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Abstract Choosing appropriate landslide-controlling factors (LCFs) in landslide suscep-

tibility mapping (LSM) is a challenging task and depends on the nature of terrain and

expert knowledge and experience. Nowadays, it is very common to use digital elevation

model (DEM) and DEM-derivatives, as a representation of the topographic conditions. The

objective of this study is to explore topography in depth and simultaneously reduce

redundant information within DEM-derivatives using principal component analysis.

Moreover, this study investigates the impact of DEM-derived factors on LSM. Therefore,

three various strategies were tested. The first strategy included a set of LCFs created from

the four initial principal components, which were provided from DEM-derived factors. The

second strategy included a set of parameters which contained additional lithological and

environmental factors. The third strategy utilises the analytical hierarchy process (AHP) to

assign weights to each LCF. The LSM was performed based on landslide susceptibility

index. Obtained results show that 60% of existing landslides fell into high and very high

susceptibility zones using first and second strategies. It proves that topographic factors play

a significant role in LSM. Adding additional lithological and environmental factors to the

set of LCFs did not improve the results significantly, unless the AHP was used in the third

strategy. It improved results significantly; up to 70%. Results from second and third

strategies highlight utility of AHP in LSM. Presented studies were performed on the area

very prone to landslide occurrence in the region of Ro _znów Lake, Poland.
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1 Introduction

Landslides are generally defined as unexpected movements of soil, rock and organic

material under the effect of gravity (Highland and Bobrowsky 2008). Landslides are a

natural hazard that cause damage to the environment in many areas of the world. The slope

failures can be fatal and also can destroy or damage residential and industrial facilities, as

well as agricultural and forest areas. Moreover, landslides have negative effects on the

quality of water in rivers and streams (Schuster and Fleming 1986). For the theory of

landslide and additional background information, the reader is referred to the literature, e.g.

Highland and Bobrowsky (2008). Considering landslide impact on development and

urbanisation, effective landslide assessment is required (Aleotti and Chowdhury 1999).

The increasing awareness of the socio-economic significance of landslides provides

motivation to develop appropriate landslide risk zonation (Aleotti and Chowdhury 1999).

The first step for hazard and risk prediction is landslide susceptibility mapping (LSM).

LSM is the evaluation of the ground’s proneness to landslides and the possibility that

landslide might occur at a specific terrain or under the influence of certain factors

(Pourghasemi et al. 2013). It shows the spatial distribution of landslide-prone areas, usually

as landslide occurrence probabilities distributed across grid cells (Goetz et al. 2015).

Different methods of LSM have been broadly examined and analysed in the past decades

(Mohammady et al. 2012; Goetz et al. 2015; Bai et al. 2010; Mashari et al. 2012; Tien Bui

et al. 2011, Feizizadeh et al. 2014; Dimri et al. 2007; Kanungo et al. 2008). Moreover,

numerous comparisons of LSM methods have been evaluated and still no single best

method has been selected (Goetz et al. 2015). In general, methods of LSM may be

qualitative or quantitative (Aleotti and Chowdhury 1999). Qualitative approaches are

entirely based on the perception and experience of the person or persons who carry out the

susceptibility assessment. The quantitative methods are considered as more objective than

qualitative approaches due to their data-dependent characteristic. These methods cover a

broad spectrum of geotechnical engineering approaches, statistical approaches, artificial

neural network or fuzzy logic methods (Aleotti and Chowdhury 1999). Statistical

approaches applied for modelling of the landslide susceptibility are based on the

assumption that factors which caused landslides in the past are the same or similar as those

which will create landslide in the future (Guzzetti et al. 1999). Therefore, these approaches

concentrate on relations between landslide-controlling parameters and the location of

existing landslides from landslide inventory map (Saadatkhah et al. 2014; Aleotti and

Chowdhury 1999). Within statistical approaches, there are either bivariate or multi-variate

analyses (Chalkias et al. 2014). Using bivariate statistical analyses, each of factors is

individually compared to the landslide inventory map. These techniques apply primary-

level weights, which are commonly based on certain rules. The widely used rule is

landslide density, which is calculated as relation between the area affected by landslide

pixels on a class of a specific factor and the total area of that class; expressed as a

percentage (Ayalew et al. 2004; Akgun et al. 2008). The most frequently used bivariate

methods are frequency ratio calculation, also called the landslide susceptibility index,

probabilistic likelihood ratio (PLR), weight of evidence and statistical index (Kavzoglu

et al. 2015a, b; Thiery et al. 2007; Mezughi et al. 2011; Yalcin et al. 2011; Abay and

Barbieri 2012; Constantin et al. 2011). Among multi-variate methods, logistic regression is

widely applied (Bai et al. 2010; Mashari et al. 2012). The comparison of bivariate (sta-

tistical index) and multi-variate (logistic regression) methods was performed by Tien Bui
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et al. (2011). This comparison indicates an almost equal predicting capacity between these

two methods.

The major difficulties in quantitative methods mentioned above are the assessment of

the factors related to landslide occurrence and the assignment of appropriate weights to

these factors (Carrara 1988; Bui et al. 2016; Kavzoglu et al. 2015a, b). Hence, many

researchers tested different approaches, which analyse the spatial distribution of landslides

with different LCFs (Bui et al. 2016; Mahalingam et al. 2016). Nowadays, the significance

of each LCF can be easily validated using geographic information system (GIS). In

addition, GIS provides a powerful tool for multi-criteria decision analysis (GIS-MCDA)

which became more popular over the past years (Ahmed 2015; Aleotti and Chowdhury

1999). The concept of MCDA assumes that each LCF can be combined by applying

primary- and secondary-level weights. Primary-level weights follow the same rule as

bivariate approaches. However, secondary-level weights are expert opinion-based weights

(Ayalew et al. 2004; Ahmed 2015). Among expert opinion methods for weights assign-

ment, an analytic hierarchy process (AHP) is a technique which has been successfully

applied to many decision maker systems (Kayastha et al. 2013; Ayalew et al. 2005). The

AHP technique uses a pair-wise relative comparison between each LCF (Saaty 1980). Due

to this fact, the weights assignment is getting more complicated and time-consuming if the

quantity of LCF increases. Except for statistical methods, data mining using fuzzy logic

(Feizizadeh et al. 2014; Dimri et al. 2007; Kanungo et al. 2008) and artificial neural

network models (Ermini et al. 2005; Lee and Evangelista 2006; Kanungo et al. 2006) have

also been applied to the LSM using GIS. Furthermore, applications of data mining and soft

computing methods are increasing rapidly. Among these approaches also decisions trees,

Bayesian networks, etc., are characterised by effectiveness in LSM (Bui et al. 2016).

Various natural and man-made factors can be considered as the LCFs. For that reason,

the selection of the appropriate LCFs is a challenging task. LSM requires that topographic,

environmental, geological and hydrological parameters should be taken into account. Some

researchers assume that the accuracy of the created susceptibility map increases propor-

tionally with the quantity of LCFs used (Jebur et al. 2014). Other scientists state that a

small number of LCFs is satisfactory to produce landslide susceptibility maps with a

reasonable quality (Jebur et al. 2014; Mahalingam et al. 2016). The investigations of

Kingsbury et al. (1992) present that the additional factors (soil type, land use, slope aspect,

proximity to watercourses) did not increase the reliability of the susceptibility maps and are

suitable to a particular study area only. Therefore, no specific rule exists to define how

many conditioning factors are sufficient for the susceptibility analysis on a given study area

(Pourghasemi et al. 2013; Mahalingam et al. 2016). Moreover, various factors have a

different impact on landslide occurrence; therefore, MCDA provides the possibility to

include expert opinion to describe their impact.

The objectives of this study were to:

1. deeply explore topographic information delivered from DEM by calculating ten

different DEM-derived LCFs,

2. reduce redundant information within DEM-derived factors by applying PCA

technique,

3. reduce the pair-wise combinations within AHP by applying PCA technique,

4. investigate the impact of DEM-derived factors and AHP technique for LSM on the

study area by applying three strategies with different data set and methods,

5. produce a landslide susceptibility map at the regional scale of the study area using

probabilistic likelihood ratio method (PLR).
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2 Study area characteristic

The study area covers approximately 26.3 km2 and is located in the central part of the

Outer West Carpathians within the Cię _zkowice Foothills (Starkel 1972), along the western

bank of Ro _znów Lake (Fig. 1). The geographic location of this catchment area is 49�430N

to 49�460N latitude and 20�380E to 20�430E longitude. The altitude of the study area ranges

from 235 m to 486 m. This area was chosen because of the frequency of landslides over

the past few years. Landslides in this area are commonly related with sedimentary rocks

subjected to a primary driving force such as rainfall. Their activity is mostly attributed to

the high variability of the hydrogeological conditions, controlled by fluctuation of water

level in the Ro _znów Lake and complex geology of the flysch-type rocks (Borkowski et al.
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Fig. 1 Study area with landslide inventory map (landslide divided for modelling and testing data sets)
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2011). Within the study area, various landslide types can be found including: new active,

suspended and dormant old. Landslides located in a forested terrain are hidden and

therefore very problematic for identification. Earthflows are the main type of landslide that

occurred within the study area. They usually occur on slopes above rivers and creeks. The

average annual precipitation on the research area was at the level of 728.9 ± 10.7 mm in

years 1981–2010 (Woźniak 2014). Most of the landslides located within the study area are:

translational, rotational and combined rock-debris slides or debris slides (Gorczyca et al.

2013).

3 Data used

Due to format and data type inconsistency between the above sources, all input data were

pre-processed using the ArcGIS software to create thematic layers in the raster format with

pixel size 5 m 9 5 m (Pawłuszek and Borkowski 2016). These layers represent LCFs. The

characteristic of the prepared layers is given below in more detail (Table 1).

3.1 Landslide inventory map

Due to the problem related to landslide occurrences and activities, Polish Geological

Institute created a ‘‘Landslide Counteracting System’’ called SOPO (Borkowski et al.

2011). The aim of this system is to collect landslide inventory maps of all existing land-

slides in Poland and put them into one database. This database stores information about

active, inactive and landslide-prone areas. The online database content is available to the

public to browse and is free of charge. The SOPO database showed more than 250

landslides for the study area. The landslide-affected areas cover 6.51 km2, which means

that 25% of total area is affected by landslides. It proves that the study area is very

susceptible to the landslide activity and needs efficient landslide susceptibility assessment.

Therefore, for modelling, 70% of randomly selected landslides was used and 30% was used

for validation.

3.2 DEM-derived LCFs

All DEM-delivered layers are in GRID format with the cell size equal to 5 m 9 5 m that

was generated from point cloud with resolution of 4–6 points/m2. Point cloud was obtained

from airborne laser scanning in the framework of the ISOK project (Pawłuszek et al. 2014).

According to Pawłuszek et al. (2014), the height component accuracy of the ISOK data

does not exceed 23 cm for forested areas. Based on the DEM, the presented above,

Table 1 Data used to create thematic layers

Data Source Type

Landslide inventory map SOPO project Raster

DEM ISOK project Point cloud

Land use and drainage maps Topographic object database Vector

Roads map Open street map Vector

Lithology map Polish geological institute Raster
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geomorphological and hydrological thematic data layers were computed. Since the most-

used LCFs are commonly known, we omitted background relations needed to calculate

them. We provided equations below only for new and rarely used LCFs.

3.2.1 Elevation

Many approaches for landslide susceptibly mapping consider the elevation (Fig. 2) as one

of the major LCFs. There exists a close connection between elevation and landslide

occurrence (Bai et al. 2010; Chen et al. 2013; Ayalew et al. 2005; Goetz et al. 2015;

Chalkias et al. 2014; Jebur et al. 2014; Mashari et al. 2012; Pourghasemi et al. 2012). All

DEM-delivered LCFs are calculated based on the elevation which means that they can be

represented by the elevation. Ayalew et al. (2005) use the elevation as one of the only three

conditioning factors for LSM.

3.2.2 Slope

The slope (Fig. 3) is the crucial landslide-conditioning factor because sliding of loose

material is directly related to the slope (Bai et al. 2010; Chen et al. 2013; Ayalew et al.

2005; Goetz et al. 2015; Chalkias et al. 2014; Jebur et al. 2014; Mashari et al. 2012;

Pourghasemi et al. 2012; Akgun et al. 2008; Constantin et al. 2011; Thiery et al. 2007;

Sarkar and Kanungo 2004; Feizizadeh et al. 2014 Kayastha et al. 2013; Ozturk et al. 2016).
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3.2.3 Morphological gradient

The morphological gradient is widely used in image processing as edge detector in seg-

mentation application, thresholding in the watershed transformation. It is characterised by

difference between extensive and anti-extensive transformations (Rivest et al. 1992).

Gradient operators enhance the high grey level variations. In the literature, there are

different ways of morphological gradient calculation (Soille 2013). However, Beucher

gradient (Fig. 4) is widely calculated as the difference between the dilation and the erosion

of the image (Soille 2013). In this case, the image was created from DEM, where inten-

sities of image pixels were calculated as the standardised elevations of the appropriate

GRID cells. The morphological gradient detects the contrast intensity in the close neigh-

bourhood of specific pixel. Thus, the morphological gradient exposes big variations of the

terrain elevations. Obviously, areas with high elevation differences have a crucial influence

on landslide occurrences. The morphological gradient has never been applied before in

landslides studies and is introduced by the authors in this research in order to deeply

explore the DEM. It is calculated for 3 9 3 pixel mask using plug-in implemented in

Python.

3.2.4 Aspect

The aspect (Fig. 5) shows the horizontal direction of a surface. The aspect value of the

slope is constant. In order to illustrate the trend of the slope, the aspect is classified into

eight classes corresponding to eight geographic directions and an additional class for the

flat ground. The relation between aspect and landslide occurrence has been widely
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investigated for several years (Bai et al. 2010; Chen et al. 2013; Ayalew et al. 2005;

Chalkias et al. 2014; Jebur et al. 2014; Mashari et al. 2012; Pourghasemi et al. 2012;

Akgun et al. 2008; Constantin et al. 2011; Sarkar and Kanungo 2004; Kayastha et al.

2013). However, no clear agreement exists in the context of the aspect as a LCF. Nev-

ertheless, the aspect was taken into account as one of the factors in this study.

3.2.5 Area solar radiation (ASR)

The area solar radiation (Fig. 6) is one of the secondary terrain derivatives and is computed

based on the aspect and the slope. ASR represents the radiant energy within a given

location (pixel) for the specific date. ASR combines two insolation factors: the sun angle

(slope dependence) and its direction (aspect dependence). If the soil receives little amount

of solar radiation, it can cause high soil moisture. It is obvious that soil with high moisture

content is more prone to landslide occurrence. Moreover, higher solar radiation contributes

to better vegetation growth, consequently leading to a more stable slope (Hengl and Reuter

2009; Wilson and Gallant 2000). The ASR computation is time-consuming. This may be

the reason, why this factor is excluded from previous investigations unless it is easily

available in ArcGIS.

3.2.6 Roughness

The roughness index (Fig. 7) is derived from the slope map by applying a moving standard

deviation filter with 3x3 pixel kernel size. The roughness index is widely used in landslide
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studies—in particular to create landslide inventory maps (McKean and Roering 2004).

Typically, areas affected by landslides are very rough. Moreover, different roughness

indexes can represent various landslide activities (Glenn et al. 2006).

3.2.7 Topographic position index (TPI)

The TPI (Fig. 8) is calculated as the difference between the cell elevation and the mean

elevation of neighbouring cells. Applying specific thresholds for TPI values allows for the

identification of different topographic landforms, such as ridge, slope, valley. Since the

landslide scarps occur mostly on the ridges, the TPI index may be seen as one of geo-

morphological LCFs (Jebur et al. 2014; Pourghasemi et al. 2014). In this study, TPI was

calculated using Jenness et al. (2011) implementation.

3.2.8 Topographic wetness index (TWI)

The TWI (Fig. 9) is a hydrological factor, which is widely used in landslide studies

(Pourghasemi et al. 2012, 2013). This factor is applied to quantify topographic control on

hydrological processes (Jebur et al. 2014; Pourghasemi et al. 2012, 2013; Akgun et al.

2008). The TWI is a function of the slope b and the upstream contributing area per unit

width orthogonal to the flow direction As (Gessler et al. 1995; Moore et al. 1993) and is

calculated as follows:
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TWI ¼ ln
As

tanb
ð1Þ

where As is area value calculated as (flow accumulation ? 1) � (pixel area in m2) and b is

the slope (in �).

TWI index was calculated using script from Geomorphometry and Gradient metrics

written by Jeffrey Evans, which is applicable in ArcGIS (Evans et al. 2014).

3.2.9 Stream power index (SPI)

Usually, SPI (Fig. 10) is used in the landslide susceptibility studies as the meaningful

hydrological factor (Pourghasemi et al. 2012, 2013; Akgun et al. 2008; Mohammady et al.

2012). However, other investigations (Gokceoglu et al. 2005) treat SPI (Fig. 2h) as a

secondary important characteristic. The SPI describes potential for flow erosion at the

given point of the surface, and controls potential erosive power of water flow (Moore et al.

1991). The SPI used the same variables as TWI but is calculated in different manner:

SPI ¼ As � tanb ð2Þ

3.2.10 Shaded relief

The shaded relief (Fig. 11) describes a hypothetical illumination value of the surface. It

enhances the visualisation of a surface. In presented work, multiple shaded reliefs were

obtained by illuminating the DEM from eight different sun directions. Similar approach
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can be found in works of Schulz (2004) and Van den Eeckhaut et al. (2007). The multiple

shaded relief images are widely applied to explore deeply the morphometric information

provided by DEM (Guzzetti et al. 2012).

3.3 Lithology

In some studies, the lithology (Fig. 12) is one of the essential conditioning factors in LSM

(Jebur et al. 2014; Mashari et al. 2012). On the study area, eight lithological units can be

distinguished that consist of: sandstone, claystone, marl and conglomerates (K2); sand-

stone and shales (E1); sandstone, shales, conglomerates, marl claystone and mudstone

subordinate (E2); landslide deposits (Q3); sandstone, shales, schists and cornea (E3);

sandstones, shales, conglomerates, marl, claystone, and sands, gravels, alluvial soils and

peats, and silts (Q2); less (Q1). Appendix shows landslide percentage in each lithological

unit.

3.4 Environmental factors

3.4.1 Distance from roads

Many researchers claim that the presence of roads in mountainous areas increases the

chance of landslide subsistence (Akgun et al. 2008; Feizizadeh et al. 2014; Pourghasemi

et al. 2012, 2013; Jebur et al. 2014; Mashari et al. 2012; Mohammady et al. 2012).

Moreover, road constructions may undercut the slopes and break the rock structures,

consequently decreasing the slope strengths. Therefore, the distance (Fig. 13) from roads
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(Fig. 13) is used as one of LCFs (Donati and Turrini 2002). Appendix presents the land-

slide density in each distance to roads category.

3.4.2 Distance from drainage

The water level fluctuation in the Ro _znów Lake area is one of the crucial factors. Land-

slides very often occur along the riverbanks within the study area. The use of distance from

drainage (Fig. 14) as the landslide-conditioning factor can be seen in many studies (Akgun

et al. 2008; Chen et al. 2013; Sarkar and Kanungo, 2004; Feizizadeh et al. 2014; Pour-

ghasemi et al. 2012, 2013; Jebur et al. 2014; Mohammady et al. 2012). Hence, this factor

should be considered as one of LCFs. Appendix shows the landslide density as the per-

centages in every distance interval from the drainage class. It is evident that landslides

occur mainly at the distances less than 100 m.

3.4.3 Land use

The land use (Fig. 15) demonstrates how people use the landscape whether for develop-

ment, conservation or mixed uses. It is obvious that different land use has different impact

for slope stability. Therefore, land use is an essential factor in LSM in many studies (Chen

et al. 2013; Constantin et al. 2011; Sarkar and Kanungo 2004; Kayastha et al. 2013;

Kanungo et al. 2006; Pourghasemi et al. 2012, 2013; Mashari et al. 2012; Mohammady

et al. 2012). Bare slopes are more susceptible to landslide occurrence (Van Westen et al.

2008). Land use changes caused by human activities, such as cultivation or deforestation,

may have a significant impact on the landslide activity (Van Westen et al. 2008). However,
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Fig. 14 Distance from drainage
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vegetative areas tend to prevent the erosion and decrease the landslide susceptibility

because of the natural anchorage constructed by the roots (Dahal et al. 2008). Appendix

presents the landslides density as the percentages in every land use category. It is easy to

see that landslides mostly occur in orchards and forests.

4 Methods

In order to describe the influence of DEM-derived and environmental factors on LSM,

three different strategies were tested in this study (Table 2). The first strategy uses only the

DEM-derived conditioning factors. The second strategy uses the full set of the LCFs that

includes geological and environmental factors. Each LCF was treated equally in first and

second strategies. The third strategy applies the AHP method in order to assign weights to

all described LCFs and to produce the landslide susceptibility map for the study area. The
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urban areas
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river

scrublands

others

Fig. 15 Land use

Table 2 Differences between strategies applied for LSM

First strategy Second strategy Third strategy

Data

used

4 principal

components

4 principal component, lithology,

distance do drainage, distance to

roads, land use

4 principal component, lithology,

distance do drainage, distance to

roads, land use

Method Probabilistic

likelihood

ratio (PLR)

Probabilistic likelihood ratio (PLR) Multi-criteria decision analysis

(PLR ? AHP)
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methodology flow chart is presented in Fig. 16 and commented in the following

subsections.

4.1 Reduction of DEM-derived landslide-conditioning factors

As mentioned earlier, no universal guidelines exist for selecting appropriate factors that

affect landslides and can be used in the susceptibility mapping. Moreover, an excessive

number of LCFs significantly extends computational time. Nevertheless, in the presented

approach abundant topographic LCFs were considered. As mentioned previously, quan-

titative approaches demand weights to be assigned to each LCF. Hence, many researchers

use AHP to determine weights for landslide-controlling factors. This method requires pair-

wise comparisons of each LCF. The AHP is subjective approach, because it is based on the

knowledge and an expert opinion. Moreover, if the number of used factors is bigger than

the weights assigning process is the more complex. On the other hand, the selection of

causal factors reflects the nature of the research area and has a certain degree of affinity

with landslides (Ayalew et al. 2005). Since the DEM-delivered factors are the first or

second order derivatives of the DEM, they contain redundant information. For that reason,

it is rational to reduce such information. In order to extract as much information as possible

from the DEM-derived factors presented above and simultaneously reduce the number of

components used, the PCA was applied.

The PCA is a multi-variate approach that uses data sets, where observations are char-

acterised by several inter-correlated quantitative dependent variables. Its objective is to

extract the relevant information from the data to represent it as a set of the new orthogonal

Landslide conditioning
factors

LiDAR-derived
conditioning factors

Lithology and environmental
conditioning factors

Elevation
Slope

Gradient
Aspect
Roughness
Hillshade

SPI
TPI
TWI

Area Solar Radiation

Lithology
Distance from drainage
Distance from road

Land use

4 PCA components

Landslide susceptibility mapping
according to:

- first strategy (PLR)
- second strategy (PLR)
- third strategy (MCDA)

Validation

Fig. 16 Methodology flowchart
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variables called principal components (Abdi and Williams 2010). Thus, normalisation of

each LCF was performed before applying the PCA. According to the results, Fig. 17 shows

the accumulated eigenvalues contained in the subsequent principal components. Although

there are many rules which explain how many principal components should be taken into

account, one is empirical criterion, where the number of principal components should

include at least 80% of the total variance (Solanas Pérez et al. 2011). Analysing Fig. 17 it

can be seen that the initial four principal components provide around 90% of the total

variance. Therefore, in the next steps it has been decided to use only four principal

components.

4.2 Calculation of probabilistic likelihood ratio (PLR)

The PLR takes advantage of the relation between existing landslides in every class (cat-

egory) of each LCF. In other words, it represents landslide density and non-landslide

density in each class of LCFs and it exhibits the correlation between the landslide

occurrence and the LCFs in the study area (Lee and Evangelista 2006). Since the number

of the DEM-derived factors was reduced to four using PCA, the PLR was calculated for the

four principal components and all environmental factors (e.g. land cover, lithology).

Therefore, if j is a class of LCF i, then the PLR for this class and this LCF (PLRi,j) is

determined as follows (Pourghasemi et al. 2014):

PRLi;j ¼
No:of landslide pixels

Total landslide pixels

,

No:of pixels in domain

Total pixels
ð3Þ

The landslide density and the non-landslide densitywere calculated based on the overlying

landslides pixels with the thematic layers, which represent LCFs. The thematic layers were

produced from environmental conditioning factors and the initial four principal components,

which represent DEM-derived features. Values of landslide factors were divided into five

classes using the natural breaks classification.Appendix presents the PLR in every class of the

LCF. Afterwards, the PLR of each parameter class was normalised and summed and final

Fig. 17 Accumulative eigenvalues in subsequent principal components
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susceptibility index (LSI) for each pixel was calculated using equation (Pourghasemi et al.

2014):

LSI ¼
X

n

i¼1

PLRi;j ð4Þ

where PLRi is the likelihood ratio for the factor i and pixel j and n is the total number of

factors.

The PLR method consists of three main steps:

• LCFs values categorisations.

In this step, the natural breaks classification was used to reclassify continuous values of

four principal components into five categories. The environmental factors (such as distance

to drainage or roads) were reclassified using distance buffer analysis (Chalkias et al. 2014).

• Probabilistic likelihood ratio computation according to Eq. (3)

At this stage, each class within LCF was overlaid with the landslide inventory map.

Afterwards, PLR was calculated for each category by dividing the landslide density by the

non-landslide density (Chalkias et al. 2014).

• Final LSI calculation for each pixel of the study area according to the Eq. (4)

At this stage, the final LSI was produced for each pixel by summing the PLR values for

all LCFs computed for that pixel (Chalkias et al. 2014).

4.3 Multi-criteria decision analysis

The concept of multi-criteria decision analysis (MCDA) is that each LCF can be combined

by applying primary- and secondary-level weights. Primary-level weights are received by

applying PLR; however, secondary-level weights are expert opinion-based weights. For

assignment of secondary-level weights, analytic hierarchy processes were applied

(AHP).Therefore, the mathematical representation of MCDA is applied as follows:

LSI ¼
X

n

i¼1

wj � PLRi;j ð5Þ

where wj is the weights assigned using AHP for factor j.

4.3.1 Principal component physical representation

As it was previously stated, the four initial principal components were used as a repre-

sentation of DEM-derived factors. It is not easy to understand the physical meaning of each

principal component and compare them. Therefore, it is desirable to find the correspon-

dences between each principal component and DEM-derived parameters. For better

understanding of principal variables, the correlation coefficients between the four principal

components and ten original DEM-derived factors were computed (Table 3). The corre-

lation is considered as strong if the absolute value of coefficient is greater than 0.5.

Therefore, correlations above this value were treated as significant. Obtained coefficients

show that the first component is highly correlated only with the aspect. Similarly, the

component four is mostly correlated with the ASR, though the correlation with other
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factors is negligible. In the case of components two and three, the correlation with the

DEM-derived factors is more complex. There is not any dominant correlation, and sig-

nificant coefficients exist for more than a single factor. Both components present high

correlation with the gradient, slope, shaded relief and elevation. Moreover, the component

two is more correlated with CTI, while the component three is correlated with the

roughness. Therefore, in the pair-wise comparison, the component two was treated mostly

such as CTI and the component three mostly such as roughness.

4.3.2 Secondary-level weight assignment by AHP

The appropriate weight assignment is a challenging task. For that purpose, the AHP is used in

many landslide studies in the world (Akgun et al. 2008; Kayastha et al. 2013; Ayalew et al.

2005; Feizizadeh et al. 2014). AHP is the multi-criteria decision model, which uses pair-wise

comparisons of relative factors without inconsistencies in the decision process (Saaty 1980).

The essential advantage of the AHP is involving the expert’s knowledge and experiences in

the weights assigning process. This may improve the quality of the susceptible maps. On the

other hand, the AHP is subjective and different researchers can achieve different results.

In the presented study, the AHP was used to assign weights to controlling factors. The

pair-wise comparison in AHP starts with assigning the preference factor to the LCFs (in

this case to the four principal components and environmental factors) according to Table 4

provided by Saaty (1977). As a result of the pair-wise comparison of all LCFs, a matrix

containing preference factors is created. The scale of preference factors ranging from 1 to 9

represents the direct relation between the factors, while the scale ranging from 1/2 to 1/9

means that the factors have the inverse relation (Table 5). While consensus in the pair-wise

comparison is reached, weights for every vector are assigned by the eigenvector calculation

using the comparison matrix. The inconsistencies in the decision process can be detected

using consistency index (CI) that is defined as follows:

CI ¼
kmax � N

N � 1
ð6Þ

where kmax is the largest eigenvalue and N is the order of the comparison matrix. If CI is

greater than 0.1, the comparison matrix is inconsistent and it should be revised. In the

presented study, CI equal to 0.056 was obtained, which means that the comparison matrix

is consistent (Saaty 2000).

Table 3 Correlation coefficients

between PC components and

DEM-derived factors

DEM-derived factor Principal component

1 2 3 4

Aspect 1.00 0.00 -0.02 -0.01

ASR 0.04 -0.20 0.48 0.79

CTI -0.01 -0.62 0.31 -0.38

Elevation 0.02 0.84 0.53 -0.07

Gradient -0.03 0.68 -0.62 0.03

Shaded relief 0.04 -0.58 0.66 0.04

Slope -0.03 0.63 -0.58 0.03

SPI 0.00 0.09 0.00 -0.22

Roughness -0.02 0.28 -0.58 0.18

TPI 0.00 0.01 0.14 0.19
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Table 4 Scale of preference between two parameters in AHP (Saaty 1977)

Preference

factor

Degree of

preference

Explanation

1 Equally Two factors contribute equally to the objective

3 Moderately Experience and judgment slightly to moderately favour one factor over

another

5 Strongly Experience and judgment strongly or essentially favour one factor over

another

7 Very strongly A factor is strongly favoured over another and its dominance is showed in

practice

9 Extremely The evidence of favouring one factor over another gives the highest

degree of affirmation possible.

2,4,6,8 Intermediate Used to represent compromises between the preferences in weight 1,3,5,7

and 9

Reciprocals Opposites Used for inverse comparison

Table 5 Pair-wise comparison matrix and weights for landslide causative factors

LCFs (after

PCA)

The

first

compo

nent

The

second

compo

nent

The

third

compo

nent

The

fourth

compo

nent

Geology Distance

from

river

Distance

from

roads

Land

use

Weights

The first

component

1 0.022

The second

component

9 1 0.332

The third

component

7 1/2 1 0.181

The fourth

component

7 1/4 1 1 0.129

Lithology 4 1/6 1/3 1/4 1 0.050

Distance from

river

8 1 1/3 1 2 1 0.127

Distance from

roads

4 1/5 1/2 1 2 1 1 0.089

Land use 2 1/8 1/3 1/2 2 1 1 1 0.07

Consistency index = 0.056\ 0.1 (acceptable)
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4.4 Isodata classification

In order to create landslide susceptibility zones, it is necessary to reclassify the continuous

values of LSI in the final map. Various classification methods are available in GIS;

however, four methods, namely: standard deviations, equal intervals, natural breaks and

quantile, have been examined in the landslide studies (Ayalew and Yamagishi 2005). All

mentioned methods of the classification depend on the statistical parameters. Previously,

clustering was not commonly used to differentiate the susceptible classes. The natural

breaks classification, the quantile classification and clustering were tested in this study to

divide LSI in five susceptible classes. Based on the validation method presented in

Sect. 4.5, the clustering provided the best performance. In this study, the isodata unsu-

pervised classification was used to create classes of the landslide susceptibility. The isodata

were performed in ArcGIS software (Ball and Hall 1965).

4.5 Validation of landslide susceptibility maps

Remondo et al. (2003) proposed a validation method for LSM, where the original landslide

inventory map is randomly split in two parts: one for the susceptibility analysis and second

for validation process. According to this concept, 70% of randomly selected landslide was

used for modelling and 30% was used for validation in this study.

4.5.1 SCAI index

Moreover, the seed cell area index (SCAI) validation technique proposed by Süzen and

Doyuran (2004) was implemented. The SCAI is calculated by dividing percentage of pixels

of the specific landslide susceptibility class by percentage of existing landslides pixels in

the specific landslide susceptibility zone. SCAI shows the density of landslides among the

landslide susceptibility zones. It is expected that the high and very high susceptibility

classes should have very small SCAI values and low, very low susceptibility zones should

have higher SCAI values (Süzen and Doyuran 2004; Kıncal et al. 2009).

4.5.2 Difference image analysis

In order to compare maps from three strategies, difference image analysis was applied.

Difference image analysis provides information how maps are different from each other. By

comparing two landslide susceptibilitymapswith different susceptibility zones, the so-called

residual map is received (Gupta et al. 2008). This map elucidates how pixels shift from one

landslide susceptibility zone to another zone between two maps. Therefore, a residual map

can have a maximum five different classes: no difference, one-zone difference, two-zone

difference, three-zone difference and four-zone difference. The best performance of LSM is

presented by third strategy, where AHP method was used in order to assign weights to LCF.

5 Obtained landslide susceptibility maps and discussion

The first LSM strategy used only factors derived from the DEM, which were then repre-

sented by the four uncorrelated principal components (Sect. 4.1). Landslide susceptibility

maps obtained by first, second and third strategies are presented in Figs. 18, 19 and 20,
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Fig. 18 Landslide susceptibility map (first strategy)

20°43’0"E20°42’0"E20°41’0"E20°40’0"E20°39’0"E20°38’0"E

49°46’0"N

49°45’0"N

49°44’0"N

49°43’0"N
0 1 20,5

Km

Landslide susceptibility zones

very low

low

moderate

high

very high

Fig. 19 Landslide susceptibility map (second strategy)

Nat Hazards (2017) 86:919–952 941

123



respectively. Tables 6, 7 and 8 show the percentage of landslide area in every susceptible

zone and SCAI index for three strategies.

According to the first strategy, very high and high susceptibility classes contain 60% of

existing landslides area used for validation. According to the second strategy, the set of

parameters was extended by lithological and environmental factors. Environmental factors

include distance to drainage, distance to roads and land use. Using the second strategy,

Table 6 Landslide density

among the landslide susceptibil-

ity classes, the first strategy

Susceptibility Area (%) Seed (%) SCAI

Very low 0.20 0.02 9.28

Low 0.20 0.09 2.25

Moderate 0.27 0.30 0.89

High 0.21 0.35 0.60

Very high 0.13 0.25 0.51

Table 7 Landslide density

among the landslide susceptibil-

ity classes, the second strategy

Susceptibility Area (%) Seed (%) SCAI

Very low 0.16 0.02 7.12

Low 0.25 0.10 2.40

Moderate 0.26 0.27 0.94

High 0.19 0.33 0.59

Very high 0.14 0.27 0.52
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Fig. 20 Landslide susceptibility map (third strategy)
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very high and high susceptibility class contains also 60% of the existing landslide area used

for validation.

Comparing the results to the first strategy, it can be seen that the same percentage of

landslides areas fell into high and very high susceptibility class. However, SCAI index is

higher for very low and low classes for strategy using only DEM-derived factors.

According to that, it can be concluded that LSM using only the four principal components

obtained from DEM-derived factors provides slightly higher performance than LSM that

uses all factors. It is supposed that environmental factors should increase the performance

of LSM. The reason for that could be that extended set of DEM-derived factors was taken

into account. For instance SPI or CTI, which are hydrological factors derived from DEM,

contains information, which can be also contained in distance to drainage factor.

In third strategy-MCDA, full set of LCFs was applied with weights assigned using AHP

(Sect. 4.3). The SCAI index is smaller for very low susceptible class. Very high and high

susceptibility classes contain 70% of the existing landslides areas used for validation. It means

that susceptibility mapping using full data set with weights exhibits the highest performance.

In order to perform difference image analysis, maps from first and second strategies

were compared with the map produced in third strategy. Figures 21 and 22 present the

differences in susceptible zones between these maps. Based on achieved results, it can be

concluded that maps delivered using first and second approaches provide quite similar

Table 8 Landslides density

among the landslide susceptibil-

ity classes, the third strategy

Susceptibility Area (%) Seed (%) SCAI

Very low 0.15 0.02 6.30

Low 0.17 0.06 3.04

Moderate 0.26 0.22 1.21

High 0.26 0.41 0.64

Very high 0.16 0.29 0.53

Fig. 21 Statistics for difference image analysis between first and second strategies

Fig. 22 Statistics for difference image analysis between second and third strategies
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results in comparison with a map provided by third strategy. There is 3% of difference in

number of fully matching pixels and 1% difference in one-zone difference. Between maps

from strategy first and second, we can observed 59% of matching pixels (Fig. 23). Based

on achieved results of compared maps, it can be stated that landslide susceptibility maps

delivered only from deep exploration of DEM are not significantly worse than those

created from full data set. Figures 24, 25 and 26 present residual map between first and

third strategies, second and third strategies and first and second strategies, respectively.

Observing residual maps (Figs. 24, 25, 26) from difference map analysis, it can be seen

that the biggest difference is located close to the rivers.

Fig. 23 Statistics for difference image analysis between first and third strategies
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Fig. 24 Residual map between first and third strategies
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Fig. 25 Residual map between second and third strategies
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Fig. 26 Residual map between first and second strategies
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6 Summary and conclusion

In presented study, three various strategies were applied to create landslide susceptibility

maps for the area of Ro _znów Lake, Poland. The first strategy used only DEM-derived

conditioning factors reduced to four uncorrelated principal components. The second

strategy used the full set of LCFs that included four principal components, lithological and

environmental factors. The third strategy utilised the full set of LCFs with weights assigned

using AHP. The produced susceptibility maps were compared with 30% of randomly

selected landslides for validation, and the effectiveness of these three strategies was tested.

Based on the achieved results, the third strategy exhibits the best performance. According

to our results, the only way to achieve improved performance of LSM is to assign

appropriate weights to LCFs, e.g. deploying AHP.

Besides producing the landslide susceptibility map for the study area, the main objective

of this study was to investigate the impact of DEM-derived and environmental condi-

tioning parameters for LSM in the area of Ro _znów Lake. The difference image analysis

between first and second strategies demonstrated the usefulness factors delivered from

DEM. Comparing the SCAI, it can be concluded that LSM using only the four principal

components obtained from DEM-derived factors provides slightly higher performance than

LSM that uses all factors. Based on achieved results, it can be stated that landslide sus-

ceptibility maps, created using only DEM-delivered factors, provide the possibility to

produce reasonable landslide susceptible zones in areas where full data collection is

complicated and time-consuming. Approximately the same content of landslide areas

(60%) selected for validation fell into high and very high susceptible zones in the first and

the second strategies. The reason for that could be that non-DEM-delivered factors do not

provide additional information, because of so deep exploring of the DEM. For instance,

landslides often occur close to rivers, which can be indirectly represented by slope,

roughness index or stream power index. Another reason for than could be that buffer

classes of distance from drainage or roads were not chosen appropriately. It could be also

that no relationship exists between landslides and land cover or lithology. It means that

these LCF are not suitable to this particular study area.

After applying the AHP to assign weights to the LCFs, the effectiveness of the LSM

increased up to 70%. Based on the weights assigned to the LCFs, it can be concluded that

in the LSM the most important LCFs are the principal components two, three and four.

They mostly correspond to the slope, elevation, roughness and ASR. Moreover, results

indicated that distance to rivers is also a relevant factor in LSM. However, lithology does

not have significant impact on LSM. Based on PLR obtained for each lithological class, it

can be seen that the landslide occurrence in each lithological category is very similar. The

reason for that could be the geological structure in the study area. Each lithological unit

exhibits the same proneness for landslide occurrence. Moreover, the weights indicated that

land use and aspect are not significant LCFs in LSM.

An open question is finding a proper criterion for choosing the optimal number of the

principal components that represent DEM-derivatives in order to reduce the computational

effort and the complexity of LSM and simultaneously to achieve a seasonable accuracy of

LSM. This issue should be addressed in the future research.

Based on achieved results, this approach can be applicable to the landslide susceptibility

mapping in other regions in the world. However, it is important to assign appropriate

weights into the specific landslide-controlling factors, because it is mostly attributable to

the nature of the terrain and type of landslide. On the other hand, most of the landslides
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located within the study area have different types (translational, rotational and combined

rock-debris slides or debris slides); therefore, it suggests that methodology is more com-

prehensive and not narrowed into one type of landslide.

Akgun et al. (2008) obtain higher performance of the LSM using the same PLR method

with weights, assigned from the AHP in the study area in Turkey. On the other hand,

Komac (2012) applied other bivariate Monte Carlo approach in Slovenia achieving also

70% of correctness. Similar results can be found in work (Mashari et al. 2012; Akgun and

Türk 2010; Ayalew et al. 2005; Kanungo et al. 2006). According to the results, the

presented approach provides diverse results for diverse study areas in the world. Moreover,

choosing the most appropriate method for the LSM is essential, because it provides dif-

ferent results depending on the nature of the terrain. For this reason, more studies have to

be performed in the Carpathian Mountains in order to select suitable methods for the LSM

in this region. It will be investigated by authors in a further work. Furthermore, many other

LCFs have not been tested; therefore, the authors will test importance of other LCFs on

LSM, for instance distance to faults, distance to lineament, NDVI and soil depth or texture.
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Appendix

See Table 9.

Table 9 PLR calculation

Landslide-

conditioning

factors

Class Pixels

with

land

slides

Landslide density
No: of landslide pixels

Total landslide pixels

� �

Pixels

with

non-

land

slides

Non-landslide

density
No: of pixels in domain

Total pixels

� �

PRLi, j Nor

malised

PRLi, j

The first

principal

component

1 17,890 0.10 120,455 0.13 0.79 0.10

2 22,999 0.13 116,374 0.12 1.05 0.13

3 29,503 0.16 109,546 0.11 1.44 0.18

4 30,954 0.17 113,627 0.12 1.45 0.18

5 24,815 0.14 137,145 0.14 0.97 0.12

6 18,312 0.10 122,997 0.13 0.79 0.10

7 18,113 0.10 109,091 0.11 0.89 0.11

8 16,355 0.09 125,294 0.13 0.70 0.09

The second

principal

component

1 5253 0.03 220,177 0.23 0.13 0.03

2 59,727 0.33 206,972 0.22 1.53 0.31

3 65,514 0.37 245,512 0.26 1.42 0.29

4 34,235 0.19 187,687 0.20 0.97 0.20

5 14,076 0.08 88,169 0.09 0.85 0.17
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Table 9 continued

Landslide-

conditioning

factors

Class Pixels

with

land

slides

Landslide density
No: of landslide pixels

Total landslide pixels

� �

Pixels

with

non-

land

slides

Non-landslide

density
No: of pixels in domain

Total pixels

� �

PRLi, j Nor

malised

PRLi, j

The third

principal

component

1 16,080 0.09 42,601 0.04 2.00 0.33

2 45,820 0.26 126,034 0.13 1.93 0.32

3 66,438 0.37 328,981 0.35 1.07 0.18

4 44,337 0.25 314,436 0.33 0.75 0.12

5 6130 0.03 136,465 0.14 0.24 0.04

The fourth

principal

component

1 14,072 0.08 56,492 0.06 1.32 0.23

2 27,630 0.15 199,244 0.21 0.74 0.13

3 42,596 0.24 330,355 0.35 0.68 0.12

4 58,392 0.33 259,526 0.27 1.19 0.21

5 36,115 0.20 102,900 0.11 1.86 0.32

Distance from

drainage

\50 50,155 0.27 168,335 0.17 1.60 0.34

50–100 38,145 0.21 159,569 0.16 1.29 0.27

100–200 47,688 0.26 280,842 0.29 0.91 0.19

200–500 44,828 0.25 335,772 0.34 0.72 0.15

[500 1851 0.01 38,125 0.04 0.26 0.05

Lithology K2 22,166 0.12 121,542 0.14 0.90 0.10

E1 34,297 0.19 150,630 0.17 1.12 0.13

E2 65,913 0.36 284,815 0.24 1.49 0.17

Q1 19,881 0.11 60,452 0.07 1.62 0.18

E3 17,887 0.10 152,181 0.17 0.58 0.07

Q2 18,281 0.10 179,066 0.20 0.50 0.06

Q 3216 0.02 14,522 0.02 1.09 0.12

Distance from

roads

\50 9863 0.05 79,428 0.08 0.72 0.16

50–100 10,558 0.06 100,350 0.09 0.61 0.13

100–150 28,147 0.15 161,489 0.15 1.01 0.22

150–20 76,578 0.42 437,252 0.41 1.01 0.22

[200 57,400 0.31 279,389 0.26 1.19 0.26

Land use Orchards 17,083 0.09 63,088 0.06 1.46 0.24

Agriculture 67,782 0.37 433,010 0.44 0.85 0.14

Forest 83,914 0.46 308,615 0.31 1.47 0.24

Square 9 0.00 2961 0.00 0.02 0.00

Urban

areas

11,852 0.06 79,860 0.08 0.80 0.13

Lake 709 0.00 89,474 0.09 0.04 0.01

River 316 0.00 3795 0.00 0.45 0.07

Scrublands 0 0.00 860 0.00 0.00 0.00

Others 1024 0.01 5846 0.01 0.95 0.16
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