 16 lines had
the line capacities arbitrarily selected from , and other lines
had no line limit. To handle possible occurrence of price spikes, we set the upper
and lower price caps as 500$ MW and , respectively. Total 1000
Monte Carlo runs were executed for each case.

Fig. 4. Linear model: ARPP versus detection prob. (a) IEEE-14: ARPP of the
worst topology data is 66.1%. (b) IEEE-118: ARPP of the worst topology data
is 22.4%.

We used the number of meter data to be modified by the ad-

versary as the metric for the attack effort. For the 14-bus system,

in each Monte Carlo run, we randomly chose two lines, and the

adversary was able to modify all the line flow meters on the

lines and injection meters located at the ends of the lines. For the

118-bus system, we randomly chose three lines, and the adver-

sary had control over the associated line and injection meters.

Both state and topology attacks were set to control the same

number of meter data8 so that we can fairly compare their im-

pacts on real-time LMPs. As for the meter data attack, we only

considered the lines that are close to their flow limits (estimated

flows under M1 and M2, or actual flows under M3) as candi-

dates for congestion pattern search. The threshold is chosen as

10 MW in our simulation.

Fig. 4 is the plot of ARPPs9 versus detection probabilities of

bad data. They show that even when bad data were detected

with low probability, ARPPs were large, especially for the fully

adaptive bad meter data and the bad topology data.

Comparing ARPPs of the three bad meter data models, we

observe that the adversary may significantly improve the pertur-

bation amount by exploiting partial or all real-time meter data

(for the partially adaptive case, the adversary observed a half of

all meters.) It is worthy to point out that bad topology data result

in much greater price perturbation than bad meter data.

Recall the discussion in Sections II and V that bad topology

data and bad meter data employ different price-perturbing

mechanisms: bad topology data perturb real-time LMP by

8Topology attacks need to make few additional modifications on breaker
state data such that the target lines appear to be disconnected to the topology
processor. However, for simplicity, we do not take into account this additional
effort.

9The detection probabilities for the fully adaptive bad meter data and the bad
topology data cases were less than 0.1 in all the simulations. In the figures, we
draw ARPPs of those cases as horizontal lines so that we can compare them
with other cases.
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Fig. 5. Nonlinear model: ARPP versus detection prob. (a) IEEE-14: ARPP of
the worst topology data is 95.4%. (b) IEEE-118: ARPP of the worst topology
data is 76.9%.

restructuring the price regions without perturbing the state esti-

mate (the line-removal attack introduced in Section V does not

perturb state estimate) whereas bad meter data perturb real-time

LMP by simply moving the state estimate to a different price

region. Therefore, the observation implies that restructuring the

price regions has much greater impact on real-time LMP than

merely perturbing the state estimate.

B. Nonlinear Model With AC State Estimation

The simulations with the nonlinear model intend to inves-

tigate the vulnerability of the real-world power system to the

worst adversarial act, designed based on the linear model. The

simulations were conducted on IEEE-14 and IEEE-118 systems

in the same manner as the linear case except that we employed

the nonlinear model and the AC state estimation.

Fig. 5 is the plot of ARPPs versus detection probabilities.

The result shows that the proposed methodology can affect the

system to some extent even when nonlinear estimator is used,

especially when the bad data are present in the topology data,

although the nonlinear estimator makes this effect relatively less

significant compared with the linear case results.

C. Performance of the Greedy Search Heuristic

We also conducted simulation based on the proposed greedy

search technique in Section IV-E. The simulation was based

on 118-bus system, and all parameters were the same as those

presented in Section VI-A. We compared the performance

and computation time of the greedy heuristics with exhaustive

search benchmark, as shown in Table I. Notice here the ex-

haustive search and greedy search are both over the lines that

are close to their flow limits (estimated flows under M1 and

M2, or actual flows under M3), the same as in Section VI-A. In

Table I, the second column (average search time) is the average

TABLE I
PERFORMANCE OF GREEDY SEARCH METHOD

searching time for worst congestion pattern over 1000 Monte

Carlo runs, and the third column (accuracy) is the percentage

that the greedy search find the same worst congestion pattern

as the exhaustive search. From the result, we can see that using

greedy heuristic can give us much faster processing algorithm

without losing much of the accuracy.

VII. CONCLUSION

We report in this paper a study on impacts of worst data on

the real-time market operation. A key result of this paper is the

geometric characterization of real-time LMP given in Theorem

1. This result provides insights into the relation between data

and the real-time LMP; it serves as the basis of characterizing

impacts of bad data.

Our investigation includes bad data scenarios that arise from

both analog meter measurements and digital breaker state data.

To this end, we have presented a systematic approach by casting

the problem as one involving an adversary injecting malicious

data. While such an approach often gives overly conservative

analysis, it can be used as a measure of assurance when the im-

pacts based on worst case analysis are deemed acceptable. We

note that, because we use adversary attacks as a way to study the

worst data, our results have direct implications when cyber-se-

curity of smart grid is considered. Given the increasing reliance

on information networks, developing effective countermeasures

against malicious data attack on the operations of a future smart

grid is crucial. See [8], [10], [19], and [21] for discussion about

countermeasures.

Although our findings are obtained from academic bench-

marks involving relatively small size networks, we believe that

the general trend that characterizes the effects of bad data is

likely to persist in practical networks of much larger size. In

particular, as the network size increases and the number of si-

multaneous appearance of bad data is limited, the effects of the

worst meter data on LMP decrease whereas the effects of the

worst topology data stay nonnegligible regardless of the net-

work size. This observation suggests that the bad topology data

are potentially more detrimental to the real-time market opera-

tion than the bad meter data.
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