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Hydrological responses to land use/land cover (LULC) changes are complex in nature and tend to have
an impact on the hydrological cycle, affecting the livelihood of the inhabitants. Rainfall–runoff models,
such as the Soil and Water Assessment Tool, were used in the past to unravel the interactions between
the impacts of climate and land use changes. However, the sensitivity of the model outcome, regarding
the hydrological and erosive response to climatic data derived with different methods, has not been fully
understood. We carried out a hydrological simulation using (a) Climate Forecast System Reanalysis
data set, which synthesises outputs of global climate models along with gauged weather information and
has a global coverage, and (b) purely weather station-based gridded climate data provided by Indian
Meteorological Department. A possible LULC scenario for the year 2020 was created using the combined
Cellular Automata–Markov model. Application of both climate data sets resulted in a modest increase
in the predicted streamflow and sediment yield as a response to the probable development scenario in
2020. However, the marked variations emerged in the location and monthly pattern of significant changes
in the surface runoff and sediment yield in response to the likely LULC scenario for 2020 vis-à-vis 2010.
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1. Introduction

Vegetation is an important component of a natu-
ral environment, as it distributes water and solar
energy on the earth’s surface through various
hydrological pathways. Land use change or land
conversion is a dynamic process, which varies spa-
tially and temporally depending on the economic,
political and social needs of a region. It has been
shown to affect the catchment hydrological pro-
cesses such as precipitation, evapotranspiration,
infiltration, groundwater recharge, base flow, sur-
face runoff and sediment yield (Li et al. 2011; Baker
and Miller 2013; Yira et al. 2016) by increasing or

decreasing the flood/drought frequency (Schilling
et al. 2014; Tarigan 2016), soil erosion and nutrient
loss (McGrath et al. 2001) leading to land degra-
dation and lower agricultural productivity (Zucca
et al. 2010). Destructive forest cover changes for
a shorter period (Khoi and Suetsugi 2014) and
expansion in farmlands and built-up surfaces were
found to increase surface runoff and sediment loads
in river basins (Yan et al. 2013).

In India, the population increased from 200 mil-
lion to 1200 million between 1880 and 2010, forest
cover decreased from 89 million ha to 63 million
ha, while the cropland increased by ∼50 million
ha, or 56%, during this period (Tian et al. 2014).
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This makes it necessary to gain certain knowledge
about the possible land use/land cover (LULC)
changes and the impact they may have on the sur-
face runoff and sediment fluxes in the large river
basins of India. Markov modelling has been used
to project the trajectory of land use (Iacono et al.
2015). This model views LULC at any given time
as a discrete state and considers it to be a func-
tion of its previous state only. The probability of
transition between each LULC condition and its
previous state is incorporated as an element of a
transition probability matrix. However, the use of
Markov chain in LULC prediction has the weak-
ness of limited spatial details (Myint and Wang
2006). On the other hand, a cellular automaton is
capable of simulating the dynamic nature of land
use change with better spatial accuracy by con-
trolling the spatial pattern change using transition
rules and neighbourhood ‘cell state’ (López et al.
2001). A coupled Markov and cellular automaton
model performs better than applying these meth-
ods separately and have been employed successfully
to predict LULC scenario in urban (Guan et al.
2011; Zheng et al. 2015) and regional scales (Arsan-
jani et al. 2011; Zare et al. 2017; Etemadi et al.
2018).

Soil and Water Assessment tool (SWAT) has
been particularly useful for studying the effect
of environmental changes on the quality and the
quantity of water (Azari et al. 2016; Francesconi
et al. 2016). Zhang et al. (2016) attempted to quan-
tify the hydrological responses to land use change
under constant and possible climate change sce-
narios in the Heihe River basin of northwest China
using SWAT and observed that land use changes
have a greater impact on streamflow and sedi-
ment yield at the sub-basin levels than at the main
basin outlet. The possibility of climate-induced
land use changes in affecting catchment hydrology
and fluvial erosion has also been predicted (Serpa
et al. 2015). Wagner et al. (2016) integrated the
LULC modelling as well as climatic change scenar-
ios and evaluated its impact on the hydrological
response of a small and highly urbanised water-
shed in western India. However, we felt the need
of further investigations in this direction, espe-
cially in large rural river basins, where expansion
of arable land rather than the built-up surface is
likely to be the main driver of LULC changes.
As India is still an agro-economy, the agricultural
water management is expected to be the main
focus of long-term hydrological studies (Garg et al.
2012).

Weather data is always an important driver of
rainfall–runoff processes but limited measurement
of atmospheric variables over space and time and
their availability sometimes restrict the practice
of hydrological modelling for research and man-
agement purposes (Ciach 2003). Climate Forecast
System Reanalysis and Reforecast (CFSR) pro-
vided by the National Center for Environmental
Prediction at the National Center for Atmospheric
Research is the most widely used weather data in
SWAT models (Fuka et al. 2014; Auerbach et al.
2016). This dataset has a resolution of ∼38 km
with a near-global coverage (Saha et al. 2010).
In the Indian context, an alternative regional
daily weather dataset is available in gridded for-
mat from the Indian Meteorological Department
(IMD). Unlike the CFSR data set, which is par-
tially derived from the outputs of global climate
models, the IMD gridded data is entirely derived
from the network of Indian weather stations and
interpolated at a cell size of ∼36 km or 1◦

× 1◦

(Rajeevan et al. 2006) and ∼18 km or 0.5◦
× 0.5◦.

The 1◦
× 1◦ IMD data has been successfully used

in the SWAT-based hydrological modelling (Singh
and Gosain 2011) but the sensitivity of SWAT
to CFSR vs. IMD weather inputs in predicting
hydrological and erosion response to future LULC
scenarios has never been evaluated, especially in
large rural river basins. The current study aims
to examine the spatial and temporal dimensions
of the predicted hydrologic responses to possible
future LULC scenarios that may arise due to the
use of a global (CFSR) vs. regional (IMD) weather
product.

2. Study area

The Indravati river basin (basin size: 40,525 km2)
is a typical example of a large, primarily agricul-
tural river basin in India (figure 1) with a modest
amount of river controls. Information about the
operation of the reservoirs is often necessary for
rainfall–runoff modelling. This information is scant
in India. There are no large dams in the basin
except one at the extreme upstream portion. It
is characterised by a tropical monsoon climate,
with high seasonal variability in precipitation and
temperature. The average annual precipitation is
about 1288 mm in the Indravati basin (Vemu and
Pinnamaneni 2011). Most of the rainfall occurs
between late June and October due to the south-
west monsoon. For the rest of the months, the
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Figure 1. Location and description of the Indravati river basin, India.

annual precipitation is very low, which makes the
river non-perennial.

According to GLOBELAND30 Project of
China (http://www.globallandcover.com/GLC30
Download/index.aspx) the forest and agricultural
land are two dominant land uses in this area,
accounting for 43% and 46%, respectively, in 2010.
Rest is covered by grassland, shrub land, water-
body and built up area. The central highland and
western part of the basin have high forest cover

whereas agricultural land is mainly confined in
the upper basin in the southeast. According to
the National Atlas and Thematic Mapping Orga-
nization (NATMO), Government of India, the two
main types of soils in the Indravati basin are red
sandy soils and red loamy soils. About 74% of the
basin area is red sandy soil and the rest is red
loamy soil. Moreover, some smaller tracts are dom-
inated by clay loam, sandy clay loam and clayey
soils.

http://www.globallandcover.com/GLC30Download/index.aspx
http://www.globallandcover.com/GLC30Download/index.aspx
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Table 1. Input dataset for LULC change simulation.

Factors Source

Elevation SRTM DEM

Slope SRTM DEM

Annual mean precipitation IMD

Soil organic matter content FAO Harmonized World

Soil Database v 1.2

Population density Census of India

Euclidian distance to rivers SRTM DEM

Euclidian distance to present

LULC (2010) classes GLOBELAND30, China

3. Data and methods

3.1 Land use change prediction

Possible future LULC scenarios of 2020 for the
Indravati basin were created in this research by
integrating the Markov model, cellular automata
and multi-criteria evaluation (MCE) analysis. The
CA MARKOV module in IDRISI SELVA 17.0
was used for this purpose. Initially, the trans-
fer area matrix and the transition probability
matrix were computed to determine the transi-
tion rules between the LULC state of 2000 and
2010. MCE was employed to construct suitability
images that account for many important factors
and constrains of land use change (Eastman 2012).
For example, the area under water body and
urban land use was considered as constrains while
predicting the probability of these LULC cate-
gories to change into agricultural land. Factors
such as elevation, slope, rainfall, organic mat-
ter in the soil, population density, distance from
the river and distance from the present LULC
classes (table 1) were considered for generating
the suitability maps. In the next step, each factor

was standardised (0–255) using the fuzzy mem-
bership functions and their relative weights were
determined using the analytic hierarchy process
following the methods reported by Saaty (2003).
Consequently, factor images with their relative
weights were aggregated into a single suitabil-
ity map for one land use category through the
aggregation method. Finally, a 5×5 contiguity
filter was applied to define the neighbourhood
function for the land use change simulation.

The ability of the cellular automata and Markov
model to predict the LULC for 2020 in the study
area was tested by validating the simulated LULC
of 2010 with the actual map of 2010. Pontius and
Millones (2011) proposed a spatial adaptation of
the κ index that is conventionally used for accuracy
assessment of LULC classification as the quantity
disagreement and allocation disagreement. As per
these indices, we found an overall agreement of 0.89
with a simulation error of 0.109; 2.52% of the error
was attributed to the quantity and 8.48% occurred
due to allocation.

The computed κ index of agreement (κno = 0.87,
κlocation = 0.85, κstandard = 0.82) indicates a reas-
onable concurrence between the observed and sim-
ulated maps of 2010. All κ indices were above
0.82. It indicated that our simulated classified map
of 2010 was 82% better than the one that would
result from a random chance agreement. κ statis-
tics calculated for each land use type (table 2)
shows higher simulation accuracy for the agricul-
tural land (κ− 0.92) and forest (κ− 0.86). As more
than 90% of the basin area was under forest and
agricultural land, the result indicated a high accu-
racy of our method to predict the LULC condition
in the Indravati river basin. With this impres-
sion, we simulated the LULC map of 2020 for the
study area from the map of 2010 using the same
methodology.

Table 2. Comparison of areas under different LULC classes in the simulated land use map of 2010 with the observed land
use map of the same year.

Year LULC 2010 observed LULC 2010 simulated

Land use Area (km2) Percentage (%) Area (km2) Percentage (%) κ

Relative

error (%)

Agriculture 17434.92 43.02 17642.21 43.53 0.9168 0.51

Forest 18682.84 46.10 18502.03 45.65 0.8651 −0.45

Grassland 3521.19 8.69 3503.43 8.64 0.5515 −0.04

Shrub land 338.66 0.84 368.57 0.91 0.2619 0.07

Wet land 2.89 0.01 3.58 0.01 0.8558 0.00

Water 262.78 0.65 235.13 0.58 0.7603 −0.07

Urban 258.06 0.64 251.91 0.62 0.8016 −0.02

Bare land 24.44 0.06 18.92 0.05 0.545 −0.01
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Table 3. Input data for SWAT model in the Indravati river basin.

Input data Resolution Source

DEM 30 m SRTM DEM (https://earthexplorer.usgs.gov/)

Land use map 30 m GLOBELAND30, China (http://www.globallandcover.

com/GLC30Download/index.aspx)

Soil map 5 km FAO Digital soil map of the world (http://www.fao.org/

geonetwork/srv/en/metadata.show?id=14116)

Meteorological data Daily CFSR real analysis data (http://swat.tamu.edu/)

Hydrological data Daily CWC, India–WRIS project, India (http://www.india-wris.

nrsc.gov.in/)

3.2 Hydrological modelling

3.2.1 Setting up the SWAT model

SWAT requires various spatial information (topo-
graphical, land use, soil) and meteorological inputs
to operate. Topographic and channel informa-
tion (reach length, longest flow path, etc.) were
extracted from SRTM digital elevation model
(DEM) (30 m×30 m) using Arc-SWAT tool. LULC
data (2000, 2010) was obtained from the GLOBE-
LAND30 Project. Soil maps including physical
properties of the soil were obtained from the Digi-
tal Soil Map of the World (DSMW, FAO). More
details about the source of the data are given
in table 3. The Indravati river basin (figure 1)
was divided into 94 sub-basins. The slope map
of the basin was prepared from the DEM. After
superimposing the physical attributes such as
LULC, soil and slope map, each sub-basin was fur-
ther divided into a number of hydrologic response
units (HRUs) with a unique combination of LULC,
soil and slope classes. A threshold for each of the
physical attributes was applied to avoid the cre-
ation of unnecessarily smaller HRUs. In the next
step, we incorporated weather parameters into the
model domain. The Penman–Monteith method was
used to calculate the potential evapotranspiration.

The primary objective of this research is to
examine the spatial and temporal differences of the
predicted hydrological and erosive response of a
basin to likely future land use change that may
arise due to the use of IMD vis-à-vis CFSR climate
data. The IMD climate data was assumed to be
more reliable than CFSR as the former was exclu-
sively derived from gauged records. On the other
hand, reanalysis weather data sets are produced on
a large spatial scale, assimilating the ground obser-
vation and remotely sensed measurements embed-
ded with atmospheric model ‘hindcasts’ to provide
estimates of atmospheric variables worldwide with

Legend
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Figure 2. Distribution of gridded weather data points
(CFSR and IMD) over the sub-catchments of the Indravati
river basin.

a continuous based record for several decades (Saha
et al. 2010). CFSR (at a resolution of 0.25◦

×

0.25◦) and IMD gridded data (at a resolution
of 0.5◦

× 0.5◦) are available from the SWAT
homepage (https://swat.tamu.edu/) in a format
readily usable in SWAT. We used these two climate
products in our study. When a gridded climatic
data is fed into SWAT, the grid with its centroid
nearest to the centroid of a sub-basin is taken
into consideration as the climatic data for that
sub-basin. SWAT is a semi-distributed hydrologi-
cal model and hence lumps the climatic data at
the sub-basin level.

The reliability of the CFSR data was measured
using the IMD data as the benchmark. Superim-
posing the IMD and the CFSR grids reveal that
in sub-basins nos. 25, 29, 44, 75 (figure 2) the
CFSR and IMD grid centroids are very close and

https://earthexplorer.usgs.gov/
http://www.globallandcover.com/GLC30Download/index.aspx
http://www.globallandcover.com/GLC30Download/index.aspx
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
http://swat.tamu.edu/
http://www.india-wris.nrsc.gov.in/
http://www.india-wris.nrsc.gov.in/
https://swat.tamu.edu/
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Table 4. List of the evaluation indices used to compare the CFSR and IMD precipitation data in
the Indravati river basin.

Statistical index Equation Unit

Perfect

value

Correlation of determination (R2)

√

∑

n

i=1
(Gi−Ḡ)(Si−S̄)

√

∑

n

i=1
(Gi−Ḡ)2×

√

∑

n

i=1
(Si−S̄)2

– 1

RMSE

√

∑

n

i=1
(Si−Gi)

2

n
mm 0

PBIAS
(

∑

n

i=1
(Si−Gi)

∑

n

i=1
Gi

)

× 100 mm 0

NS efficiency 1 −
∑

n

i=1
(Gi−Si)

2

∑

n

i=1
(Gi−Ḡi)

2 – 1

Note: Si, reanalysis precipitation (CFSR); Gi, gauged observation (IMD).

hence suitable for computing the bias of the CFSR
data sets in comparison to the IMD data. We used
(i) degree of agreement (R2 and Nash–Sutcliffe
(NS) efficiency), (ii) error (root mean square error
(RMSE)) and (iii) bias index (percentage bias) to
quantify the bias in the CFSR data in our study
area in daily and monthly temporal scales (table 4).
Pearson’s coefficient of determination (R2) was
calculated to evaluate the degree of collinearity
between the CSFR and IMD rainfall figures. RMSE
is an efficient way of measuring the error as it
assigns a higher weight to larger error values.
Percentage bias (PBIAS) measured the average
tendency of the CFSR dataset to be smaller or
larger to their observed (IMD) counterparts. The
NS efficiency measures the relative magnitude of
residual variance compared to measured data vari-
ance. The result (figure 3) shows that the CFSR
data overestimated the average monthly precipita-
tion for each of these sub-basins especially during
the rainy season (July–September). Comparison of
CFSR precipitation product at a daily scale shows
very low agreement (R2 0.16–0.33; NS − 0.49 to
0.09) with the IMD data. The PBIAS for daily
comparison ranges between − 38% and − 19% indi-
cating a high overestimation of rainfall by the
CFSR product. At a monthly time scale, CFSR
data performed better with reported R2 and NS
values between 0.66–0.78 and 0.21–0.72, respec-
tively, with the IMD (figure 3). PBIAS ranges were
between − 19% and − 38% and the highest and
lowest bias were associated with sub-basin nos. 29
and 25, respectively.

Rainfall–runoff routing was calculated using the
SCS curve number method. After running the
model for a 2-year spin-up time (1995 and 1996),
the rainfall–runoff process was simulated for the

period 1997–2003. The LULC map of the year 2000
was used as the baseline LULC condition to setup
the SWAT model and the IMD weather records
(in SWAT format) are available for 1971–2005.
In order to calibrate and validate the baseline
scenario, it was necessary to compare the simu-
lated model outputs with observed records such
as gauged stream discharge and suspended sedi-
ment load. Hence, we have chosen a period (i.e.,
1997–2005) close to our baseline LULC data (i.e.,
2000).

3.2.2 Calibration and uncertainty assessment

Being a semi-distributed hydrological model,
SWAT is associated with large uncertainties. The
coarse resolution soil maps and weather data
inherently increased the degree of uncertainty in
the model outcomes. In order to calibrate the
model and quantify the model uncertainties, the
sequential uncertainty fitting (SUFI-2) algorithm
(Abbaspour et al. 2007) was applied using the
SWAT-CUP software.

Before proceeding to model calibration and
model validation, it is essential to perform a sen-
sitivity analysis to identify the parameters that
are likely to have significant impacts on the model
outputs. We used the latin hypercube one at a
time sampling procedure for identifying the sen-
sitive parameters (table 5) that may have an
effect on the predicted discharge (Q) and sus-
pended sediment concentration in the Indravati
river basin. The predicted streamflow (discharge)
was found to be influenced most significantly
by curve number (CN-2), followed by the other
parameters shown in table 5 which are ordered
by their sensitivity to the model outcome. The
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Figure 3. Comparison of CFSR data against the IMD weather dataset at the monthly and daily temporal scales at four
selected sub-basins.

parameters related to the calculation of erosion and
sediment export are also ordered in table 5 accord-
ing to their sensitivity to the predicted sediment
yield.

After identifying sensitive parameters, they were
optimised using SUFI-2 by setting the NS effi-
ciency as the objective function with a threshold

value of 0.5. It was achieved by updating the ini-
tial parameter ranges after each iteration, taking
into account the corresponding p- and r-factors.
Initially, parameters related to surface runoff were
set constant and the sensitive parameters to pre-
dict sediment yield were updated. Subsequently,
the entire set of sensitive parameters was allowed
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Table 5. Results of the parameter sensitivity analysis for the SWAT model of the study area.

Parameter name Processes Min. Max. Final range

Parameters sensitive to flow

CN2a Surface runoff 35 98 − 0.14265 0.1726

GWQMNb Soil 0 5000 800.675 4000.785

ALPHA BFb Groundwater 0 1 0.2394 0.7466

CH K2b Channel −0.01 150 0.6750 56.0749

CH N2b Channel 0.01 0.03 0.0029 0.2096

GW DELAYb Groundwater 0 500 4.1841 48.1159

ESCOb Evaporation 0 1.0 0.3804 0.8616

SOL AWCa Soil 0 1.0 − 0.2162 0.1944

OV Nb Overland flow 0.01 0.3 − 0.2653 0.2361

Parameters sensitive to sediment

SPEXPb Channel 1 1.5 1.2197 1.483458

PRF BSNb Channel 0.00 2 0.5444 0.954426

SPCONb Channel 0.0001 0.01 0.00017 0.000320

aParameter value is multiplied by (1+ a given value), bParameter value is replaced by a given value.

to vary within their respective realistic ranges to
achieve the best fit with the observed surface runoff
and sediment yield records available at Pathagu-
dem gauging station (figure 1). It is mentioned
in section 3.2.1 that the IMD climate data is
considered to be more reliable than the CFSR
products. Hence, this dataset was used for car-
rying out the sensitivity analysis and calibration.
In this process, the calibrated parameter ranges
were determined on the basis of the IMD climatic
records. In the later stage, the already identified
calibrated parameter ranges were used with the
CFSR test cases. The period 1997–2000 was used
for model calibration; validation was carried out
for 2001–2003. The streamflow and sediment load
data available at Pathagudem gauging station were
obtained from Water Resources Information Sys-
tem of India (WRIS) for the purpose of model
calibration and validation.

4. Results

4.1 LULC change in the Indravati basin and
future trends

LULC changes in the Indravati river basin have
been presented in table 6. Figure 4 illustrates
the spatial pattern of LULC changes from 2000
to 2010 and the projected 2020 scenario across
the sub-basins. Forest and agricultural land were
two dominant LULC covering, about 47% and
41%, respectively, of the total area in 2000. Grass-
land was sparsely distributed over the entire basin
(9.4% of the total area) and decreased by 0.7%

by 2010. Rest of the area is generally occupied
by shrub land, urban area, bare land and water
body. Forests mainly cover the western part of
the basin and occupy the higher reaches, which
decreased by ∼1% between 2000 and 2010. Agricul-
tural land dominated in the eastern part and the
lowland areas adjacent to the river and increased
1.6% between 2000 and 2010. LULC changes in the
Indravati river basin have been primarily a result
of the conversion of forest to grassland and agricul-
tural land and grassland to agricultural land and
forest. Since it is a rural catchment, deforestation
and agricultural expansion were the most impor-
tant drivers of land use changes in the study area.
The simulated LULC scenario of 2020 vis-à-vis the
prevailing condition in 2010 indicates expansion of
the agricultural and urban areas with their share
increasing to 2.14% and 0.06%, respectively. On
the other hand, forest and grassland have been
predicted to decrease by 1.45% and 0.77%, respec-
tively (table 6).

4.2 Runoff and sediment load simulation

Different precipitation inputs can introduce sig-
nificant uncertainties in streamflow and sediment
load simulation. The calibration and validation of
the model results, derived using the CSFR and
IMD weather inputs, showed good agreement with
the observed flow and suspended sediment con-
centration. Both weather data sets were able to
capture the observed trend in the discharge and
suspended load during calibration and validation
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Table 6. Actual and predicted land use/land cover change in the Indravati river basin (2000–2020).

Year 2000 2010 2020 2010–2020

LULC

Area Area Area Area

(km2) (%) (km2) (%) (km2) (%) (km2) (%)

Agriculture 16772.8 41.39 17434.92 43.02 18301.64 45.16 866.72 2.14

Forest 19083.1 47.09 18682.84 46.10 18094.30 44.65 − 588.54 − 1.45

Grassland 3800.51 9.38 3521.19 8.69 3210.19 7.92 − 311.00 − 0.77

Shrub land 354.97 0.88 338.66 0.84 353.75 0.87 15.09 0.04

Wet land 2.94 0.01 2.89 0.01 3.04 0.01 0.15 −

Water 254.44 0.63 262.78 0.65 261.22 0.64 − 1.56 −

Urban 233.25 0.58 258.06 0.64 281.67 0.70 23.61 0.06

Bare land 23.79 0.06 24.44 0.06 19.97 0.05 − 4.47 − 0.01

‘–’ Indicates negligible change.

Land use / land cover

Wetland
Water
Urban
Bare land

Forest

Grassland
Shrub land

Agriculture

2000 20202010

Figure 4. Historical and projected LULC patterns in the Indravati river basin.

periods (figure 5). During the streamflow cali-
bration, the IMD inputs produced better model
performance than the CFSR data set. It was evi-
dent from the computed p-factor, which was 10.8%
and 23.6% higher than the CFSR data during
streamflow calibration and validation, respectively
(figure 5). In addition, the r-factor obtained by the
IMD weather product was 11.3% (calibration) and
11.7% (validation) lower than the CFSR weather
data.

During the suspended sediment load calibration,
both weather products (IMD and CFSR) captured
79% of the observation but r-factor was 11.5%
lower for the IMD data as compared to the CFSR
product. NS and R2 were above 0.73 for both
data sets during the discharge and suspended sed-
iment calibration. A similar trend was observed
during the validation period and the model was
able to reproduce streamflow more accurately with
IMD inputs than the CFSR data set. However,

for suspended sediment load, the modelled outputs
were found to be slightly better when the CFSR
data was used. It was noted that 58% (r-factor
0.84) and 61% (r-factor 0.94) of the suspended sed-
iment load observations were captured by the IMD
and CFSR data sets, respectively, during the vali-
dation period.

4.3 Effect of future LULC change

4.3.1 Impact on runoff

In the near future (2020), Indravati basin is likely
to experience LULC changes mainly in the form
of agricultural expansion at the cost of forest and
grassland. We simulated the rainfall–runoff process
using the daily weather data from 1995 to 2003
obtained from the IMD and CFSR data sets and
used them to predict the LULC condition of 2020.
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The model outputs pertaining to flow and
sediment load were averaged for the monsoon
months as well as annually. The overall results indi-
cate an increase in surface runoff and sediment
yield from the LULC state of 2010 in response to
the predicted changes in 2020 (table 7). Under the
predicted LULC scenario of 2020, we could expect
an increase of 4.28 mm (1.24%) in the surface
runoff if the IMD dataset is used as the weather
input. On the other hand, an increase of 4.41 mm
(1.07%) from 2010 level could be expected if the
CFSR data is employed as the meteorological input
in the SWAT model. The maximum increase is
likely to occur during the rainy season when the
region receives its maximum rainfall (table 7). Par-
ticularly during the monsoon, we can expect an
average increase in the surface runoff by ∼4 mm
or 1.23% and 3.93 mm or 1.01% from the 2010
LULC condition using the IMD and CFSR data
sets, respectively.

The changes in the surface runoff in response
to the possible LULC condition of 2020 were
predicted to have significant spatial variation
(figure 6a). At the sub-basin scale, the highest aver-
age decrease in the surface runoff under the LULC
scenario of 2020 from 2010 was found to be 12.5
mm/yr or 5.16% (sub-basin 43) using the IMD
weather inputs. While applying the CFSR data,
the highest average decrease was found to occur in
the same sub-basin (24.84 mm/yr or 5.02%). The
maximum increase of IMD and CFSR data were
found to be 36.8 mm/yr or 7.69% (sub-basin 69)
and 34.5 mm/yr or 3.5% (sub-basin 91), respec-
tively. We would like to highlight that different
weather inputs identified sub-basin 43 as the place
to experience a significant decrease in the sur-
face runoff in future but the predicted location
of a substantial increase in the surface runoff dif-
fered according to the weather inputs. On the
monthly scale, the IMD data estimated a max-
imum increase of 1.73% (September) in surface
runoff whereas CFSR data produced the maximum
increase (1.85%) in October (figure 6b).

4.3.2 Impact on sediment yield

Use of IMD data resulted in the prediction of an
overall average increase in the sediment yield under
the LULC scenario of 2020 from 2010 by 1.19 t/ha
(1.13%). The figure obtained using CFSR data was
1.13 t/ha (0.47%). The season-wise breakdown of
the changes is presented in table 7. Results indi-
cate 1.16% and 0.45% possible increase under IMD

and CFSR data, respectively, during monsoon.
Figure 6(b) depicts that the predicted overall aver-
age increase in the sediment yield from 2010 to
2020 is likely to be highest in September (1.28%
and 1.14% for IMD and CFSR, respectively).

The maximum increase in the sediment load
from 2010 to 2020 was not predicted at the same
location using the IMD and CFSR data. The
model predicted a maximum increase (13.95 t/ha
or 7.28%) at sub-basin 60 when IMD data was
used. CFSR input resulted in the identification of
sub-basin 22 as the location of maximum increases
(29.02 t/ha or 9.2%). Similarly, the maximum
decrease in the sediment load was predicted to
occur at sub-basin 58 (11.30 t/ha or 6.39%) and
sub-basin 81 (20.8 t/ha or 3.57%) for the IMD and
the CFSR datasets, respectively. The higher mag-
nitude of maximum increase/decrease predicted
with the CFSR dataset indicates a possible over
estimation of rainfall in the CFSR data.

5. Discussion

In this study, we analysed the effect of possi-
ble LULC change on runoff and sediment yield
in the Indravati river basin by integrating a land
use change model with a hydrological model.
Although several studies were published recently
on the future land use simulation and hydrological
response to future land use scenarios, they mostly
focused on medium- to small-sized urban and semi-
urban river basins. Such studies are particularly
few in the Indian context, which is going to be the
most populous country in the world in the near
future with a high potential for LULC changes.

In the current study, we selected the Indra-
vati river basin as a typical example of a large
rural watershed in India. Minimum available data
on past population growth and road development
was derived from public domain information such
as Google Earth to assist land use simulation
through an integrated CA–Markov model. The
overall agreement error in the simulated land use
could be kept under control (0.109) by achieving
a low allocation disagreement. As allocation dis-
agreement is a function of cell resolution and can
be improved by transforming the cell resolution
from fine to coarse (Eastman 2012), we were able
to attain a low allocation disagreement value by
resampling the original LULC maps from 30 to 60
m resolution. For a basin the size of ∼40,000 km2,
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Figure 6. (a) Changes in runoff and sediment yield in response to LULC changes (2010–2020) at the sub-basin scale. (b)
Monthly variation in annual average runoff (left) and sediment yield (right) in the monsoon season as a response to LULC
changes (2010–2020).

this aggregation of the LULC data is hardly likely
to have any impact on the model outcomes.

The overall result indicates an increase in runoff
and sediment yield possibly due to expanding agri-
cultural land. Farmlands generally have a higher
surface runoff coefficient than grassland and forests

partly due to lower infiltration rate and reduced
friction offered to the overland flow by the row
crops in comparison to forest and grasslands. The
tillage of land in the rainy season also contributes
to the higher degree of soil erosion and consequent
increase in the sediment yield at the basin outlet.
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Table 7. Variation in simulated annual average in the Indravati river basin values under different land use scenario.

Surface runoff (mm) Sediment yield (t/ha)

Year Change Year Change

Season

Weather

data

Precipitation

(mm) 2010 2020 (mm) (%) 2010 2020 (mm) (%)

Winter CFSR 47.82 1.72 1.78 0.06 3.49 0.96 0.97 0.01 1.04

IMD 18.66 0.6 0.6 0.00 0.00 0.67 0.66 − 0.01 − 1.49

Pre-monsoon CFSR 299.31 1.54 1.58 0.04 2.60 0.74 0.72 − 0.02 − 2.70

IMD 255.33 0.12 0.12 0.00 0.00 0.05 0.05 0.00 0.00

Monsoon CFSR 1100.11 389.72 393.65 3.93 1.01 231.11 232.16 1.05 0.45

IMD 888.97 325.15 346.05 3.99 1.23 93.59 94.68 1.09 1.16

Post-monsoon CFSR 161.48 20.68 21.06 0.38 1.84 12.04 12.15 0.11 0.91

IMD 93.29 20.18 20.47 0.29 1.44 10.57 10.68 0.11 1.04

Annual average CFSR 1608.72 413.66 418.07 4.41 1.07 244.85 246 1.15 0.47

IMD 1256.25 346.05 350.33 4.28 1.24 104.88 106.07 1.19 1.13

Our results, on the whole, have been found in line
with the previous studies (Ma et al. 2009; Khoi
and Suetsugi 2014). The complexity of large catch-
ments could mask the effects of land use changes
that are more identifiable on smaller sub-basins. It
was found in this study that the impact of land use
change on annual average runoff and sediment yield
was more pronounced in the smaller sub-basins
compared to the whole catchment.

The SWAT model was able to capture the
observed discharge and suspended sediment load
with reasonable accuracy using the IMD and CFSR
daily weather products. The current investigation
demonstrated that regional and global weather
data might lead to a remarkably different pre-
diction about the hydrologic response to LULC
changes. These differences may include variation
in the seasonal pattern of flow and sediment yield
and variations in the response of individual sub-
basins to the altered LULC condition. The later
finding is in line with the results reported by Sanyal
et al. (2014). The significant difference in the high-
est amount of increase/decrease in the runoff and
sediment loads also indicates the very important
role of the weather inputs in examining the hydro-
logical response to land use changes. The results are
quite reliable as they represent the average model
output for 6 years of daily weather data (1997–
2003).

A more pronounced change in the sediment
yield was predicted than surface runoff for the
CFSR test case than the IMD one in response to
the projected LULC conditions of 2020 (table 7).
We maintain that Reanalysis rainfall products,
such as CFSR data overestimates precipitation
with too many wet days and underestimates high
magnitude rainfall events (Shah and Mishra 2014;

Blacutt et al. 2015) which are not the case for the
IMD data. More temporally, well distributed rain-
fall events (e.g., more common in CFSR) result
in greater abstraction of rainfall through infiltra-
tion and evapotranspiration, generating less runoff.
Hence, it was noted that the CFSR rainfall esti-
mates are consistently higher than the IMD data
in all seasons (table 7) but changes in the runoff
due to the changes in the projected LULC condi-
tion (2020) are mostly higher for the IMD test case
(figure 6b, left panel). The sediment yield for the
CFSR test case recorded negative or negligible pos-
itive changes in comparison to the IMD test case
(figure 6b, right panel). SWAT estimates sediment
yield depending on the peak runoff volume (Arnold
et al. 1998). Thus, underestimation of high mag-
nitude rainfall events in CFSR data reduces the
occurrences of sediment transporting flow events,
resulting in a decrease in sediment yield even in
the scenario of higher precipitation and agricul-
tural expansion at the expense of forests.

In the validation stage of the SWAT, the main
difference between the output of the CFSR and
IMD data was found for the year 2001 (the first
year of validation in figure 5); for 2002–2003 the dif-
ferences are negligible for both runoff and sediment
yield. For 2001, the CFSR data underestimated
the observed runoff but predicted the observed
sediment yield better than IMD which showed a
marked overestimation. We argue that some parts
of a catchment are generally more sensitive, in
terms of sediment yield, to rainfall than others.
This behaviour is primarily controlled by the slope
of the land. In the Indravati river basin, the sub-
basins located in the east are part of the Eastern
Ghats hills, an area characterised by high relief and
steep slope (figure 1). This region is the primary
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sediment source area for the study basin. The spa-
tial distribution of bias in the CFSR rainfall data
adds some element of uncertainty in the model
outputs at the basin outlet (Pathagudem gauging
station) which are difficult to track. The better per-
formance of the IMD data in simulating the runoff
and CFSR in reproducing the sediment yield for
2001 could be attributed to this uncertainty.

6. Conclusion

The present study used SWAT to establish a long-
term rainfall–runoff and sediment yield modelling
framework in a large river basin in peninsular
India. The aim was to examine the sensitivity of
the predicted surface runoff and sediment yield to
different types of meteorological inputs, generated
using dissimilar methods, especially in the context
of possible LULC changes in the study area. Purely
in-situ observation-based regional daily weather
product in the form of IMD gridded data and par-
tially model deduced weather product with global
coverage (CFSR) were considered for assessing the
impact of meteorological inputs on SWAT out-
puts. The overall results point towards a possible
increase in the surface runoff volume and sedi-
ment load in response to expansion of agricultural
land at the expense of forest and grassland. The
impact of future LULC conditions would likely to
be more pronounced at individual sub-basin level
than the entire basin. Most importantly, it was
demonstrated that significant differences can arise
in the predicted hydrological response to possible
LULC scenario depending on the choice of weather
data. These differences can have seasonal as well
as spatial variations. This investigation demon-
strated a robust methodology for predicting the
future LULC condition in large rural basins with
minimum available data, which is typical in the
developing countries.
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