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Abstract We had shown that aromatic amino acid

(phenylalanine, tyrosine, and tryptophan) supplementation

prevented bone loss in an aging C57BL/6 mice model.

In vivo results from the markers of bone breakdown sug-

gested an inhibition of osteoclastic activity or differentia-

tion. To assess osteoclastic differentiation, we examined

the effects of aromatic amino acids on early /structural

markers as vitronectin receptor, calcitonin receptor, and

carbonic anhydrase II as well as, late/functional differen-

tiation markers; cathepsin K and matrix metalloproteinase

9 (MMP-9). Our data demonstrate that the aromatic amino

acids down-regulated early and late osteoclastic differen-

tiation markers as measured by real time PCR. Our data

also suggest a link between the vitronectin receptor and the

secreted cathepsin K that both showed consistent effects to

the aromatic amino acid treatment. However, the non-

attachment related proteins, calcitonin receptor, and car-

bonic anhydrase II, demonstrated less consistent effects in

response to treatment. Our data are consistent with aro-

matic amino acids down-regulating osteoclastic differen-

tiation by suppressing remodeling gene expression thus

contributing initially to the net increase in bone mass seen

in vivo.

Keywords Osteoclast � Amino acids � Cathepsin K �

Carbonic anhydrase II � Calcitonin receptor

Introduction

Amino acids have been shown to exert direct effects on

several tissues including the ‘‘amino acid-sensors’’ in

pancreatic islets, pituitary, parathyroid gland, and liver and

help regulate nutrient disposition [1]. In these tissues,
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amino acids have been shown to bind the extracellular

calcium receptor (CaSR). The CaSR was first reported by

House et al. [2] to be present in both human and mouse

bone marrow cells. Bone breakdown is determined by

osteoclastic activity. However, the direct effect of amino

acids on osteoclasts is not known. In order to evaluate the

effects of amino acids on osteoclastic development, we

focused on expression of several common osteoclastic

genes expressed at various levels during differentiation.

The vitronectin receptor is essential in bone remodeling

as it binds to extracellular matrix proteins like osteopontin at

the tri-peptide arginine-glycine-aspartic acid (RGD) recog-

nition site and it is crucial for osteoclast polarization into

clear zones and ruffled borders; two characteristic features

of osteoclasts [3]. The calcitonin receptor is expressed on

osteoclasts but not osteoblasts and a specific marker for

osteoclast differentiation [4]. The calcitonin receptor (CTR)

is a G protein-coupled receptor that is expressed at high

levels by osteoclast, renal, and neural cells. It binds with

highest affinity to calcitonin, which is a 32 amino acid

peptide secreted by C-cells of the thyroid gland in response

to elevated serum calcium levels. The main recognized

action of calcitonin is to inhibit bone resorption [5].

Carbonic anhydrase II is an early marker of osteoclast

differentiation and is important in bone resorption as it

facilitates proton production and thus the acidic environ-

ment of the resorption lacunae. Previous work on carbonic

anhydrase showed that mutation of the carbonic anhydrase

II gene results in inhibition of bone resorption and osteo-

petrosis [6]. Studies in rat bone marrow cultures using

acetazolamide, a specific carbonic anhydrase inhibitor,

demonstrated that carbonic anhydrase II is crucial in proton

generation in mature osteoclasts by showing a decrease in

the 1,25 (OH)2D3-induced formation of multinucleated

tartrate-resistant acid phosphatase (TRAP)-positive cells,

in a dose-dependent manner [7].

Matrix metalloproteinase 9 (MMP-9) is also a crucial

marker in bone remodeling as a recent study identified that

high levels of MMP-9 have been detected in osteoclasts,

MMP-9 is considered unique because of its the strong

abundance and selectivity of its expression in osteoclastic

cells [8, 9]. A previous study showed that MMP-9 knock-

out mice displayed a bone-developmental defect, suggest-

ing an important role for this metalloproteinase in bone

turnover and remodeling [10].

Cathepsin K is considered the major cysteine protease

expressed in osteoclasts [11] and has a critical role in

osteoclastic bone resorption. Cathepsin K can degrade

telopeptide and triple helical regions of type I collagen [12]

as well as osteonectin [13]. Cathepsin K knockout mice

develop osteopetrosis as a result of a deficiency in matrix

degradation and decreased bone resorption [14].

We focused on aromatic amino acids (phenylalanine,

tyrosine, and tryptophan) in this study as previous lab

findings showed that they increased cellular activity in

bone [15]. We were interested in the effect of these aro-

matic amino acids on osteoclastic activity through evalu-

ation of their effects on a number of breakdown genes as

vitronectin receptor, calcitonin receptor, carbonic anhy-

drase II, MMP-9, and cathepsin K.

Materials and Methods

Generation of Osteoclasts from Bone Marrow

Macrophages

Male C57BL/6 mice were purchased from Harlan Labora-

tories (Indianapolis, In, USA). Hematopoietic stem cells

were isolated from 3-month-old male C57BL/6 mice to

generate macrophages and induce osteoclasts at the Georgia

Regents University Stem Cell Core Facility. In brief, six

Table 1 Primers used for real time PCR: list of primers of internal control, early and late osteoclast markers and their sequences

Primer Gene name Accession
number

Sequence (50?30) Size (bp)

Vitronectin Vitronectin (Vtn), NM_011707 Fwd: TGCAGCGTTCGCCCTTCCTG

Rev: CCTCCTGGCTGGGTTGCTGC

110

Cathepsin K Cathepsin K(Ctsk) NM_007802 Fwd: CGTGCAGCAGAACGGAGGCA

Rev: TAGCTGCCTTTGCCGTGGCG

95

Calcitonin receptor Calcitonin receptor (Calcr), NM_007588 Fwd: ACATGATCCAGTTCACCAGGCAGA

Rev: AGGTTCTTGGTGACCTCCCAACTT

107

MMP9 Matrix metallo-proteinase
9 (MMP9)

NM_013599 Fwd: TGAACAAGGTGGACCATGAGGTGA

Rev: TAGAGACTTGCACTGCACGGTTGA

121

Carbonic
anhydrase II

Carbonic anhydrase II M81022 Fwd: ACCACTCCGCCTCTGCTGGA

Rev: ACGCCAGTTGTCCACCATCGC

144

18S 18S ribosomal RNA (Rn18 s) NR_003278 Fwd: AGTGCGGGTCATAAGCTTGC

Rev: GGGCCTCACTAAACCATCCA

134
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mice were euthanized by CO2 overdose followed by thora-

cotomy. Whole bone marrow aspirates were flushed from

femora and tibiae, both ends of the bonewere cut off and long

bones were flushed to flush out all bone marrow from a

protocol modified from Tropel et al. [16]. Bone marrow

aspirates were centrifuged at 1300 rpm for 5 min at room

temperature and then cells were expanded in Alpha Modi-

fication of Eagle’s Medium (a-MEM) (cat#10-022) (a-

MEM; Cellgro, Mediatech, Manassas, VA, USA) supple-

mented with 10 % heat-inactivated fetal bovine serum

(cat#S11150) (FBS; Atlanta Biologicals, Lawrenceville,

GA, USA) and 1 % penicillin-streptomycin (cat#SV30010)

(Hyclone Laboratories, Inc.) for 24 h. A plastic pipette was

used to collect the non-adherent cells; spun at 1300 rpm for

5 min and cells were expanded in a-MEM and macrophage-

colony stimulating factor (M-CSF) (cat#315-02) (M-CSF,

Peprotech Inc.) in a concentration of 50 gg/ml for 2 days to

induce macrophages. After 2 days, bone marrow macro-

phages were attached to the bottom of the plate; cells were

collected and spun at 1300 rpm for 8 min at room temper-

ature. 660,000 cells were seeded in each well of the six-well

plate with M-CSF (cat#315-02) (M-CSF, Peprotech Inc.)

(20 ng/ml) and Rank-Ligand (cat#315-11) (RANKL, Pep-

rotech Inc.) (100 ng/ml). Different aromatic amino acid

combinations were used to treat the cells during osteoclastic

differentiation. After 6 days, osteoclasts were checked and

confirmed with TRAP staining kit (Acid Phosphatase, Leu-

kocyte (TRAP Kit; cat # 387, Sigma-Aldrich Co.)

Fig. 1 TRAP staining of bone marrow macrophages. Bone marrow
macrophages were collected and spun at 1300 rpm for 8 min at room
temperature, 660,000 cells were seeded in each well of the six-well
plate with M-CSF (20 ng/ml) and RANKL (100 ng/ml). Shown is a
representative picture of TRAP staining repeated at least three
different times, a TRAP staining after 6 days of differentiation;
b TRAP staining of osteoclasts incubated for the last 3 days with

100 lM tryptophan. c TRAP staining of osteoclasts incubated for the
last 3 days with 100 lM phenylalanine. d TRAP staining of
osteoclasts incubated for the last 3 days with 100 lM Tyrosine.
Photomicrographs showed multinucleated osteoclastic cells in the
control and the treated groups and of note; no changes were detected
in the morphology of the cells
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RNA Extraction and Quantitative PCR

Total cellular RNA were isolated from cells with and

without aromatic amino acid treatment using TRIZOL

reagent (cat#15596018) (Invitrogen) as previously descri-

bed [17]. Equal amounts of total RNA (2 lg) were reverse

transcribed using SuperScript III First-Strand Synthesis

System (cat#18080-051) (Invitrogen) with Oligo(dT)20 as

primer and 10 mM dNTPmix in a 20-ll reaction volume for

10 min at 25 �C followed by 50 min at 50 �C. The speci-

ficity was confirmed by electrophoresis of PCR products.

The DNA (1 ll) was used as template for real-time RT-PCR

analysis using SYBR Green Master Mix (Applied Biosys-

tems) and a Chromo-4 real-time RT-PCR instrument (MJ

Research) as previously described [17]. PCR reactions were

performed in triplicate, and the levels of mRNA expression

were calculated by theDDCtmethod using 18S as an internal

control (18–19). Primers for early/structural osteoclast

differentiation were: vitronectin receptor, calcitonin recep-

tor, and carbonic anhydrase II and for late/functional

osteoclastic differentiation were: cathepsin K and MMP-9.

Sequences for different primers for early and late differen-

tiation markers are listed in Table 1.

In Vitro Resorption Assay

Bone marrow macrophages were cultured in 16 well BD

BioCoat Osteologic slides [18–28] (BD Bioscences, San

Jose, CA, USA) at a cell density of 100,000 cells/well in-

MEM medium with 10 % FBS (Life Technologies, Grand

Island, NY, USA), 20 ng/ml M-CSF and 100 ng/ml of

RANK-L and the medium changed every 3 days. Indicated

amino acids were added during the last 3 days of incuba-

tion. For each of the amino acids indicated the concentra-

tion used to stimulate the osteoclasts was double what was

present in the basal-MEM medium. Baseline AA

Fig. 2 Effects of different aromatic amino acid combinations on
vitronectin receptor, calcitonin receptor, and carbonic anhydrase II
gene expression. Bone marrow macrophages were collected and spun
at 1300 rpm for 8 min at room temperature, 660,000 cells were
seeded in each well of the six-well plate with M-CSF (10 ng/ml) and
RANKL (50 ng/ml). Different aromatic amino acid combinations
were used to treat the cells during osteoclastic differentiation at a
50 lM concentration. Untreated cells were used as a control. a Amino

acid combinations that down-regulated vitronectin receptor gene
expression. b AA treatment groups that down-regulated calcitonin
receptor gene expression. c AA combinations that down-regulated
carbonic anhydrase II gene expression. Untreated cells were used as
control (fold change of expression = 1). Results are expressed as
geometric mean and geometric SEM for at least three independent
experiments. *p B 0.05, # p B 0.01 and $\ 0.1
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concentrations: (1) Phenylalanine-0.194 mM; (2) Trypto-

phan-0.049 mM; (3) Tyrosine-0.231 mM; (4) Leucine-

0.397 mM; (5) Isoleucine-0.4 mM. Osteoclast identity was

confirmed by TRAP staining. Resorption pits were visu-

alized by Von Kossa staining. Pit area was estimated using

NIH Image J.

Statistical Analysis

Experiments were performed at least in triplicate from at

least three independent experiments for cathepsin K, car-

bonic anhydrase II, vitronectin receptor, calcitonin recep-

tor, and MMP9 expression. For real-time PCR data, the

fold changes relative to control were computed using the

comparative CT method (DDCT Method) within experiment

[29]. Data are expressed as the geometric mean fold change

relative to control and geometric SEM. Since aromatic

amino acid supplementation was hypothesized to reduce

expression in these experiments, lower tail one-sample

t-tests using a lognormal distribution were performed.

Statistical significance was determined at alpha = 0.05 and

trends were assessed between 0.05 and 0.10. No multiple

testing adjustments were made [30]. Data were analyzed

using SAS� 9.3 (SAS Institute, Inc., Cary, NC, USA).

Results

Effects of Aromatic Amino Acids on Early/Structural

Osteoclast Markers

The effects of aromatic amino acid combinations on the

early osteoclastic gene markers, vitronectin receptor, cal-

citonin receptor, and carbonic anhydrase II were first

examined. Before extracting the RNA, osteoclast identity

was confirmed by TRAP staining (Fig. 1). Aromatic amino

acids (50 and 100 lM) down-regulated vitronectin gene

expression in the TRAP stained cells. At the 50 lM con-

centration, the AA combinations of phenylalalanine and

tyrosine, phenylalanine and tryptophan, tyrosine and tryp-

tophan and phenylalanine-tyrosine-tryptophan all signifi-

cantly decreased the gene expression of vitronectin

Fig. 3 Effects of different
aromatic amino acid
combinations on vitronectin
receptor, calcitonin receptor,
and carbonic anhydrase II gene
expression. Various aromatic
amino acid combinations were
used to treat the cells during
osteoclastic differentiation at a
100 lM concentration and
untreated cells were used as a
control. a Amino acid
combinations that down-
regulated vitronectin receptor
gene expression. b Different
treatment groups that down-
regulated calcitonin receptor
gene expression. c Different
amino acids that down-
regulated carbonic anhydrase II
gene expression. Untreated cells
were used as control (fold
change of expression = 1).
Results are expressed as
geometric mean and geometric
SEM for at least three
independent experiments.
*p B 0.05, # p B 0.01, and
p\ 0.1
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receptor with a p value B 0.05 as shown in Fig. 2a. At the

100 lM concentration, the AA combinations of phenylal-

anine-tyrosine and phenylalanine-tyrosine-tryptophan sim-

ilarly significantly decreased the expression of vitronectin

receptor gene expression (Fig. 3a).

For the calcitonin receptor gene expression, the aromatic

amino acids combination of phenylalanine-tyrosine, phen-

ylalanine-tryptophan, and phenylalanine-tyrosine-trypto-

phan in a 50 lM concentration down-regulated the gene

expression as in Fig. 2b. A similar trend of gene expression

down-regulation was observed at 100 lM concentration in

the following AA combinations; phenylalanine-tyrosine,

tyrosine-tryptophan, and phenylalanine-tyrosine-trypto-

phan (Fig. 3b).

For carbonic anhydrase II, the AA combinations of

phenylalanine-tryptophan and phenylalanine-tyrosine-

tryptophan (50 lM) decreased its gene expression as

shown in Fig. 2c. In contrast at 100 lM only the phenyl-

alanine-tyrosine combination showed a trend of down-

regulation (Fig. 3c).

Effect of Aromatic Amino Acids on Late/Functional

Markers of Osteoclasts

At the AA concentration of 100 lM the AA combinations

of phenylalanine-tyrosine, tyrosine-tryptophan and pheny-

lalanine-tyrosine-tryptophan all down-regulated MMP-9

expression although none of these changes reached statis-

tical significance (Fig. 4a).

For cathepsin K (50 lM), the AA combinations of

tyrosine-tryptophan and phenylalanine-tyrosine-tryptophan

down-regulated its gene expression. At the higher AA

concentration (100 lM), the combinations of phenylala-

nine-tyrosine and phenylalanine-tryptophan down-regu-

lated cathepsin K gene expression (Fig. 4b).

Effect of Aromatic Amino Acids on Osteoclastic

Activity

To evaluate the impact of aromatic amino acids on osteo-

clastic activity, we used the pit resorption assay (Fig. 5).

Isolated bone marrow macrophages were differentiated

into osteoclasts in the presence of M-CSF and RANK-L

and exposed to aromatic amino acids (tyrosine, tryptophan,

or phenylalanine) or leucine or isoleucine. All the aromatic

amino acids significantly increased resorption activity. Non

aromatic amino acids leucine and isoleucine also increased

resorptive activity but to a lesser extent.

Discussion

In present study, we examined the effects of aromatic

amino acids on osteoclast differentiation as our previous

data showed that aromatic amino acid supplementation

prevented bone loss in aging C57BL/6 mice placed on a

low protein diet [15]. Other studies [31, 32] by Hampson

et al. [31] showed that nutritional supplementation

(12–24 g protein, 12–24 g fat, and 37–74 g carbohydrate

together with vitamins, minerals, and trace elements daily)

in elderly women over a 1 year interval showed a reduction

in serum osteoprotegerin and serum C-terminal telopeptide

of type I collagen by *30% and showed an increase in

bone alkaline phosphatase and osteocalcin and glucose has

been reported to affect osteoclastic activity as Wittrant

et al. [33] showed the first evidence that high D-glucose

inhibited RANKL-mediated signaling events that

Fig. 4 Effects of different aromatic amino acids on matrix metallo-
proteinase 9, cathepsin K gene expression. Isolated bone marrow
macrophages: a Amino acid combinations (50 lM) down-regulated
matrix metalloproteinase 9 gene expression. b AA treatment groups
(50 lM) that down-regulated cathepsin K gene expression. Untreated
cells were used as a control (fold change of expression = 1). Results
are expressed as geometric mean and geometric SEM for at least three
independent experiments. $\ 0.1
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correlated to osteoclast differentiation and function. How-

ever, the effect of aromatic amino acids on osteoclasts had

not previously been examined. The C57BL/6 mouse model

was used due to consistent results from these mice with

published data from human clinical trials and because it is

a model of aging as previously characterized by our group

[34]. Aromatic amino acids down-regulated vitronectin

gene expression and alternatively osteoclast differentiation

Fig. 5 Effects of different amino acids on osteoclastic resorption
activity. a Bone marrow macrophages were cultured in 16 well BD
BioCoat Osteologic slides and stimulated with the indicated amino
acid for 3 days. Resorption pits were visualized by Von Kossa
staining. Pit area was estimated using NIH Image J. Results are

expressed as mean ± SEM for at least three independent experi-
ments. Significance value is listed above each graph bar. b Aromatic
amino acids (Phe, Tyr and Trp) showed more resorption pits
compared to the control
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and polarization as vitronectin gene is crucial for osteoclast

polarization into clear zones and ruffled borders; two of the

most characteristic features of osteoclasts [3]. Our results

also demonstrated that aromatic amino acids down-regu-

lated early osteoclast differentiation by suppressing calci-

tonin receptor gene expression as the CTR is a G protein-

coupled surface receptor that is expressed at high levels by

osteoclast and binds with highest affinity to calcitonin that

regulates calcium homeostasis [5]. Real time PCR data

showed a decrease in carbonic anhydrase II gene expres-

sion, an early marker of osteoclast differentiation and

important for bone resorption as it facilitates proton pro-

duction and thus the acidic environment of the resorption

lacunae [7].

MMP-9 and cathepsin K are considered late markers of

osteoclastic differentiation as studies showed that NFATc1

plays a key role in up-regulating expression of genes

required for osteoclast maturation, such as TRAP [35],

cathepsin K[36], or MMP-9[37], which are crucial for bone

resorption mediated by mature osteoclasts. Our data dem-

onstrate a down-regulation in MMP-9 and cathepsin K as

MMP-9 is crucial in bone turnover and remodeling [10]

and cathepsin K is a major cysteine protease expressed in

osteoclasts [11] and has a critical role in osteoclastic bone

resorption. However, our TRAP staining photomicrographs

showed no changes in the morphology or the number of

nuclei of the cells in response to the aromatic amino acid

treatment and these are consistent with PCR data that

showed most effects on the attachment proteins.

Unexpectedly aromatic amino acids increased in vitro

resorptive activity (Fig. 5). These data would suggest that

aromatic amino acids main suppressive effect on osteo-

clasts may be through modulation of their attachment since

resorptive activity was actually increased in the mature

osteoclasts.

In conclusion, our data demonstrate that aromatic amino

acids downregulate early and late osteoclast differentiation

markers thus may contribute through this mechanism to the

net increase in bone mass seen in vivo. Our data also

suggest a link between the attachment protein; vitronectin

receptor and the secreted cathepsin K that both showed

consistent effects to the amino acid treatment. However,

the non-attachment related proteins, carbonic anhydrase II,

demonstrated less consistent effects in response to

treatment.
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