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Abstract

Crop simulation models can be used to estimate impact of current and future climates on crop yields and food secu-

rity, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops

are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete ter-

restrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated

weather station data; or (iii) remotely sensed surface data from satellites. The present study’s objective is to evaluate

capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as

benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs

(CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China,

USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained

weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based

on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors

(RMSEs) that were 26–72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using

observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-

POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE

of 12–19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural

productivity in current and future climates are highly uncertain. An alternative approach would impose a climate

scenario on location-specific observed daily weather databases combined with an appropriate upscaling method.
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Introduction

Anthropogenic greenhouse gas emissions are likely to

modify climate in coming decades (Allen et al., 2000;

Oreskes, 2004), and there is increasing concern about

impact of climate change on food security (IPCC, 2007;

Schmidhuber & Tubiello, 2007). A key question is how

future climates will influence capacity to produce ade-

quate food supply at regional to national and global

scales. To date, most studies examining global impacts

of climate change on crop yields have been based on

derived, gridded weather databases (GWDs) that pro-

vide complete coverage of earth’s terrestrial surface

(e.g. Fischer et al., 2002; Foley et al., 2005; Licker et al.,

2010; Ciais et al., 2011). At issue is how well such GWDs

perform in estimating food production potential in

today’s climate, which is the central focus of our study.

Establishing research plots in every geographic area

of interest to analyze effects of climate on crop produc-

tion is difficult and cost prohibitive. For this reason

agronomists turn to crop simulation models, which cap-

ture major interactions among crop genotype,

environment, and management. Most previous studies

that utilized crop simulation models to evaluate impact

of climate change on crop yields have assumed (implic-

itly or explicitly) that crops were grown with optimal

management (Rosenzweig & Parry, 1994; Fischer et al.,

2002; Bondeau et al., 2007; Tubiello et al., 2007). This

assumption is made because currently available simula-

tion models do not account for all of the interacting con-

straints that limit crop growth and yield in farmer’s

fields such as deficient or imbalanced supply of 16

essential nutrients, inadequate or excessive water sup-

ply, and yield losses from insect pests, weeds, and dis-

eases. In addition, crop yields can be decreased by

imperfect field management that leads to unintended

suboptimal plant population or uneven plant stands,

effects not accounted for in some crop models. In con-

trast, under optimal conditions, and when grown with

irrigation, crop yield potential (Yp) is determined solely

by plant population and solar radiation and tempera-

ture during the period from planting to maturity. Evans

(1993) defined Yp as the yield of an adapted crop culti-

var grown under conditions in which nutrients, pests,

and diseases are nonlimiting. When crops are grown

without irrigation (i.e. rainfed conditions), a water-

limited yield potential (Yw) is determined by the same
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factors that influence Yp, but also by water supply (soil

water at planting plus in-season precipitation) and soil

characteristics that affect the plant-available water sup-

ply. Simulation of yield potential is relatively straight-

forward because dry matter accumulation relies solely

on the balance between photosynthesis and respiration,

and seed yield is determined by partitioning of total dry

matter between seed and vegetative organs. All three of

these processes are relatively well understood such that

underpinning mechanisms can be described in a set of

mathematical formulas that comprise the core of crop

simulation models. Future crop yields are expected to

be producing much nearer yield potential due to

increased food demand but limited land and water

resources for expansion of agriculture (Godfray et al.,

2010). Thus, within the context of climate change and a

time horizon of several decades, a focus on yield poten-

tial provides a robust proxy for future food production.

Yield potential can be simulated using site-specific,

observed weather data or gridded weather data. Grid-

ded weather data are distributed uniformly over space

within a spatial grid cell. Values within a cell are typi-

cally derived by interpolating site-specific weather data

based on coordinates of the sites within the grid and in

nearest-neighbor grids, their distance from each other,

elevation, and other variables (Hutchinson, 1995; Boer

et al., 2001). Gridded weather data have the advantage

of full geospatial coverage, but they are derived, rather

than observed. Studies that have used gridded weather

data to simulate Yp or Yw for a grid are rarely validated

against Yp or Yw estimated using actual weather sta-

tion data from a location within the same grid (Fischer

et al., 2002; Foley et al., 2005; Lobell et al., 2008).

More than 30 weather data sources have been used in

agricultural research, but only a few of these have been

used for global-scale analysis of simulated yields

(Ramirez-Villegas & Challinor, 2012). The main differ-

ences among sources of those weather databases used

to simulate Yp and Yw include: (i) observed site-based

vs. interpolated gridded data; (ii) temporal resolution

(daily vs. monthly); and (iii) spatial resolution (among

gridded databases) (Table 1). Several studies have com-

pared simulated yields using observed, site-specific

data with simulations made using gridded or modeled

weather data (Mearns et al., 2001; Baron et al., 2005; van

Bussel et al., 2011), but these studies only focus on a

single source of gridded weather data without consid-

ering other databases with different spatial and tempo-

ral attributes.

Assessment of climate change impacts on future crop

yield requires confidence in the simulated yields that

are taken as a baseline. No previous studies, however,

have compared how these baselines may vary depend-

ing on source of the global weather data used in the

analysis. To fill this knowledge gap, we evaluated how

well currently available global GWD perform when

used as input for crop model estimates of Yp or Yw

compared with similar simulations made with

observed, high quality site-based weather data. Under-

pinning causes for observed differences in simulated

yields were identified based on case studies in three

major cropping systems: rainfed maize in US, irrigated

rice in China, and rainfed wheat in Germany, which

together are representative of 25% of global cereal grain

supply (assuming German wheat production is repre-

sentative of wheat production in northwest Europe).

We also assessed capacity to simulate crop yields with

publicly available weather station data that has greatest

global coverage in terms of number and distribution of

weather stations, which may provide another option

for estimating current baselines and future crop yields

in climate change studies.

Materials and methods

Databases selected for comparison

Weather data used as a benchmark for simulation of Yp or Yw

were obtained from regional networks of meteorological

stations that have complete daily records of weather data, and

which also undergo rigorous quality control measures. Avail-

able data recorded by these weather stations, hereafter called

‘control weather data’ (CWD), include all daily time-step vari-

ables required to simulate Yp or Yw (see detailed description

of the variables in the following section). CWD were taken

from (i) the High Plains Regional Climate Center for rainfed

maize in the USA (HPRCC, 2011); (ii) the China Meteorologi-

cal Administration for irrigated rice in China (China Metero-

logical Administration, 2009); and (iii) the German Weather

Service for rainfed wheat in Germany (DWD, 2009). Four loca-

tions in each country were selected based on completeness of

weather data records and location in regions with high density

of crop production as identified by Van Wart et al. (2013a).

The GWDs selected for our study and one global weather

station database are publically accessible, diverse in spatial

and temporal resolution, and widely used in the published lit-

erature for estimating effects of climate change on food secu-

rity (Table 1). The three GWDs include: (i) National Center for

Environmental Prediction and Department of Energy’s reanal-

ysis II (NCEP/DOE) (Kanamitsu et al., 2002); (ii) Climate

Research Unit’s high-resolution gridded dataset time series

3.1 (CRU) (New et al., 2002); and (iii) National Aeronautics

and Space Administration’s POWER database (NASA), pro-

duced by the NASA Langley Research Center POWER Project

funded through the NASA Earth Science Directorate Applied

Science Program. A fourth database of location-specific

weather data came from weather stations in the National Oce-

anic and Atmospheric Administration’s Global Historical Cli-

mate Network-daily, hereafter called NOAA database

(NCDC, 2011). In all cases the NOAA weather stations are dis-

tinct from the CWD stations although they are in close prox-
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imity. A description of spatial and temporal resolution of

these weather databases, as well as their reported meteorolog-

ical variables, is found in Table 1.

Gridded daily NCEP data are derived from a global climate

model based on observed weather data from meteorological

stations, ocean buoys, satellite data, and other sources (Kalnay

Table 1 Classification of global weather databases and examples of published studies using these databases to understand current

and future agricultural productivity. Weather databases used in the present study have been underlined

Classification Source

Time

step

Reference and

time interval

Geospatial

coverage Reported variables* Examples

Point-based

data

Weather

stations

Daily HPRCC†, CMA‡,

DWD§

(1983–2010)

Regional Tmin, Tmax, precip,

wind speed,

Tdew Temp, RH,

vapor pressure,

radiation

Sinclair & Rawlins

(1993), Wang &

Connor (1996),

Peng et al. (2004),

Grassini et al. (2009),

Cassman et al. (2010)NOAA¶

(1900–2010)

Global Tmin, Tmax, precip,

Tdew, wind speed,

RH, vapor pressure

Gridded

data

Interpolated

and generated

based on data

from weather

stations,

satellites,

ocean buoys,

etc.

Daily NCEP/DOE

Reanalysis IIk

(1979–2010)

Global

(2.5° 9 2.5°)

(ca. 70 000 km2)¶¶

Tmin, Tmax,

wind speed, precip,

RH, wind speed,

radiation

Lobell & Asner (2003),

Nemani et al. (2003),

Schlenker & Roberts

(2009), Twine &

Kucharik (2009)

ERA-Interim

Reanalysis

(1989–2013)**

Global (1.5° 9 1.5°)

(ca. 25 000 km2)

Tmin, Tmax,

wind speed,

precip, RH,

wind speed,

radiation

R€otter (1993),

de Wit et al. (2010)

Interpolated

from weather

stations

Monthly CRU05 (3.10)††,

Univ. Delaware

Climate Dataset

(1961–2009)

Global

(0.5° 9 0.5°)

(ca. 3000 km2)

Tmin, Tmax,

total precip,

no. of wet days,

vapor pressure

Fischer et al. (2002),

Foley et al. (2005),

Bondeau et al. (2007),

Lobell (2007),

Lobell et al. (2008),

Battisti & Naylor

(2009), Licker et al.

(2010), Lobell et al.

(2011)

Average

50-year

monthly

mean

WorldClim‡‡

(1950–2000)

Global

(ca. 1 km2)

Tmin, Tmax,

total precip,

no. of wet days

Ortiz et al. (2008),

Nelson et al. (2010)

Satellite Daily NASA-Power§§

(1983–2010)

except precip

(1997–2010)

Global 1° 9 1°

(ca. 12 000 km2)

Tmin, Tmax,

precip, Tdew,

radiation, RH

Lobell et al. (2010)

*Minimum temperature (Tmin), maximum temperature (Tmax), precipitation (precip), relative humidity (RH), incident solar radia-

tion (radiation).

†High Plains Regional Climate Center (HPRCC). http://www.cma.gov.cn/english/.

‡China Meteorological Administration (CMA). http://www.cma.gov.cn/english/.
§German Weather Service (DWD. http://www.dwd.de/.

¶National Oceanic and Atmospheric Administration (NOAA) Global Historical Climate Data-daily: http://www.ncdc.noaa.gov/

oa/climate/ghcn-daily/.

kNational Center for Environmental Prediction/Department of Energy (NCEP). http://www.esrl.noaa.gov/psd/data/gridded/

data.ncep.reanalysis2.html.

**ECMWF re-analysis (ERA). http://www.ecmwf.int/research/era/do/get/era-interim.

††Climate Research Unit (CRU). http://badc.nerc.ac.uk/data/cru/.

‡‡WorldClim. http://www.worldclim.org/.

§§National Aeronautics and Space Administration (NASA). http://power.larc.nasa.gov/.

¶¶Aproximate grid cell area near the equator.
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et al., 1996; Kanamitsu et al., 2002). Gridded monthly CRU

data are derived by interpolating weather data from 14 000

stations around the world using a thin-plate spline method

which accounts for latitude, longitude, and elevation (New

et al., 2002; Mitchell & Jones, 2005). Gridded, daily NASA-

POWER data are derived from satellite observations coupled

with the Goddard Earth Observing System Model, an inte-

grated system of models informed by observed data from

multiple sources (satellite, ground stations, etc.).

Values calculated for each grid can serve as model input

themselves or be understood as values located at the center

of the grids. These grid-center values can be used to interpo-

late values at another location within the grid based on dis-

tances from that location to neighboring grid-centers. In the

present study, separate simulations of Yp and Yw were per-

formed for all crops based on gridded NCEP and CRU

weather data using: (i) reported gridded data for the grid in

which the meteorological weather stations were located; and

(ii) data interpolated from center points of nearby grids to the

location of the CWD meteorological stations by distance-

based bilinear interpolation following the method described

in Chang (2009).

The NOAA database is an archive of daily historical

weather observations from 40 000 meteorological stations

around the world, the data of which have undergone several

quality control measures (NCDC, 2011). Selected NOAA

weather stations were located near CWD sites (Fig. 1). Because

the NOAA data do not contain values for daily solar radiation,

which are critical for robust simulation of crop yields, NOAA

data were coupled with satellite-derived NASA daily solar

radiation (SR) to estimate Yp and Yw (hereafter called

NOAA-SR). This approach was taken for two reasons. First,

previous studies have found that simulation of crop yields

using a combination of NASA-derived SR and weather station

data for temperature and rainfall were in close agreement

with simulations based on measured SR at the weather sta-

tions (White et al., 2011b; Bai et al., 2010). These studies dem-

onstrate that NASA’s SR, though gridded, is well correlated

with SR observed at ground stations in topographically

homogenous (i.e. flat) regions where field crops are typically

grown. Second, use of NASA-derived SR to estimate Yp or Yw

was in closer agreement with simulations based on measured

SR compared with simulations based on SR estimated from

temperature and/or sunshine hours (Van Wart et al., 2013a).

Yield simulations

Crop Yp and Yw were simulated using ORYZA2000 for rice

(Bouman et al., 2001), HybridMaize for maize (Yang et al.,

2004), and CERES-Wheat (Ritchie et al., 1988), the latter

embedded in DSSAT 4.0 (Jones et al., 2003). Each of these crop

simulation models have been well documented and validated

against yields measured in field experiments that received

optimal management (Ghaffari et al., 2001; Bouman & van

Laar, 2006; Grassini et al., 2009). These models operate on a

daily time-step; hence, they require daily weather data includ-

ing incident SR and maximum and minimum temperature

(Tmax and Tmin, respectively) to simulate Yp. Simulation of Yw

in rainfed cropping systems also requires precipitation and

other variables needed to estimate reference evapotranspira-

tion (ETo), including wind speed, dew point temperature,

(a) (b)

(c)

Fig. 1 Locations of control weather stations, NOAA weather stations and size of NCEP/DOE, NASA-POWER, and Climate Research

Unit (CRU) grids (shown for one of the control weather data sites) for (a) maize in the USA, (b) rice in China, and (c) wheat in

Germany. Grid size is: 2.5° 9 2.5° for NCEP, 1.0° 9 1.0° for NASA, and 0.5° 9 0.5° for CRU. Harvested crop area density is indicated

by shaded areas on each map.
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and/or relative humidity (RH). Simulated grain yields in this

study are reported at standard moisture contents of 0.140,

0.155, and 0.135 kg H2O kg�1 grain for rice, maize and wheat,

respectively, because this is comparable to yield records in

global and national databases maintained by agencies such as

USDA and FAO. Other input parameters necessary for simu-

lating Yp or Yw for each crop at each location include soil

properties (soil texture, soil depth, plant available soil water

holding capacity), management practices (sowing date and

plant population), and cultivar-specific (genotype) coefficients,

which were taken from Van Wart et al. (2013a). These inputs

were held constant for the simulation at each location regard-

less of the GWD data used as input to yield simulations (see

Tables S1–S3).

Simulation of Yw for rainfed maize in USA required infor-

mation on planting date, hybrid maturity, plant population,

planting density, and soil properties (including soil texture

and initial plant available soil water) as determined by Van

Wart et al. (2013a). Maize planting dates were determined as

average date from 2003–2008 for which the USDA’s Risk Man-

agement Agency (RMA) reported 50% of maize area as

planted for the counties in which CWD-sites were located

(RMA, 2010). Seeding rate and hybrid maturity for the most

commonly used hybrids were obtained from field researchers

and seed company agronomists. The SSURGO database was

used to identify the dominant agricultural soil within 100 km

of control-sites based on area planted with maize as identified

by the 2009 USDA crop data layer (USDA-NASS, 2009). Initial

soil water at planting was assumed to be 100% field capacity,

which is typical for most rainfed maize area in the US Corn

Belt.

In China, multiple crops are planted in a single year on the

same piece of land, as opposed to single cropping found in

more temperate regions. In the present study, the dominant

rice systems in the targeted locations were simulated, result-

ing in a total of six rice cropping systems by location combina-

tions (see Tables S1–S3). Data used to simulate irrigated rice

Yp using ORYZA2000 were provided by local agronomists in

China, including sowing or transplanting date, hill spacing,

and dominant rice cultivar for each cropping system as

reported by Van Wart et al. (2013a). Soil data were not

required because simulations assume irrigation is applied

whenever the crop needs water regardless of soil type. Geno-

typic coefficients were determined for the dominant cultivar

in each cropping system based on CWD and actual average

transplanting, flowering and maturity dates reported by local

agronomists. Calibration of genotypic coefficients was per-

formed using DRATES software, which iteratively determines

coefficients that give simulated estimates of date of rice flow-

ering and maturity consistent with actual reported average

rice flowering and maturity dates (Bouman et al., 2001). Geno-

typic coefficients calibrated for CWD-sites were kept constant

across the GWD-based simulations.

Simulation of rainfed winter wheat Yw required data on

planting date, plant population, and soil properties. Average

planting date and plant population at each site were obtained

from the German Weather Service and local breeders and

agronomists based on VanWart et al. (2013a). Genotypic coeffi-

cients of the dominant wheat cultivars at each location were

provided by Jans Bobert (Leibniz Centre for Agricultural Land-

scape Research). These genotypic coefficients were kept con-

stant across simulations made with GWD and CWD data.

Finally, soil water was assumed to be 100% field capacity at the

start of the season (typical of rainfed wheat fields in Germany)

and soil properties were retrieved from soil profile descrip-

tions of dominant soil series reported by Hartwich et al. (1995).

Nineteen years of data were available for both the CWD

and the four GWDs for all rice simulations and for two of the

maize locations (1990–2008). The other two maize locations

had CWD for 11 (1998–2008) and 14 years (1995–2008). The

longest time-span of consecutive years available from NOAA

stations in Germany at the time of this study was from 1983–

1991. Because an unbiased analysis requires equivalent time-

series for all weather databases, Yw simulations of wheat in

Germany were performed over these nine consecutive years

using CWD, NCEP, CRU, and NOAA-SR data. However,

NASA-POWER data do not begin reporting rainfall until 1997,

therefore, simulations of Yw of wheat in Germany and Yw in

USA using NASA data were only performed for the years

1997–2008 and compared with CWD-based simulations for the

same time interval. Total observations were n = 63 for rainfed

maize in the USA (11–19 years, four sites), n = 76 for rice in

China (19 years, four sites), and n = 36 for wheat in Germany

(9 years, four sites).

Quality control, temporal interpolation, and estimation of
missing parameters

Crop models operate on a daily time-step, hence, daily

weather data are required to simulate Yp or Yw. The NCEP,

NASA, and CWD datasets contain daily values for the entire

time-series included in this study. CRU monthly data require

temporal interpolation, and raw NOAA station data require

correction of missing or erroneous data. Cubic spline interpo-

lation was used to derive daily Tmin, Tmax, vapor pressure,

and percent cloud cover (a proxy for sunshine hours) from

monthly CRU data. Daily rainfall data were generated from

records of total monthly precipitation and monthly wet day

records following the stochastic precipitation generation

method described in Liu et al. (2009).

To achieve complete daily records for the NOAA data, it

was necessary to identify and replace erroneous values and fill

in missing values. A spatial regression test (SRT) was used to

check weather data of each NOAA station based on whether

each datum fell within a confidence interval calculated from a

weighted regression estimate of each datum based on nearby

station data (Hubbard et al., 2007). For each of at least two sta-

tions closest to the station to be tested, a regression estimate is

formed for each tested day and parameter (e.g. Tmin, Tmax,

rainfall) based on the previous and preceding 15 days of data.

A SRT estimated value for each datum is then calculated by

weighting each regression estimate by the SE of the regression.

If a tested station datum is missing or outside the confidence

interval, calculated as the SRT estimate plus or minus 3 SDs (5

for precipitation), it is replaced by the SRT estimate. This

method was found to outperform other quality-control

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12302
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methods over a wide variety of agro-climatic regions (Hub-

bard et al., 2005; You et al., 2008). Approximately 0.5% of all

NOAA weather records required correction in the present

study. In cases where a single daily record was missing from

both the targeted and nearby stations, the average of the pre-

ceding and succeeding day was used to substitute the missing

value (<0.01% of all weather records in the present study).

All GWDs required estimation of unreported parameters.

Following Allen et al. (1998), wind speed was assumed to be

equal to 2 m s�1 for CRU. RH was estimated using the Clau-

sius-Clapeyron equation and SR was estimated using the Ang-

strom equation with percent cloud cover serving as a proxy

for the ratio of actual sunshine duration to maximum possible

sunshine duration (Foken & Nappo, 2008). Dew point temper-

ature was estimated based on the Magnus-Tetens formula for

both CRU and NCEP. ETo was estimated based on Penman-

Monteith-FAO equation for all databases.

Evaluation of weather databases for simulation of Yp and
Yw

Mean error (ME), root mean square error (RMSE), and coeffi-

cient of variation (CV) were calculated for simulated Yp or

Yw based on each GWD and NOAA-SR as follows:

ME ¼

P

n

i¼1

ðyGi � yCi Þ

n
ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i¼1

ðyGi � yCi Þ
2

n

v

u

u

u

t

ð2Þ

CV ¼
r

l
ð3Þ

where yGi is the Yp or Yw simulated using data from a GWD

for the ith site-year, yCi is Yp or Yw simulated using the CWD

for the ith site-year, n is the number of site years, and r and l

are standard deviation and mean, respectively, of simulated

Yp or Yw. ME is a measure of average magnitude and bias (+

or �) of the error in simulated yield with GWDs or NOAA-SR

compared with simulations with CWD. RMSE and %RMSE

quantify average error on an absolute or relative basis

compared to control mean values simulated with CWD

respectively. CV is a measure of the relative variability in a

distribution.

Forward stepwise regression was used to identify weather

variables that best explain differences in Yp or Yw as simu-

lated by the different weather data sources (Draper & Smith,

1981). The difference between simulated Yp or Yw based on

(a) (b)

(c) (d)

Fig. 2 Simulated maize Yw across four sites in the USA Corn Belt using weather data from NOAA-SR (a), NCEP (b), Climate Research

Unit (c), and NASA (d) plotted against simulated Yw based on a control weather database. Insets show deviations of points from the

1:1 line for each site and year for which yield was simulated with GWD or NOAA data. RMSE and mean error units are in Mg ha�1.

Symbols represent different locations. NASA Yw simulations were performed for the time interval 1997–2007. Average water deficit

(mm) over the maize growing season, as determined by simulations using control-data, was �42 (Cedar Rapids, IA), �135 (Lincoln,

NE), �149 (Grand Island, NE), and �238 (McCook, NE).
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CWD and a GWD or NOAA-SR was the dependent variable,

while the difference between a given weather variable from

the CWD and a GWD or NOAA-SR were independent vari-

ables. Four weather variables were examined: average daily

Tmin and Tmax, cumulative SR, and cumulative water deficit,

defined here as precipitation minus ETo. Values of these

weather variables were calculated for two crop phases:

planting-to-anthesis and anthesis-to-physiological maturity

for rice and wheat and planting-to-silking and silking-

to-physiological maturity for maize. This resulted in a total

of eight possible independent variables for inclusion in step-

wise regression for each crop-country case for a given

weather database. Only variables significant at P-value ≤0.05

were included in the final regression. Tests for co-linearity

were null for all independent variables used in the regres-

sions (P ≥ 0.05).

Results

Simulations with global weather databases

On average, simulated yields were overestimated by

more than 1.5 t ha�1 in six of nine cases when based

on data from gridded GWD compared with the simu-

lated yields using CWD (Figs 2–4). Of particular note

was the average upward bias of about 4.0 t ha�1 for

Yw of US maize estimated by CRU and NASA, and for

Yp of rice in China by NCEP. However, the bias

between gridded GWD and CWD based simulations

was not consistent. For example, except for NASA

based simulations in Germany, simulations in China

and Germany made with GWD data overestimated Yp

or Yw. But NCEP-based simulations of Yw for maize

in the USA had a negative bias of more than 1.0 t ha�1.

While CRU based rainfed maize Yw simulations

tended to overestimate Yp and Yw at high yield levels,

NCEP and NASA tended to overestimate Yp at lower

yield levels. In contrast, simulated yields using

NOAA-SR weather data were in reasonably close

agreement with yields simulated with CWD, although

irrigated rice Yp in China had a modest overestimation

of Yw (ME = 0.9 Mg ha�1). On average, %RMSE for

Yp and Yw simulations based on gridded GWD was

45% and 33%, respectively, compared with 19% and

14% for NOAA-SR-based simulations. Likewise, the

degree of correlation between Yp or Yw estimated by

NOAA-derived weather data and the CWD was quite

high in all cases, ranging from Pearson correlation r

values of 0.70 for rice in China to 0.89 for wheat in

(a) (b)

(c) (d)

Fig. 3 Simulated rice Yp across four sites in China using weather data from NOAA-SR (a), NCEP (b), Climate Research Unit (c), and

NASA (d) plotted against simulated Yp based on a control weather database. Insets show deviations of points from the 1:1 line for each

site and year for which yield was simulated with GWD or NOAA data. RMSE and mean error units are in Mg ha�1. Symbols represent

different locations and cropping systems within each location. Site elevation (m) is 506 (Chengdu), 305 (Chongqing), 38 (Gushi), and

124 (Nanning).
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Germany. Correlations with CWD values for Yp or Yw

based on GWD were much poorer and sometimes not

statistically significant.

Yield simulations using gridded GWDs from Chon-

gqing, Chengdu, and Gushi were not well-correlated

with simulations based on CWD. Two of these locations

(Chongqing and Chengdu) are located in regions with

heterogeneous landscapes in which rice is grown in

large river valleys surrounded by mountains. Such het-

erogeneity further exacerbated the magnitude of error

in estimates of Yp based on gridded GWD (Fig. 3; Table

S4). Hence, gridded weather data, assuming uniform

distribution of weather variables over the entire grid,

are clearly disadvantaged when used to predict crop

yields in such heterogeneous grids—especially in GWD

with large grid size like NCEP.

Compared with simulations using weather data based

at grid centers, interpolation from grid centers to station

locations had a negligible effect on accuracy of all

CRU-based simulations for all sites (difference in RMSE

<3%). The effect was similarly negligible for rainfed

maize and rainfed wheat simulations based on NCEP

data. However, for NCEP simulations of Yp of rice in

China, interpolation of data dramatically increased the

bias. Simulations of rice Yp using interpolated NCEP

data had an RMSE which was 47% larger than rice Yp

simulations made using noninterpolated NCEP data.

We speculate this large differences between simulations

made using interpolated and noninterpolated NCEP

weather data are due to the large size of NCEP’s

70 000 km2 grids and the heterogeneous landscape in

some of the grids included in this study (see Table S3).

Reasons for bias in simulated yields with global weather
databases

Stepwise multiple regression helped assess the causes

of underlying bias in estimates of Yp and Yw using

simulations with GWD, especially for rainfed maize

and wheat, which are grown in regions with relatively

uniform topography in the USA and Germany respec-

tively (see Table S5 for a summary of GWD and

NOAA-SR weather data biases). The range in average

annual precipitation, however, differs markedly among

CWD sites in Germany (500 and 850 mm) the USA

(450–900 mm) and rainfall does not replace evapotrans-

(a) (b)

(c) (d)

Fig. 4 Simulated wheat Yw across four sites in Germany using weather data from NOAA-SR (a), NCEP (b), Climate Research Unit (c),

and NASA (d) plotted against simulated Yw based on a control weather database. Insets show deviations of points from the 1:1 line for

each site and year for which yield was simulated with GWD or NOAA data. RMSE and mean error (ME) units are in Mg ha�1. NASA

Yw simulations were performed from 1997–2007. Symbols represent different locations. Note that site-years affected by frost have

points on the x-axis at 0 Mg ha�1 and these Yw values were taken into account in all statistical calculations of RMSE and ME.

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12302
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piration in much of the western Corn Belt where the

CWD sites are located (Grassini et al., 2009). As a result,

estimated water deficit and solar radiation had a large

influence on discrepancies between Yw estimated by

GWDs and CWD (Table 2). In general, the sign of coef-

ficients in Table 2 are indicative of the relationship

between that variable and yield. For instance, a positive

sign for water deficit indicates that as this variable

increases (less precipitation and more ETo) so do the

deviations in simulated yields with a GWD as com-

pared with simulations using the CWD. The closer

GWD and NOAA-SR based simulated yields were to

CWD based simulations (i.e. low RMSE and ME as

shown in Figs 2–4), the poorer the explanatory power

of the final regression model. For example, the water

deficit calculated over the USA simulated maize grow-

ing season was 76% and 86% smaller for simulations

based on CRU (data not shown) and NASA data,

respectively, compared with those based on CWD

(Fig. 5a). Similarly, water deficit was 31% larger with

NCEP maize simulations than with CWD, especially

during the post-silking phase in which water deficit

was 43% larger than the CWD (see Figs S1–S12).

In some cases, differences between a specific weather

variable in GWD and CWD did not have a large impact

on estimates of yield potential because the variable in

question was not a sensitive parameter. For example,

although the water deficit was grossly overestimated

for wheat in Germany in the CRU database, this bias

did not have a large influence on the discrepancy in Yw

estimates because rainfall is generally adequate for

rainfed wheat in most of Germany (Figs 4 and 5b).

Given adequate rainfall, the differences in simulated

wheat yields were attributed more to differences in

temperature and solar radiation (Table 2). For example,

average pre-anthesis daily minimum temperature was

lower in NCEP data compared with CWD data (0.9 °C

vs. 3.0 °C). In some cases these low temperatures

induced simulated frost-kill while in others they

increased the pre-anthesis growth period and allowed

for greater dry-matter accumulation by the time of

anthesis, which increased grain set and final yield.

Table 2 Summary of stepwise multiple regression of difference between Yp or Yw simulated using control and global weather

databases regressed on the difference between each of control and global weather database values for average daily Tmax, average

daily Tmin, cumulative solar radiation and cumulative water deficit during pre- and post-anthesis (pre-A and Post-A) in wheat and

rice and pre- and post-silking in maize (Pre-S and Post-S). Results include significance of variables, regression coefficients of the

variables, percent of total variation explained by each independent variable (explanatory power, % of total Type I sum of squares),

and the adjusted R2 (Adj. R2) and F-test statistic for the stepwise regression

Database Independent variables† Coefficient‡ Explanatory power (%) Adjusted R2 F-test

Maize

NOAA Post-S solar radiation* 0.005 11

Post-S water deficit*** 0.008 16 0.25 11.1***

NCEP Post-S solar radiation*** 0.011 29

Post-S water deficit*** 0.024 49 0.77 105.5***

CRU Post-S average daily Tmax*** �1.412 33

Pre-S water deficit** �0.005 17

Post-S water deficit** 0.015 13 0.61 33.5***

NASA Post-S solar radiation*** 0.011 64

Post-S water deficit*** 0.030 22 0.85 136.2***

Rice

NOAA Post-A solar radiation*** 0.005 12 0.11 14.1***

NCEP Pre-A average daily Tmax*** �0.879 45

Post-A solar radiation*** �0.002 14 0.58 76.6***

CRU Post-A average daily Tmax* �0.379 5 0.04 5.5*

NASA Post-A average daily Tmax** �0.135 24

Pre-A solar radiation*** 0.005 10 0.33 27.6***

Wheat

NOAA Pre-A solar radiation*** 0.006 36 0.34 19.1***

NCEP Pre-A average daily Tmin*** 3.921 38 0.36 21.0***

CRU Pre-A average daily Tmin*** �0.876 30

Post-A solar radiation* 0.005 8 0.34 10.2***

NASA Pre-A solar radiation*** 0.004 44 0.43 32.9***

†Variables were significant at *P < 0.05, **P < 0.01, and ***P < 0.001.

‡Coefficients reported are b values from the multiple regression equation: y = a + b1x1 + b2x2 + b3x3 + … + e.
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Discussion

The twelve sites evaluated in this study included simu-

lations of the three most important cereal crop species,

in three major crop producing countries with very dif-

ferent climates and water regimes. Assessment of dif-

ferent sources of weather data for their capacity to

simulate crop yields across this diversity of crops and

environments gives confidence that findings from this

study can be generalized to other major crop produc-

tion regions. Results presented here document that

GWDs, such as NCEP, CRU, or NASA, do a poor job of

simulating Yp and Yw of rice, wheat, and maize. In

contrast, simulations of crop yields based on NOAA-SR

data, derived from actual weather stations, outper-

formed simulations made using the GWDs in nearly all

cases especially for topographically diverse regions or

where water deficit is a major limiting factor to rainfed

crop production. Reasons for discrepancy between sim-

ulated Yp or Yw using GWDs vs. simulations using

location-specific, high-quality weather data were attrib-

uted to biases in temperature, SR, and/or degree of

water deficit in the GWDs.

Climate heterogeneity in GWDs is smoothed by

interpolations or modeling, which may not appropri-

ately capture topographic features affecting climate

(Daly, 2006). Temporal interpolations, such as deriv-

ing daily data from monthly average values (e.g.

CRU) are also problematic as they likewise attenuate

the degree of weather event variegation, especially

for extreme events. Using interpolation from grid-

centers of a GWD to actual location of the control

weather stations in the CWD did little to remove

these biases or to improve the accuracy of yield sim-

ulation. Use of gridded GWD data can therefore lead

to erroneous conclusions about the impact of climate

change. It may be argued that differences in weather

data do not have a large impact on long-term aver-

age crop yield estimates based on simulation if dif-

ferences are random and cancel each other out over

time or in cases where crop performance is not sensi-

tive to a specific weather parameter (such as rainfall

in Germany). However, food security and vulnerabil-

ity of future populations will depend on annual vari-

ability of global crop yields as well as long-term

average yields (Schmidhuber & Tubiello, 2007). Fur-

thermore, inability to reproduce interactions between

environment and management under current weather

raises the question of whether these databases or

those derived from them should be used in studies

(a)

(b)

Fig. 5 Four panel figure comparing reported weather data from control and GWDs during pre- (black triangles) and post-silking (red

circles) for maize (a), and pre- and post-anthesis in wheat (b).

© 2013 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12302
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aiming at reproducing the impact of future weather

on management adaptations to climate change.

The GWDs compared in this study are being used to

derive climate change scenarios, such as those found in

the IPCC 4th assessment, which in turn are used in

analysis of the impact of future climate change on crop

yields (IPCC, 2007; Battisti & Naylor, 2009). These

GWDs do not provide a reliable or realistic baseline of

crop yield simulations nor will climate change scenar-

ios based on data from these GWDs. Such climate

change scenarios do not produce credible representa-

tions of location-specific climate nor even climate at lar-

ger scales (Masson & Knutti, 2011; Ramirez-Villegas &

Challinor, 2012). In this article, we extend these results

to evaluate capacity of these GWDs to simulate crop

yields.

Credible assessment of the impact of future climate

on food production depends on ability to estimate crop

yields accurately under a wide array of climates, crop-

ping systems, and water regimes. The poor perfor-

mance of GWDs in estimating crop yields as shown in

this study calls into question the many prior evalua-

tions of climate change impact on crop production

based on use of GWDs (Table 1) (see also White et al.,

2011a). Because land use change is closely linked to

agriculture, accurate estimates of crop yield levels have

a large impact on future land-use and emissions from

the agricultural production sector (Balmford et al.,

2005). Hence, there are trade-offs between spatial gran-

ularity and accuracy of crop management and weather

data and need for complete global terrestrial coverage

(Bondeau et al., 2007; Ciais et al., 2011).

Given results of this manuscript, estimates of crop

production should be based on actual data from

ground weather stations that report the key weather

variables that drive crop growth and yield, including

daily maximum/minimum temperature, rainfall, and

SR. For ground weather stations that do not report SR

(such as the NOAA station network), SR from NASA

can be used in combination with the reported daily

temperature and rainfall. If location-specific, daily

weather data are not available, and assuming relatively

flat topography typical of many major crop-producing

regions, nearby data within 50–100 km would presum-

ably be more appropriate for use in crop models than

grid-based data. Use of point-based weather station

data to estimate regional and global impact of climate

change on food production capacity is challenged,

however, by the need to upscale results. Use of agro-

climatic zones provides a means to perform this aggre-

gation for upscaling although the required degree of

geospatial granularity remains an issue still to be

addressed (Wood & Pardey, 1998; Van Wart et al.,

2013b).

Also at issue is how to achieve complete terrestrial

coverage in global assessments of climate change

impact on future food security, which includes regions

not currently inhabited or producing crops. Availability

of weather data from such regions is sparse at best and

often lacking entirely. Use of GWD is the only current

option. We therefore propose that global analyses using

GWD should be complemented with studies based on

upscaling from point-based weather station data for the

major centers of current crop production.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Comparison of weather data from control and NOAA- solar radiation during pre- (black triangles) and post- (red circles)
silking of simulated rainfed maize in USA.
Figure S2. Comparison of weather data from control and NCEP global weather database during pre- (black triangles) and post-
(red circles) silking of simulated rainfed maize in USA.
Figure S3. Comparison of weather data from control and Climate Research Unit global weather database during pre- (black trian-
gles) and post- (red circles) silking of simulated rainfed maize in USA.
Figure S4. Comparison of weather data from control and NASA global weather database during pre- (black triangles) and post-
(red circles) silking of simulated rainfed maize in USA.
Figure S5. Comparison of weather data from control and NOAA- solar radiation during pre- (black triangles) and post- (red circles)
anthesis of simulated irrigated rice in China.
Figure S6. Comparison of weather data from control and NCEP global weather database during pre- (black triangles) and post-
(red circles) anthesis of simulated irrigated rice in China.
Figure S7. Comparison of weather data from control and Climate Research Unit global weather database during pre- (black trian-
gles) and post- (red circles) anthesis of simulated irrigated rice in China.
Figure S8. Comparison of weather data from control and NASA global weather database during pre- (black triangles) and post-
(red circles) anthesis of simulated irrigated rice in China.
Figure S9. Comparison of weather data from control and NOAA- solar radiation during pre- (black triangles) and post- (red circles)
anthesis of simulated rainfed wheat in Germany.
Figure S10. Comparison of weather data from control and NCEP global weather database during pre- (black triangles) and post-
(red circles) anthesis of simulated rainfed wheat in Germany.
Figure S11. Comparison of weather data from control and Climate Research Unit global weather database during pre- (black trian-
gles) and post- (red circles) anthesis of simulated rainfed wheat in Germany.
Figure S12. Comparison of weather data from control and NASA global weather database during pre- (black triangles) and post-
(red circles) anthesis of simulated rainfed wheat in Germany.
Table S1–S3. Management parameters used in simulation models at four sites in three countries for three crops. Dates of planting,
transplanting, and physiological maturity are reported as day of the year (DOY). Maize crop variety expressed in relative maturity
days (CRM).
Table S4. Elevation within 100 km of simulation sites in China (m). Source: CGIAR-CSI (2006): NASA Shuttle Radar Topographic
Mission available for download at: http://srtm.csi.cgiar.org/
Table S5. Mean error (ME) and root mean square error (RMSE) using different global weather databases compared with local,
high-quality control data during the growing season time period used in simulations of crop yields at each of four sites for rainfed
maize in USA, irrigated rice in China, and rainfed wheat in Germany.
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