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Gut microbial composition depends on different dietary habits just
as health depends on microbial metabolism, but the association of
microbiota with different diets in human populations has not yet
been shown. In this work, we compared the fecal microbiota of
European children (EU) and that of children from a rural African
village of Burkina Faso (BF), where the diet, high in fiber content,
is similar to that of early human settlements at the time of the
birth of agriculture. By using high-throughput 16S rDNA sequenc-
ing and biochemical analyses, we found significant differences
in gut microbiota between the two groups. BF children showed
a significant enrichment in Bacteroidetes and depletion in Firmi-
cutes (P < 0.001), with a unique abundance of bacteria from the
genus Prevotella and Xylanibacter, known to contain a set of
bacterial genes for cellulose and xylan hydrolysis, completely lack-
ing in the EU children. In addition, we found significantly more
short-chain fatty acids (P < 0.001) in BF than in EU children. Also,
Enterobacteriaceae (Shigella and Escherichia) were significantly
underrepresented in BF than in EU children (P < 0.05). We hypoth-
esize that gut microbiota coevolved with the polysaccharide-rich
diet of BF individuals, allowing them to maximize energy intake
from fibers while also protecting them from inflammations and
noninfectious colonic diseases. This study investigates and com-
pares human intestinal microbiota from children characterized
by a modern western diet and a rural diet, indicating the impor-
tance of preserving this treasure of microbial diversity from an-
cient rural communities worldwide.

metagenomics | nutrigenomics | biodiversity | 454-pyrosequencing | short-
chain fatty acids

The human gut “metagenome” is a complex consortium of tril-
lions of microbes, whose collective genomes contain at least

100 times as many genes as our own eukaryote genome (1). This
essential “organ,” themicrobiome, provides the host with enhanced
metabolic capabilities, protection against pathogens, education
of the immune system, and modulation of gastrointestinal (GI)
development (2).
We do not yet completely understand how the different envi-

ronments and wide range of diets that modern humans around
the world experience has affected the microbial ecology of the
human gut.
Contemporary human beings are genetically adapted to the

environment in which their ancestors survived and which condi-
tioned their genetic makeup. In mammals, both diet and phy-
logeny influence the increase in bacterial diversity from carnivore
to omnivore to herbivore (3). Dietary habits are considered one
of the main factors contributing to the diversity of human gut
microbiota (2). Profound changes in diet and lifestyle conditions
began with the so-called “Neolithic revolution” with the in-
troduction of agriculture and animal husbandry≈10,000 y ago (4).
After that time, food resources became more abundant and
constant, the concentration of large populations in limited areas

created selective pressure that favored pathogens specialized in
colonizing human hosts and probably produced the first wave
of emerging human diseases (5). It has been hypothesized that
bacteria specialized in human-associated niches, including our gut
commensal flora, underwent intense transformation during the
social and demographic changes that took place with the first
Neolithic settlements (6).
Western developed countries successfully controlled infectious

diseases during the second half of the last century, by improving
sanitation and using antibiotics and vaccines. At the same time,
a rise in new diseases such as allergic, autoimmune disorders, and
inflammatory bowel disease (IBD) both in adults and in children
has been observed (5), and it is hypothesized that improvements
in hygiene together with decreased microbial exposure in child-
hood are considered responsible for this increase (7). The GI
microflora plays a crucial role in the pathogenesis of IBD (8), and
recent studies demonstrate that obesity is associated with imbal-
ance in the normal gut microbiota (9, 10).
The aim of this study was to compare the gut microbiota of

children aged 1–6 y living in a village of rural Africa in an envi-
ronment that still resembles that of Neolithic subsistence farmers
with the gut microbiota of western European children of the
same age, eating the diet and living in an environment typical of
the developed world. These two childhood populations provided
an attractive model for assessing the impact of many environ-
mental variables on the gut microbiota.
In our study, we address three general questions regarding the

geography and evolution of the human microbiota: (i) how is
bacterial diversity partitioned within and between the two pop-
ulations studied; (ii) is there a possible correlation between
bacterial diversity and diet; and (iii) what is the distribution of
well-known bacterial pathogens in the two populations, given the
different hygienic and geographic conditions?

Results and Discussion
Characterization of Dietary Habits of Children from the Boulpon Rural
Village and from Florence, Italy. In this study, we characterized the
fecal microbiota of 14 healthy children from the Mossi ethnic
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group (BF) living in the small village of Boulpon in Burkina Faso
(Fig. 1) and compared it with that of 15 healthy European
children (EU) living in the urban area of Florence, Italy (Table
S1). The BF children from Boulpon village were selected as
representative consumers of a traditional rural African diet. The
diet of BF children is low in fat and animal protein and rich in
starch, fiber, and plant polysaccharides, and predominantly
vegetarian (Table S2). All food resources are completely pro-
duced locally, cultivated and harvested nearby the village by
women. The BF diet consists mainly of cereals (millet grain,
sorghum), legumes (black-eyed peas, called Niébé), and vege-
tables, so the content of carbohydrate, fiber and nonanimal
protein is very high. Millet and sorghum are ground into flour on
a flat stone and made into thick porridge called millet-based Tô,
dipped into a sauce made of local vegetables (Néré) and herbs.
Although the intake of animal protein is very low, sometimes
they eat a small amount of meat (chicken) and termites that we
verified to be occasionally part of the BF children’s diet in the
rainy season.
Children are breast-fed up to the age of 2 y as a complement

to a mixed diet. The average amount of fiber in BF diet is 10.0
g/d (2.26%) in 1- to 2-y-old children and 14.2 g/d (3.19%) in 2- to
6-y-old children (Table S2). To represent a Western population
(EU), we selected children of the same age who are generally
concordant for growth, socially homogeneous and eating the diet
and living in an environment typical of the developed world. EU
children were breast-fed for up to 1 y of age. They were eating
a typical western diet high in animal protein, sugar, starch, and
fat and low in fiber. The fiber average content in EU diet is 5.6

g/d (0.67%) in 1- to 2-y-old children and 8.4 g/d (0.9%) in 2- to
6-y-old children (Table S3). The amount of calories (average)
consumed varies considerably in the two populations (BF chil-
dren: 1–2 y old, 672.2 kcal/d; 2–6 y old, 996 kcal/d; EU children:
1–2 y old, 1,068.7 kcal/d; 2–6 y old, 1,512.7 kcal/d; Tables S2 and
S3). The isolation of the BF village where the children whom we
investigated live, in comparison with the urbanized world, sug-
gests that their diet very likely resembles that of the Neolithic
African rural populations following the agriculture revolution.

Dominance of the Bacteroidetes in Gut Microbiota of Burkina Faso
Compared with European Children. To characterize the bacterial
lineages present in the fecal microbiotas of these 29 children, we
performed multiplex pyrosequencing of the V5 and V6 hyper-
variable regions of 16S rRNA gene with a 454 FLX instrument
(Roche). We generated a dataset consisting of 438,219 filtered
high-quality, classifiable 16S rRNA gene sequences with a mean
average (± SD) of 15,111 ± 3,774 sequences per sample (Table
S4). More than 94.2% of the sequences in all of the BF and EU
samples were found to belong to the four most populated bac-
terial phyla, namely Actinobacteria, Bacteroidetes, Firmicutes,
and Proteobacteria, in agreement with previous studies describ-
ing such phyla as those contributing to the majority of human gut
microbiota (2, 11). Relevant differences were found in the pro-
portions of four phyla: Actinobacteria and Bacteroidetes were
more represented in BF than in EU children’s microbiota
(10.1% versus 6.7% and 57.7% versus 22.4%, respectively),
whereas Firmicutes and Proteobacteria were more abundant in
EU than in BF children (63.7% versus 27.3% and 6.7% versus

Fig. 1. Life in a rural village of Burkina Faso. (A) Village of Boulpon. (B) Traditional Mossi dwelling. (C) Map of Burkina Faso (modified from the United States
ClA’s World Factbook, 34). (D) Millet and sorghum (basic components of Mossi diet) grain and flour in typical bowls. (E) Millet and sorghum is ground into
flour on a grinding stone to produce a thick porridge called Tô.
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0.8%, respectively). The differential distribution of Firmicutes
and Bacteroidetes delineates profound differences between the
two groups (Fig. S1).
Statistical analysis using a parametric test (ANOVA) indicates

that Firmicutes (P = 7.89 × 10−5) and Bacteroidetes (P = 1.19 ×
10−6) significantly differentiate the BF from the EU children.
This result is strengthened by the nonparametric Kruskal–Wallis
test, which again indicated significant discriminating factors in
Firmicutes (P = 3.38 × 10−5), Bacteroidetes (P = 4.80 × 10−4),
Actinobacteria (P = 8.82 × 10−3), and Spirochaetes (P = 1.11 ×
10−5) phyla. Firmicutes are twice as abundant in the EU children
as evidenced by the different ratio between Firmicutes and
Bacteroidetes (F/B ratio ± SD, 2.8 ± 0.06 in EU and 0.47 ± 0.05
in BF), suggesting a dramatically different bacterial colonization
of the human gut in the two populations. Interestingly, Prevotella,
Xylanibacter (Bacteroidetes) and Treponema (Spirochaetes) are
present exclusively in BF children microbiota (Figs. 2 A and B,
Fig. S2, and Table S5). We can hypothesize that among the
environmental factors separating the two populations (diet,
sanitation, hygiene, geography, and climate) the presence of

these three genera could be a consequence of high fiber intake,
maximizing metabolic energy extraction from ingested plant
polysaccharides.
Diet plays a central role in shaping the microbiota, as dem-

onstrated by the fact that bacterial species associated with a high-
fat, high-sugar diet promote obesity in gnotobiotic mice (12). In
such a model, indigenous bacteria maintain energy homeostasis
by influencing metabolic processes. The ratio of Firmicutes to
Bacteroidetes differs in obese and lean humans, and this pro-
portion decreases with weight loss on low-calorie diet (9). It is
therefore reasonable to surmise that the increase in the F/B ratio
in EU children, probably driven by their high-calorie diet, might
predispose them to future obesity. This F/B ratio may also be
considered a useful obesity biomarker.

16S rRNA Gene Surveys Reveal Hierarchical Separation of the Two
Pediatric Populations. We further assessed differences in the total
bacterial community at the single sample level by clustering the
EU and BF samples according to their bacterial genera as found
by the RDP classifier (Ribosomal Database Project v. 2.1).

Fig. 2. 16S rRNA gene surveys reveal a clear separation of two children populations investigated. (A and B) Pie charts of median values of bacterial genera
present in fecal samples of BF and EU children (>3%) found by RDP classifier v. 2.1. Rings represent corresponding phylum (Bacteroidetes in green and
Firmicutes in red) for each of the most frequently represented genera. (C) Dendrogram obtained with complete linkage hierarchical clustering of the samples
from BF and EU populations based on their genera. The subcluster located in the middle of the tree contains samples taken from the three youngest (1–2 y
old) children of the BF group (16BF, 3BF, and 4BF) and two 1-y-old children of the EU group (2EU and 3EU). (D) Relative abundances (percentage of sequences)
of the four most abundant bacterial phyla in each individual among the BF and EU children. Blue area in middle shows abundance of Actinobacteria, mainly
represented by Bifidobacterium genus, in the five youngest EU and BF children. (E) Relative abundance (percentage of sequences) of Gram-negative and
Gram-positive bacteria in each individual. Different distributions of Gram-negative and Gram-positive in the BF and EU populations reflect differences in the
two most represented phyla, Bacteroidetes and Firmicutes.
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Complete linkage hierarchical clustering produced a net sepa-
ration of BF and EU populations (Fig. 2C). It is noteworthy that
the subcluster that joins the two major clusters (located in the
middle of the tree) contains samples taken from the five youn-
gest EU and BF children (1–2 y old). This can be explained by
the fact that BF children are breast-fed up to the age of 2 y and
resemble the younger EU children who were breast fed-up to 1 y
of age. It is also noteworthy that only in these three BF subjects
we observed abundant Actinobacteria, mainly represented by
Bifidobacterium genus (Fig. 2D), that were found in all EU
subjects (Table S5) and that is known to be strictly related to
breast-feeding in infants (13). This result provides a clear in-
dication of the dominant role of diet over the variables men-
tioned above in shaping the microbial composition of the gut.
Studies on the genetic variability between Mossi and Europeans
showed polymorphisms in the major histocompatibility complex
(MHC) genes (14), but no significant differences in the expres-
sion of key genes regulating immune function such as TGFβ,
TGFβR, CTLA4, and FOXP3, suggesting a functional similarity
(15). Also, the two populations are different for many other
variables such as sanitation, hygiene, geography, and climate.
Yet, if any of these variables had prevailed over diet, these five
children would have fallen into two main clusters instead of
creating a third, significantly separated, cluster.
In western populations, the human intestinal microbiota under-

goes maturation from birth to adulthood and aging, with particular
emphasis on the F/B ratio, that evolves during different life stages
(16). Our results can be explained by the fact that, as soon as breast-
feeding is substituted by solid foods, the differences in microbiota
between the two populations increase, reflecting the dietary and
environmental separation that results in a differentiation between
the F/B ratio. As a consequence of the different F/B ratio in the two
populations, we found Gram-negative bacteria (mainly Bacter-
oidetes) more abundant (58.5%) than Gram-positive bacteria
(37.4%) in the BF population, whereas Gram-positive (mainly
Firmicutes) were more abundant than Gram-negative bacteria
(70.4% versus 29.1% respectively) in the EU population (Fig. 2E).

Microbial Richness and Biodiversity. We then compared the mi-
crobial richness, estimated by the Chao1 index, and the bio-
diversity, assessed by a nonparametric Shannon index for the two
BF and EU groups. In our calculations we took into account
different OTU distance unit cutoffs, namely 0.03, 0.05, and 0.10
(Fig. S3). Using the nonparametric Kruskal–Wallis test for com-

parisons, we found significant differences (P < 0.01) in both
richness and biodiversity between BF and EU samples at the
Operational Taxonomic Unit (OTU) cutoff 0.10, with a higher
microbial richness and biodiversity in BF samples than in EU
samples (Table S6).
Exposure to the large variety of environmental microbes as-

sociated with a high-fiber diet could increase the potentially
beneficial bacterial genomes, enriching the microbiome. Re-
duction in microbial richness is possibly one of the undesirable
effects of globalization and of eating generic, nutrient-rich, un-
contaminated foods. Both in the Western world and in de-
veloping countries diets rich in fat, protein, and sugar, together
with reduced intake of unabsorbable fibers, are associated with
a rapid increase in the incidence of noninfectious intestinal
diseases. The potential protective effects of the diet on bowel
disorders was first described by Burkitt (17) who, working in
Africa in the 1960s, noticed the remarkable absence of non-
infectious colonic diseases in Africans consuming a traditional
diet rich in fiber.

Xylanibacter, Prevotella, Butyrivibrio, andTreponemaGeneraMayEnhance
the Ability to Extract Calories from Indigestible Polysaccharides in BF
Children. Whole grains are concentrated sources of dietary fiber,
resistant starch, and oligosaccharides, as well as carbohydrates
that escape digestion in the small intestine and are fermented in
the gut, producing short-chain fatty acids (SCFAs). Xylanibacter,
Prevotella, Butyrivibrio, and Treponema are exclusive to the BF
children (Fig. S2) and indicate the presence of a bacterial com-
munity using xylane, xylose, and carboxymethylcellulose to pro-
duce high levels of SCFAs (18) whose protective role against gut
inflammation has been well proven (19). These bacteria can
ferment both xylan and cellulose through carbohydrate-active
enzymes such as xylanase, carboxymethylcellulase, and endoglu-
canase (http://www.cazy.org).
Other SCFA-producing bacteria, such as Bacteroides and Fae-

calibacterium species, particularly F. prausnitzii (Table S5), found
in both populations, could generally indicate the importance
of maintaining a microflora with potentially anti-inflammatory
capability (20).
To associate the presence of SCFA-producing bacterial com-

munities with the effective increase in the concentration of SCFAs
in fecal samples, we determined the levels of acetic, propionic,
butyric, and valeric acids using solid phase microextraction–gas
chromatography–mass spectrometry (SPME-GC-MS) analysis. It is

Fig. 3. SCFA-producing bacteria could help to prevent establishment of some potentially pathogenic intestinal bacteria. (A) Quantification of SCFAs in fecal
samples from BF and EU populations by SPME-GC-MS. (B) Number of sequences relative to principal Enterobacteriaceae genera, in BF and EU children microbiota.
Mean values (±SEM) are plotted. Asterisks indicate significant differences (one-tailed Student t test of all data points: *P < 0.05; **P ≤ 0.01; ***P ≤ 0.001).
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noteworthy that in BF children we found a significantly higher
amount of total SCFAs compared with EU children (one-tailed
Student t test, P= 4.5 × 10−4; Fig. 3A). In particular, propionic and
butyric acids are nearly four timesmore abundant in BF than in EU
fecal samples (one-tailed Student t test, P = 1.3 × 10−3 and P =
1.6 × 10−4, respectively), whereas acetic and valeric acids were
comparable in both groups (one-tailed Student’s t test, respectively
P= 2.0 × 10−3 and P= 2.4 × 10−3 (Fig. 3A and Table S7). Normal
colonic epithelia derive 60–70% of their energy supply from
SCFAs, particularly butyrate (21). Propionate is largely taken up by
the liver and is a good precursor for gluconeogenesis, liponeo-
genesis, and protein synthesis (22). Acetate enters the peripheral
circulation to bemetabolized by peripheral tissues and is a substrate
for cholesterol synthesis (23). Previous analyses on the physiologi-
cal significance of SCFA (24) showed how SCFA are rapidly
absorbed from the colon. Therefore, an abundance of SCFA in the
feces indicates production of SCFA from microflora at levels far
above the absorption rate. Our results allow us to hypothesize that
a diet rich in plant polysaccharides and low in sugar and fat could
select SCFA-producing bacteria.
Altogether, our results indicate a correlation between poly-

saccharide-degrading microbiota and the calories that the host
can extract from his/her diet, potentially influencing the survival
and fitness of the host. We can hypothesize that microbiota
coevolved with the diet of BF individuals, allowing them to
maximize the energy intake from indigestible components, such
as plant polysaccharides, by producing high levels of SCFAs that
supply the host with an additional amount of energy. Given that
enhanced ability to obtain energy-rich food is considered to be
one factor that has driven human evolution. Substantial micro-
biota adaptation has probably accompanied the dietary changes
that have occurred throughout human history. In fact it is well
known that changes in food production agricultural and prepa-
ration have profoundly influenced the intestinal microflora.
Our results suggest that diet has a dominant role over other

possible variables such as ethnicity, sanitation, hygiene, geogra-
phy, and climate, in shaping the gut microbiota. We can hypoth-
esize that the reduction in richness we observe in EU compared
with BF children, could indicate how the consumption of sugar,
animal fat, and calorie-dense foods in industrialized countries is
rapidly limiting the adaptive potential of the microbiota. This
microbial simplification harbors the risk of depriving our micro-
bial gene pool of potentially useful environmental gene reservoirs
that allow adaptation to peculiar diets, as we observed in BF
population and as recently shown by diet-induced horizontal gene
transfer in Japanese individuals consuming algae in their diet (25).
Gut microbial richness could have several health-related effects.

The SCFA-producing bacteria that are abundant in the BF child-
ren’s gut possibly help to prevent the establishment of some po-
tentially pathogenic intestinal microbes (26) causing diarrhea, as
seen by the fact that Enterobacteriaceae, such as Shigella and
Escherichia, were significantly underrepresented in BF than in EU
children (P < 0.05, one-tailed t test; Fig. 3B). Increased gut mi-
crobial diversity and reduced quantities of potentially pathogenic
strains in BF would agree with the “old friend” hypothesis, in-
dicating a role of microbiota in protecting children from pathogens
as well as from gastrointestinal diseases (27).
The lessons learned from the BF children’s microbiota prove

the importance of sampling and preserving microbial biodiversity
from regions where the effects of globalization on diet are less
profound. The worldwide diversity of the microbiome from an-
cient communities, where gastrointestinal infections can make
the difference between life and death, represents a goldmine for
studies aimed at elucidating the role of gut microbiota on the
subtle balance between health and disease and for the develop-
ment of novel probiotics.

Materials and Methods
Population Enrollment, Fecal Sample Collection, and DNA Extraction. We en-
rolled 15 healthy children (nine male and six female) living in the rural village
of Boulpon district of Nanoro, Boulkiemde province, Burkina Faso, and 15
healthy children (nine male and six female) living in the urban area of
Florence, Italy. All children were 1–6 y of age, had not taken antibiotics or
probiotics in the 6 mo before the sampling dates, and had not been hos-
pitalized in the previous 6 mo (Table S1). A detailed medical and lifestyle
report was obtained from EU children’s parents, and a 3-d dietary ques-
tionnaire and an in-depth interview on BF children’s diet was obtained di-
rectly from their mothers.

Despite the high incidence of infectious disease, including malaria and
malnutrition in the area, all children were apparently healthy at the time of
sample collection. Upper midarm measurement excluded both severe and
moderate malnutrition. As representative of a healthy Western population
(EU), we selected children of the same agewhowere generally concordant for
growth, socially homogeneous, and eating the diet and living in an envi-
ronment typical of the developed world. Fecal samples were collected by
physicians and preserved in RNAlater (Qiagen) at −80 °C until extraction of
genomic DNA (28) (details in SI Materials and Methods).

Sequencing of 16S rRNA Gene Amplicons. For each sample, we amplified 16S
rRNA genes using a primer set specific for V5 and V6 hypervariable 16S RNA
region. The forward primer contained the sequence of the Titanium A
adaptor and a barcode sequence. Pyrosequencing was carried out using
primer A on a 454 Life Sciences Genome Sequencer FLX instrument (Roche)
following Titanium chemistry (details in SI Materials and Methods). Data
were submitted to the Sequence Read Archive (SRA) using ISA tools (ISA-
creator and ISAconverter, http://isatab.sourceforge.net/index.html); the
dataset is available at http://www.ebi.ac.uk/ena/data/view/ERP000133.

Taxonomic Assignment to 16S Reads. RDP classifier (v 2.1) softwarewasused(29)
to classify the sequences according to the taxonomy proposed by Garrity et al.
(30), maintained at the Ribosomal Database Project (RDP 10 database, Update
18).RDPclassifieralsoemits, foreachtaxonomic rank, a confidenceestimate (CE)
based on a bootstrapping procedure, allowing to append the notation of
“_uncertain” to assignments with CE lower than a defined cutoff , usually 50%
(Table S4). Bacterial species were assigned using a speed-optimized procedure
based on BLAST and on the creation of genus specific subsamples of the RDP 10
database (details in SI Materials and Methods).

Quantifying and Comparing Diversity Between BF and EU Populations. Differ-
ences betweenpopulations have been analyzedusing parametric (ANOVA) and
nonparametric (Kruskal-Wallis test) statistical methods. Even if, in principle,
multivariate ANOVA would be more appropriate to catch the whole in-
formation available fromsuchdataset, someof the assumptions (e.g., normality
of residuals) were notmet, as testedwith Shapiro–WilkW test and the energy E
test. We then preferred to use univariate methods such as ANOVA and the
nonparametric, rank-driven Kruskall-Wallis test, which performs well in the
absence of distributional assumptions (details in SI Materials and Methods).

Complete Linkage Hierarchical Clustering. The clustering of EU and BF samples
was performed on genera obtained from RDP Classifier by means of
a complete linkage hierarchical clustering technique using the R package
hclust (details in SI Materials and Methods).

Richness and Diversity Index. To obtain the matrix containing pairwise se-
quence distances, all reads were first aligned with muscle v3.7 (31) and
converted to Phylip format for downstream calculations. Richness and bio-
diversity indices were obtained with the Mothur software package (32). For
richness estimation, related to the number of observed operational taxo-
nomic units (OTUs), we used the Chao1 index. Biodiversity that depends how
uniformly the sequences are spread into the different observed OTUs, was
instead estimated with the nonparametric Shannon formula (33). Both in-
dexes were evaluated at a different distance unit cutoff, to test different
selectivity in the definition of OTUs.

Determination of SCFAs in Fecal Samples. For determination of SCFAs we used
250 mg frozen fecal samples. Concentrations of SCFAs were determined in
a 1:25 dilution of 500 μL supernatant. SPME-GC-MS determinations were
performed using a Varian Saturn 2000 GC-MS instrument with 8200 CX SPME
autosampler (details in SI Materials and Methods).
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