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Abstract - During recent decades with the power system restructuring process, centralized energy sources

are being replaced with decentralized ones. This phenomenon has resulted in a novel concept in electric

power systems, particularly in distribution systems, known as Distributed Generation (DG). On one hand,

utilizing DG is important for secure power generation and reducing power losses. On the other hand,

widespread use of such technologies introduces new challenges to power systems such as their optimal

location, protection devices' settings, voltage regulation, and Power Quality (PQ) issues. Another key point

which needs to be considered relates to specific DG technologies based on Renewable Energy Sources

(RESs), such as wind and solar, due to their uncertain power generation. In this regard, this paper provides a

comprehensive review of different types of DG and investigates the newly emerging challenges arising in

the presence of DG in electrical grids.
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Abbreviation List

CAES Compressed Air Energy Storage PCC Point of Common Coupling
DER Distributed Energy Resources PCI Protection Coordination Index
DFIG Doubly-Fed Induction Generator PDS Power Delivery System
DG Distributed Generation PEV Plug-in Electric Vehicle
DOCR Directional Overcurrent Relay PHEV Plug-in Hybrid Electric Vehicle
DSM Demand-Side Management PI Proportional-Integral
D-STATCOM Distributed Static Synchronous Compensator PQ Power Quality
ESS Energy Storage System PV Photovoltaic
FCL Fault Current Limiter RES Renewable Energy Source
FLDM Fuzzy Logic Decision Making RTU Remote Terminal Unit
FRDFT Fast Recursive Discrete Fourier Transform STATCOM Static Synchronous Compensator
GPS Global Positioning System SVC Static VAR Compensator
IED Intelligent Electronic Device SVR Static Voltage Regulator
IRENA International Renewable Energy Agency TPNLP Two-Phase Non-Linear Programming
LV Low Voltage V2G Vehicle-to-Grid
MV Medium Voltage VR Voltage Regulator
NLP Non-Linear Programming VRB Vanadium Redox Battery
OLTC On-Load Tap Changer VSC Voltage Source Convertor

Nomenclature

fsI Short-circuit current without DGs

DGfI Fault current of DG

Z Impedance
R Index of relays

1. Introduction

On a global level, increasing electrical load demand prompted a remarkable rise in electric power

generation capacity. Accordingly, such a growing load demand has influenced the economies of developed

countries to be inclined towards minimizing the amount of the load curtailment. Besides, as power plants

are typically located far from load centers, power losses and voltage drops are high. In this respect,

installing Distributed Generation (DG) units near load centers can contribute to solving these issues [1].

Today, the adoption of renewable DG units as appropriate alternatives to conventional power plants will

contribute, to a great extent, to supplying the ever-increasing load demand. The total installed capacity from

renewable energy sources (RES), globally, has increased from around 2000 GW in 2016 to 2167 GW in

2017 (i.e., 8.3% increase in one year) [2]. Different types of renewable and non-renewable DG are

available, including wind turbines, thermal solar, solar photovoltaic (PV), hydro power, diesel generators,

fuel cells, geothermal, and microturbines [3, 4]. Different issues such as increasing load demand, energy

storage necessities, and climate change concerns have motivated increasing DG installations which can

ultimately result in mitigation of green-house gas emissions.
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Employing large DG units in electric power systems can have several shortcomings and negative impacts

on voltage control, frequency control, and protection system settings [5-7]. However, various merits of

utilizing DG can be listed as follows:

Power loss reduction due to the proximity of load and generation.

Considerable reduction of fossil fuel consumption.

Reduction of green-house gases.

Long-term deferral of investment in transmission system expansion.

Power Quality (PQ) improvement using inverter-based DG [8].

Voltage drop reduction and voltage profile improvement.

Power system reliability enhancement.

Another advantage of DG is encountered with the failure of a main power source. In this situation, DG can

play the backup role for power systems which may promote PQ in distribution systems [9]. Despite the

mentioned advantages of DG, inappropriate siting and sizing of the units in distribution systems can give

rise to severe technical challenges [10]. These technical challenges would negatively impact voltage

reduction, power supply reliability, system stability, assets control, protection system, and undesirable

islanding [4, 11]. DG can also affect economic issues. For example, distribution companies cover a fraction

of their costs by selling access to grid connection. By adding DG units to the system, this income would be

jeopardized.

Another key point worthy of further attention is increased uncertainty in the presence of DG, which requires

the incorporation of an effective and efficient energy management system. In this respect, the uncertainty of

DG power output as backup units must be taken into account, since it may be time-variable [11, 12]. DG

units are typically located either at points with high load demand or at the end of feeders in radial

distribution systems [6, 12].

Many factors such as the system topology and DG  power output uncertainty affect the system

features. In radial distribution systems, optimal siting of DGs can enhance the system voltage profile,

reduce the feeder's overloading and peak load demand, and decrease gas emissions from the burning of

fossil fuels [13]. It is worth mentioning that DG units are employed mainly in distribution systems as a

source of flexibility, which means they transform the currently passive networks into active ones. This

feature brings many merits to the power system including distribution capacity deferral, reliability

enhancement, and flattening of the peak load demand curve [14-16]. The drivers, merits, and problems in

the way of renewable DG integration have been previously pointed out in a 2011 review by Zahedi [17].

DG connected to distribution systems affects the fault current and power flow direction. The most

significant impact of DG on distribution systems relates to increasing the short-circuit current and

contributing to the fault current for downstream faults [6, 18]. As a result of the fault current increase in
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distribution networks, DG units reduce the contribution of the system's fault current which in turn causes

the protection system to be blinded.

DG can cause malfunctioning of protection systems during faults. For instance, if a fault occurs at one of

the feeders adjacent to DG units, an undesired tripping command by protection relays may be triggered. As

such, it should be noted that the location of DG units in distribution systems (as well as their number and

penetration level), highly impacts protection systems [6, 11, 18].

This paper reviews the role of DG in electrical grids from a technical point of view. Installing DG units

simultaneously brings both merits and severe challenges to existing distribution systems, such as reduced

losses, improved reliability, and protection system problems. Accordingly, comprehensively investigating

the impact of DG on distribution systems is essential in order to make the most of their capabilities while

avoiding potential problems. With the increasingly growing trend of installing renewable power generation,

particularly at the distribution level, the impact of DG has become far more highlighted than ever [2]. This

paper addresses the voltage regulation methods in presence of DG units and their impact on protection

systems, besides solutions proposed thus far to associated problems. These issues are of high significance to

future power systems, especially in the context of smart grids.

The organization of the present paper is as follows: Section 2 lists and describes different types of DG.

Section 3 discusses the impact of DG penetration on distribution systems. Sections 4 and 5 investigate

problems faced by protection systems in the presence of DG units and voltage regulation issues,

respectively. Finally, Section 6 draws some relevant conclusions.

2. Different types of DG

DG is categorized, according to the active and reactive power delivered to the distribution system, into the

following groups [19]:

- DG with active power injection only

This type of DG is connected to the distribution system using an appropriate power electronic interface.

This includes small-scale DG units which operate at a unity power factor, such as PV, fuel cells,

microturbines, and batteries.

- DG with reactive power injection only

DG units of this type operate at a zero power factor, supplying the required reactive power of distribution

systems. Synchronous compensators fall under this category.

- DG with active power injection and reactive power absorption
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This type of DG includes induction generators used in wind turbines. Different types of those induction

generators with an improved performance exist, such as fixed speed, variable-speed, and Doubly-Fed

Induction Generator (DFIG). They inject active power into the grid while absorbing reactive power.

- DG with active and reactive power injection

This type of DG is based on synchronous machines such as gas turbines and Combined Heat and Power

(CHP) units, capable of injecting both active and reactive power into the grid.

The connection of DG units to the grid depends on some key factors [4], which are listed as follows:

The type(s) of DG in the system.

The voltage level at which DG units will be connected.

The generation level that has been previously connected to the grid.

The electrical robustness of the grid at the connection point.

The size of DG connected to the grid.

The grid short-circuit level at the installation point.

It is worth noting that there is a wide range of DG unit size based on the power output, ranging from a few

kilowatts to megawatts [10, 12].

3. Different aspects of DG integration

In order to investigate the impact of DG on electrical distribution systems, different aspects of their

integration must first be discussed. In general, several issues associated with DG integration are as follows:

3.1.Uncertainties of DG

 One of the most important features of RES-based DG connected to electrical systems is uncertain power

generation. That is to say, the power output of RES-based DG units may vary unpredictably with time. For

example, the power output of wind turbines and PVs is highly dependent on weather conditions which are

naturally stochastic, and therefore forecasting their power generation can be a difficult task [12, 13, 20].

Solar power is uncertain due to some uncontrollable factors which are not continuously available. This

shortcoming can be compensated to some extent and in some regions using historical data. However,

forecasts of solar irradiation are not always accurate and are associated with high inaccuracy. On the other

hand, wind power is the most unpredictable RES, with wind power density being temporally variable and

unsteady.  This results in intermittent, and sometimes rare, utilization of wind DG units in some regions

[21]. Such conditions have resulted in the inapplicability of deterministic models. One solution to

accommodate this uncertainty is the utilization of probabilistic techniques in generation scheduling

problems. Not only does wind power intermittency complicate generation scheduling problems, but it also

causes some concerns regarding system security [22]. In between, it is noteworthy that the investment costs
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of renewable energies have been reducing over the recent years making them promising alternatives to other

generation technologies.

 According to what was projected by the International Renewable Energy Agency (IRENA), the investment

cost of onshore wind turbines decreased by 66% in 2014 compared to 1983. Moreover, IRENA has

predicted that this cost will be further reduced by 12% by 2025 [23]. The practical solution to mitigate

impacts of RES uncertainties is to use some devices in conjunction with DG units. Some of the possible

devices capable of functioning as compensators for RES uncertainties can be stated as [22]:

Pumped-storage units.

Gridable electric vehicles with the Vehicle-to-Grid (V2G) capability like Plug-in Electric Vehicles

(PEVs) and Plug-in Hybrid Electric Vehicles (PHEVs).

Hybrid wind-solar systems.

Battery storage devices.

Diesel generators.

Compressed-Air Energy Storage (CAES) devices.

3.2.Advantages of DG

Different aspects of using DG in electrical systems can be discussed from environmental, economic and

technical viewpoints [10]. Today, most pollutant emissions stem from using fossil fuels. In this regard,

since RES form the major fraction of DG in Germany, Denmark and Sweden [24], and considering the fact

that oil reserves are exhausting, employing environmentally-friendly DG units would be promising in the

future as a likely way to mitigate climate change [25]. The merits of using DG must first be considered to

better understand their economic advantages. The merits of utilizing DG in electrical distribution systems

can be briefly stated as follows [10, 26]:

Improved efficiency of the system

Reduced operating cost due to peak load shaving

Reduced care investment due to the improved environment

Reduced maintenance cost

Reduced investment in the system expansion

Enhanced protection for significant loads

Reduced requirements and the associated costs

Reduced fuel costs

The technical aspects of DG presence in electrical systems can be discussed by taking into account their

impacts on different parameters such as power losses, voltage profile, and system reliability. Therefore, it

can be declared that siting and sizing of DG units in a non-optimal way would adversely affect the electrical
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system by raising the voltage magnitude and fluctuations, causing harmonics and instability, and also

negatively influencing voltage regulation issues [27]. Furthermore, it is worth mentioning that non-optimal

siting of DG may lead to non-optimal utilization  capacity [28].

4. Protection systems in the presence of DGs

The protection of conventional distribution systems is a straightforward task due to their radial

configurations with the main source in-feed. In this regard, the protection system in such systems includes

fuses, auto re-closers, and overcurrent relays [11, 29]. In the presence of DG, conventional distribution

systems would no longer be radially configured, causing many challenges to protection systems which may

ultimately lead to losing protection system coordination. In addition, some relays may be blinded [9, 29].

The challenges of the protection systems in the presence of DG would be as listed below [9, 29]:

Unsynchronized reclosing

Avoiding automatic reclosing

Undesired islanding

Contribution to the short-circuit level

Protection system blinding

Nuisance tripping of generating units

Maloperation of feeder protection

It is implied that the problems associated with distribution system protection are highly dependent upon the

characteristics of the distribution system and the type of DG utilized. Hence, the protection scheme must

change according to the new configuration of the system. Traditional distribution systems are generally

radial and supplied at one end in which designing protection schemes would be simple. Meanwhile, ever-

increasing penetration of DG in distribution systems may adversely affect the voltage and frequency control

as well as protection systems. The presence of DG units turns the traditional distribution systems with radial

configuration into grid networks since DG are active assets [30].

It should also be noted that the system reliability may deteriorate due to the undesired impact of DG on the

protection system [11]. Overcurrent relays are the most commonly used as primary protection in

distribution systems and in some cases as backup protection in transmission and sub-transmission networks.

In presence of DG, the short-circuit levels would change and some challenging issues would arise.

Therefore, adaptive relay coordination is necessary for distribution system protection [31].

It is worth noting that the contribution of a single DG unit may not significantly affect the fault current.

However, in the case of several DG units connected to the system, the fault current and accordingly the

protection system will be highly affected [32]. One possible solution to tackle this shortcoming is separating

electrical distribution systems into smaller zones, or sub-areas [33]. By adding DG to the distribution
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system, sometimes it is necessary that the system operates in an islanded mode to enhance the reliability of

supplying the customers' load demand [33].

Such conditions cause two different fault levels such that the short-circuit current seen by the relay when in

the grid-connected mode is higher compared to the islanded mode. The combination of active distribution

networks with DG and islanding operation causes situations in the system that affect the fault level and the

direction of the fault current which eventually impacts the performance of overcurrent relays. In this

respect, proposing effective and efficient solutions to improve the performance of the protection system

seems vital; otherwise, the pros of DG will be outweighed by the cons.

Moreover, losing protection coordination with DG mainly results in the false tripping command and

blinding of the protection system. The protection system becomes blind when the sensitivity of relays

decreases, and the false tripping command occurs when the protective device sends a tripping command for

a fault on a feeder while the fault has occurred on another feeder [6].

Much research has been carried out regarding the improvement of protection systems in the presence of

DG. For instance, Coffele et al. [34] proposed a framework for protective relay settings with DG, active

system management, and islanded operation. Since the number of probable states is too high under such

conditions, pre-setting of protective relays would be practically impossible. Thus, the optimal protection

setting was calculated and directly given to the protective relays. This change may be dependent on DG

connection, the mode of grid connection, the islanding operation, and even the active system management.

In case of DG units connected to the grid, the load flow between the grid and the consumer is bidirectional.

Hence, the direction of the fault current changes because of existing DG, which impacts the performance of

the protection system. Therefore, Directional Overcurrent Relays (DOCRs) are used in modern distribution

systems equipped with DG units. One key point to be taken into account is to appropriately predict the

capacity of DG connected to the distribution system. In this respect, Huchel et al. [35] present a linear

programming framework for calculating the settings of directional overcurrent relays in which all possible

states for installed DG capacity have been considered.

In addition, there are several other approaches to mitigate the negative impacts of DG on the protection

system in distribution networks, listed as follows:

Tripping the DG immediately after detecting the fault.

Restricting DG capacity.

Utilizing adaptive protection [36-42].

Changing or modifying the protection system by adding supplementary circuit breakers and re-

closers, reconfiguration of the distribution system, employing directional overcurrent relays [43-

45], and distance relays [46, 47].

Installing Fault Current Limiter (FCL) [48-50].
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Kumar et al. [39] used a novel, fast, and adaptive protection scheme to protect distribution systems with

DG. The suggested framework uses the Fast Recursive Discrete Fourier Transform (FRDFT) to track

varying signals of the power system. Furthermore, the Fuzzy Logic Decision Making (FLDM) technique is

employed to obtain optimal protection settings in case of changes in system conditions. Liu et al. [40]

present an adaptive protection and control scheme in presence of DG which is based on the multi-agent

control system to organize distributed relays and converter controllers operating together. It is noted that

when there are DG units in meshed systems, the operating time of directional overcurrent relays would be

of high importance.

Brahma et al. [41] proposed a system-independent adaptive protection system to protect distribution

systems equipped with DG. Shen et al. [42] previously used a definite-time overcurrent protection which is

multi-level for ungrounded distribution systems application with DG. The latter scheme solely utilizes local

information of each bus, rather than relying on additional communication systems or Global Positioning

System (GPS) synchronization. Zeineldin et al. [43] introduced an index named Protection Coordination

Index (PCI)  for coordinating DOCRs affected by synchronous DG units. This index is effective for

planning the protection of meshed distribution systems. The suggested model has been formulated using the

Two-Phase Non-Linear Programming (TPNLP) technique to optimally evaluate the impact of variation of

DG maximum installed capacity on the variation of protection coordination time interval and determine the

PCI.

In a later study, Zeineldin et al. [44] utilized dual-setting DOCRs to protect meshed distribution systems in

presence of DG. It should be noted that these relays are equipped with two inverse time-current

characteristics, whose settings depend on fault direction. In this regard, the protection coordination problem

has been formulated within a Non-Linear Programming (NLP) framework in which the objective function is

to minimize the total operating time of relays for both primary and backup protection. The relays have two

settings for each possible fault current direction with two time dial and pick-up current settings.

Meanwhile, Aghdam et al. [51] showed that the results reported by Zeineldin et al. [43] were not valid and

that dual-setting DOCRs do not bring significant advantages to the protection of distribution networks.

Nikolaidis et al. [45] employed communication-based DOCRs to protect a radial distribution system. The

protection scheme uses conventional DOCRs with intertripping and blocking transfer functions.

Additionally, Saleh et al. [52] assigned a novel time-voltage-current characteristic to DOCRs with the

capability of remarkably reducing the operating time of relays. This method uses both voltage and current

magnitudes to obtain the operating time of the relay using an NLP framework. The merit of this scheme

would be its applicability to both synchronous and inverter-based DGs. Distance relays can be used in

addition to overcurrent relays for protecting distribution systems with DG. This type of relay is directional

and less affected by the variations of system conditions.
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In this respect, Sinclair et al. [46] utilized distance relays where feeders with DGs are considered with

protection devices. Chilvers et al. [47] previously used distance protection for 11-kV distribution systems in

the UK. The presented protection scheme provides the system with both primary and backup protection.

Moreover, FCL has been used by El-Khattam et al. [48] to solve the protection coordination problem of

DOCRs in the presence DG. As shown in Fig. 1, FCL is installed in series with DG so that during faults

locally limits the DG  drawn current at the connected bus to the looped Power Delivery System (PDS).

Consequently, the existing protective devices and schemes remain unchanged.

Fig. 1. FCL connection scheme in the presence of DG

Zhang et al. [50] suggested a dual-FCL scheme to restrict the DG's contribution to the fault current, which

is concluded that it successfully managed to do so. Also, the frequency fluctuations of the DG would be

limited, and consequently, the synchronization between new DG units and the electrical grid is enhanced.

Salem et al. [53] reduced the impact of DG on the mal-operation of overcurrent relays by controlling the

inverter of inverter-based DG. Having used this approach, the injected power to the grid during the faults

would be limited to the rated current of DG units. As a result, the injected current to the grid will be limited

to the desired value by effectively controlling the reference power.

Meanwhile, Yazdanpanahi et al. [54] used a solid-state based field discharge circuit to decrease the

contribution of DG to the fault current which enhances the compatibility of DG with distribution systems.

With respect to the fact that DG units connect to electrical grids in parallel, it can be concluded that short-

circuit current increases by reducing the fault impedance. This claim can be proved using the equations

derived from Fig. 2 [18].

Fig. 2. The impact of DGs on the short-circuit current
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The short-circuit current component without DG can be stated as fsI , while the total short-circuit current

would be the sum of fsI and the component representing the fault current of the DG DGI .

The fault current increases with DG, forcing the system operator to replace existing circuit breakers with

new ones compatible with the new conditions. This key point must be taken into account: that optimal siting

and sizing of DG may avoid any extra costs. Protection schemes of distribution systems can be categorized

into traditional protection schemes with and without DG.

4.1.Traditional protection schemes without DG

This scheme includes the main power source, the connected loads, as well as the protective relays. An

illustrative example is depicted in Fig. 3 to better elaborate this case.

Fig. 3. A simple protection scheme without DG

As Fig. 3 indicates, protective relays are located next to buses at the side of the main power source, so the

downstream parts of feeders are in the zones of relays. If a fault occurs at point k1, relays R5, R3, and R1

sense the short-circuit currents. In this situation, relays R3 and R5 operate as primary and backup protection,

respectively. In other words, these relays start picking up. However, the tripping time of R5 is less than R3,

and the tripping time of R3 is less than R1.

4.2.The protection scheme in presence of DG

DG integration within the previous scheme results in a more complete one. For DG installed at one given

bus, e.g., bus C, the previous example changes as depicted in Fig. 4.
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Fig. 4. Protection scheme of a sample system with a DG

If a fault occurs at point k1, the measured fault current at the main relay R5 would increase, leading to false

operation of this relay. At this time, the protected zones of R1 and R3 as backup relays decrease. Indeed, it

can be stated that the sensitivity of relays R1 and R3 decreases causing them not to operate properly.

If a fault occurs at point k2, relays R1 and R3 would sense the fault and react to the fault current injected by

the main power source (Es). Besides, after operation of R1 and R3, a fault current is injected to the fault

location by the DG, causing an electric arc which finally defers feeder reclosing.

If a fault occurs at point k3, relay R1 can properly send the right tripping command for fault current due to

the main power source. Simultaneously, the fault current injected by the DG causes malfunction of relay R3.

For the faults occurring at point k4, the current seen through relay R7 increases because the DG endangers

the protection selectivity. In this regard, if relays R1 and R3 are not directional, it may lead to malfunction

and the spreading of the fault throughout the system [55].

So far, improvement of protection schemes has attracted the attention of many researchers. For instance, a

new islanding detection method with DG has been proposed by Marchesan et al. [56], which requires a

small computational burden making it suitable for protective relays. Moreover, according to the solution

presented in an earlier study by Javadian et al. [29], the distribution system with DG can be separated into

different zones. Each zone has the capability of islanded operation, where risk assessment has been carried

out to optimize the protection zones by optimal siting of protective devices. Risk assessment of the

protection system was similarly performed by.Javadian et al. [9],who take into account different sites and

sizes of DG units. Table 1 presents the taxonomy of the reviewed papers regarding the impact of DG on the

protection of distribution systems.
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Table 1. Taxonomy of reviewed papers on the impacts of DG on protection systems.

Ref Problem Method Protection challenges

[29]
Adaptive centralized protection

scheme for distribution systems with
DG

Dividing an existing distribution
network into several zones, each capable

of operating in island mode.

Determining the fault location and type in the
presence of DGs

[31]
Overcurrent protection of distribution

systems with DGs
Boundary wavelet coefficient energy to

detect the fault inception time
Reducing the relay operating time in presence

of DGs

[34]
Distribution system adaptive

overcurrent protection
Directly applying the

optimum protection settings to the relays
Decreasing the false operations and reducing

the mean operating time with DGs

[35] Planning the coordination of DOCRs Simplex method
Obtaining an individual set of settings  suitable

for all DG installation scenarios

[36]
Optimal coordination of overcurrent

relays
Multi-agent coordination approach

The communication system to provide the
required information for Protection

coordination

[38]
Distribution system overcurrent

protection
Adaptive overcurrent relaying

The reduced reach of overcurrent relays in
presence of inverter-based DGs

[39]
Distribution system protection with

DGs
Adaptive overcurrent relaying using a
fuzzy-logic decision-making module

Capturing different system operation and
topology scenarios

[41]
Optimal coordination of overcurrent

relays
Adaptive overcurrent relaying

Obtaining the optimal setting with the high
penetration of DGs

[42]

Adaptive multi-stage definite-time
overcurrent

protection scheme for ungrounded
distribution systems with DGs

The optimized Thevenin equivalent
parameters estimation using local

available measurements.
The online calculation of fault current for

different systems conditions

[43]
Optimal protection coordination of

DOCRs for looped distribution
systems equipped with DGs.

Proposing a protection coordination
index and determining the index using

NLP method.

Calculating the PCI by optimally determining
DG penetration level variations with respect to

the coordination time interval changes.

[44]

Optimal protection coordination of
the

dual setting directional relays for
distribution networks with DGs.

Dual setting DOCRs
Keeping the DG in service during fault

conditions by avoiding unintentional DG
disconnection.

[46]
Protection of active distribution

systems
Using distance relays

loss of protection sensitivity, loss of protection
coordination, and  tripping for out-of-

zone faults in the presence of DGs.

[48]
DOCR coordination with DGs for

looped distribution systems
Using FCL

Keeping the original settings of relays
unchanged

[50]
Protection of distribution system for

DG connection to the grid
Dual-FCL connection

Keeping the original protection relay settings,
and enhancing the synchronism between the

DG and the grid.

[52]
Optimal protection coordination of

DOCRs in meshed distribution
networks with DGs.

Using a nonstandard relay characteristic
dependent on current and voltage

magnitudes

Reducing the relay operating tie in presence of
DGs

[53]
Integrating inverter-based DGs into

distribution networks.

Proposing a modified inverter control to
limit the fault current contribution of the

DG

Reducing the
mal-operation of the over current protection

coordination with DGs

[54]
Reducing the impact of synchronous-

machine DGs on the distribution
system protection coordination

Proposing a solid-state switch-based
field discharge circuit for the DG

Reducing the contribution of the synchronous-
machine DGs to the fault current

[55]
Protection of distribution systems

with DGs

Adaptive voltage protection based on
Intelligent Electronic Devices (IEDs) for

distribution network with DGs

Dealing with the impact of DGs on the over-
current protection

[57]
Optimal coordination of overcurrent

relays
Implementing the user-defined settings

for DOCRs
Accelerating the clearing time for DOCRs

[58]
Optimal coordination of DOCRs in

active radial and meshed distribution
networks

A two-stage method using hybrid linear
programming and cuckoo search

Uncertainties due to changes in operation
conditions, changes in fault conditions, error in

measuring equipment, and outage of DGs
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5. Voltage regulation in the presence of DG

As previously mentioned, adding DG into existing power networks may cause different problems due to the

fact that conventional electrical grids were designed to supply load demand from the generation side.

Unidirectional power flow has been foreseen for such networks. In case of connecting DG to the system, the

power flow would be bidirectional as the extra power produced by DG is fed back to the generation side.

Bidirectional power flow significantly impacts the distribution system with regards to voltage regulation

and system protection, as well as the operation. The previous section investigated the protection issue raised

by DG integration. This section seeks to provide a comprehensive review on the solutions to voltage

regulation issues, as this topic is considered one of the vital issues for distribution systems.

Voltage regulation may adversely restrict DG penetration into the electrical grids. Having bidirectional

power flow, the voltage regulation of the system would require modern techniques [59-62]. Indeed, some

factors can affect DG integration into electrical grids as follows [63, 64]:

The voltage level at which DG is connected.

The type of the distribution system.

The value of the load demand.

The size of DG.

The voltage profile, the power losses and the short-circuit level are affected by above factors. In this regard,

two key points should be noted due to the higher value of
X
R

; First, the voltage drop in distribution systems

 has  a  more

significant impact on the voltage profile than that of reactive power [63].

Accordingly, two types of methods have been proposed to regulate voltage in distribution systems with DG.

These methods can be categorized into traditional and modern techniques. One of the most influential and

effective solutions to maximize the DG penetration into electrical grids is active network management.

Using this strategy, the system operator would be able to make the most of the current network by

establishing some management policies [65]. This program would provide distribution systems with

different capabilities such as real-time monitoring, communication, and network control using different

assets. Intelligent distributed control is another solution that has been proposed to regulate the distribution

network voltage at desired values [66]. In 2014, Muttaqi et al. [67] published a review of the control issues

of distribution systems with DG. Moreover, Antoniadou-Plytaria et al. [68] recently carried out a

comprehensive review on distributed and decentralized control methods for controlling the voltage of

distribution networks. As the location of the DG highly impacts the voltage profile, the system topology
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must be taken into account when planning a control strategy. It should be noted that different sites for DG

would result in different effects.

In this respect, conventional solutions proposed for voltage control are usually based on three different

assets: On-Load Tap Changer (OLTC), switched capacitors, and step voltage regulators known as Static

Voltage Regulators (SVR).

The aim behind using the OLTC is regulating the voltage level of a transformer by changing the number of

turns in secondary winding, which changes the transformer turn ratio. This is done automatically in a way

that the feeder current at the substation end is measured and voltage drop through the distribution feeder is

predicted to set the tap. The conditions along the feeder can be neither estimated nor controlled by the

OLTC in presence of DG [69].

It should be noted that using OLTC may cause detrimental impacts on voltage stability such that voltage

collapse may be plausible [70]. Studies show that while OLTC attempt to restore the load bus voltage to the

level before the disturbance occurs, it may facilitate the voltage collapse procedure [70]. However, neither

OLTC nor switched capacitors are able to react quickly to the changes [71, 72].

Besides, there are some modern techniques developed to cope with the voltage variation problem in

distribution networks using controllable components, and are listed as follows:

Supply-side power curtailment.

Distribution system reconfiguration.

Area-based OLTC coordinated voltage control.

Employing Static Synchronous Compensator (STATCOM).

Employing inverter-based DGs.

Demand-Side Management (DSM) strategies.

Installing electrical Energy Storage Systems (ESSs).

- Supply-side power curtailment

In some cases, due to the lack of flexible voltage regulation methods, the distribution network operator may

disconnect all DG from the grid to deal with voltage rise issues. This action would deprive the entire system

of the benefits of such units, particularly RES-based ones [73]. In this respect, power curtailment of the DG

units would be an effective solution to deal with variations of system voltage by optimally decreasing the

power output of DG units. However, the agreements between the system operator and DG owners in case of

private DG ownership would be the key point. This method can be simply implemented for dispatchable

DG units, while pitch angle control can be employed to control the speed of the wind turbine to implement

the power curtailment for wind turbines due to their intermittent nature.
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Chalise et al. [74] utilized active power curtailment of wind turbines to tackle the overvoltage problem in

distribution systems caused by DG integration. In case of high penetration of PV in the electrical grid,

voltage rise may happen at the point of connection which in turn restricts potential PV integration into the

grid. Therefore, the active and reactive power can be altered to reduce this voltage rise [75].

On the other hand, .Zeraati et al. [76] suggested PEV batteries together with active power curtailment of PV

arrays to deal with the voltage rise problem in Low Voltage (LV) distribution systems. The reactive power

capability along with the active power curtailment of PV has been integrated into a multi-objective

framework previously proposed by Su et al. [77] to address the voltage variation issue in unbalanced four-

wire LV distribution networks.

- Distribution system reconfiguration

Distribution system reconfiguration can be defined as the procedure of closing or opening the switches

between two radial feeders such that meshed operation can be achieved. Through this technique, several

advantages can be obtained including losses reduction, voltage profile improvement, and full exploitation of

available system resources.

Liu et al. [78] presented a reconfiguration framework for unbalanced distribution systems aimed at

minimizing the total operation cost with optimal operations of voltage regulation devices, including Voltage

Regulators (VRs), Static VAR Compensators (SVCs), Distributed STATCOMs (D-STATCOMs),

Distributed Energy Resources (DERs), and shunt capacitor banks. A combination of reactive power

optimization and network reconfiguration has been presented by Tian et al.[79] to minimize the power

losses while omitting the voltage deviations in presence of DG. In 2017, Badran et al. [80] reviewed the

methods used for the distribution system reconfiguration integrated with DG.

- OLTC

Utilizing the capabilities of the OLTC is one of the most common solutions for voltage regulation problems

in distribution networks. This is done by optimally choosing the best phase angle shift and adjusting the

voltage magnitude. However, as mentioned above, OLTC should be used while coordinated with other

voltage regulation devices to effectively and efficiently impact the voltage regulation issues in power

systems. Thus far, many research works have investigated the application of OLTC to regulate voltage.

With the aim of maximizing PV penetration, Hu et al. [81] employed coordinated voltage control of a

decoupled three-phase OLTC along with the PV unit reactive power supply to cope with the voltage rise

problem in distribution systems. Moreover, OLTC has been used by Kabiri et al. [82] to regulate voltage in

presence of PV units, where DG also has the capability to regulate voltage. In this regard, Muttaqi et al. [83]
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proposed a coordinated control strategy for regulating voltage by means of DG together with OLTC and

voltage regulators.

According to the coordinated voltage control strategy used in the latter study  [83], DG would function as

VRs while currently the negative interactions between the OLTC of distribution transformers as well as

active devices with DG can be eliminated or even reduced. Parallel operation of OLTC control and PV

reactive power provision of PV units were addressed in a study by Kraiczy et al. [84], mainly emphasizing

unwanted interactions between these two devices. A coordinated control framework has been presented by

Salih et al. [85] to regulate voltage in distribution systems. To this end, the reactive power provision of

wind turbines and the OLTC have been utilized in a coordinated way.

The coordinated operation of SVC and the OLTC in the presence of PV units to regulate voltage has been

investigated by Daratha et al. [86]. A coordinated voltage regulation algorithm has been developed by

Mehmood et al. [87] using capacitor banks and OLTC together with the capabilities of PV, wind turbines,

and other dispatchable DG. Moreover, DG, ESS, and OLTC can be used within a coordinated framework to

regulate voltage in active distribution systems [88]. The power curtailment strategy together with the OLTC

has been used in a study by Azzouz et al. [89] utilizing a three-level fuzzy-based control technique. A

comprehensive review on different methods for voltage control using the OLTC has been carried out in

2013 by Sarimuthu et al. [90].

- STATCOM

Static synchronous compensator known as STATCOM is categorized into Flexible AC Transmission

Systems (FACTS) devices based on Voltage Source Convertor (VSC), with the capability of providing the

system with reactive power compensation. By controlling the reactive power of the STATCOM, the voltage

at the point of connection can be regulated in either transmission or distribution systems.

Due to STATCOM advantages such as its fast response, it has been widely used in power systems for

different purposes. It can be employed in distribution systems to provide the voltage regulation service to

the network.

Coordinated operation of D-STATCOM, OLTC and SVC has been investigated by Lee et al. [91], in the

presence of DG for voltage regulation (both the positive and the negative sequence voltages). The

coordinated operation framework of OLTC and D-STATCOM has been presented in a study by Zad et al.

[92] to tackle the voltage regulation problem in Medium Voltage (MV) systems integrated with DG. A

comprehensive review on different methods for reactive power compensation has been carried out in by

Gayatri et al. [93].

- Employing inverter-based DG units
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The capabilities of inverter-based DG units have turned them into active assets in regulating voltage by

optimally controlling the reactive power injection/absorption to/from the grid. For instance, PV-based DG

units are not only able to inject power to the grid, but also inject/absorb reactive power to/from the electrical

grid to enhance voltage regulation of the system [94].

Also, an intelligent control method based on fuzzy and classical Proportional-Integral (PI) controller has

been proposed in by Anantwar et al. [95] for reactive power control of PV in a microgrid equipped with

synchronous-machine diesel and induction-machine based wind turbine. Samadi et al. [96] presented a

coordinated characteristic curve, Q(P), for each PV system along a feeder to regulate the voltage so that the

voltage values remain below the steady-state voltage bound.

The capability of PV inverters to enhance voltage variations by efficiently controlling the active and

reactive power output, in Australia, has been investigated in by Collins et al. [97]. The possibility of

regulating voltage in distribution systems using the PV solar farms has been assessed in a study by Varma

et al.  [98]. PV solar farms would be able to regulate the voltage at the Point of Common Coupling (PCC) in

the presence of uncertain wind power generation and load demand during the nighttime.

- Demand-side management strategies

Demand side management programs can be defined as agreements between the system operator and the

consumers to optimally put into effect required actions to enhance the efficiency of the system, which in

turn enhances the benefits of all aspects including the consumer, the system operator, and eventually the

society. In general, using DSM strategies, the rise in total power demand leads to decreasing system

security and stability. DSM strategies are usually implemented in LV distribution systems. Employing DSM

programs, the load would be controlled and modulated in case of necessity by the system operator through

an agreement with the consumers to modify their consumption accordingly.

A real-time framework has been suggested Zakariazadeh et al. [99] for voltage control on the basis of

demand response programs. This framework uses data collected by Remote Terminal Units (RTUs),

specifying the optimal tap changer conditions as well as the amount of load to be curtailed in case it is

needed. The applicability of an ice-thermal storage with an electric spring as a smart load has been

discussed by Luo et al. [100] to provide voltage control and DSM with fast response in buildings.

A study by Chen et al. [101] employed the electric spring concept in a dynamic load response framework

for voltage and frequency control in the presence of intermittent wind power. Furthermore, the performance

of an electric spring and STATCOM have been compared by Luo et al. [102] in the context of voltage

control and demand response programs, where it has been shown that the electric spring provides the

distribution system with more favorable total voltage regulation. An autonomous load scheduling method

has been suggested by Yao et al. [103] considering the PV power output  uncertainty for both peak shaving
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and mitigating the reverse power flow due to PV units which causes voltage rise. Malik et al.  [104]

developed a two-stage DSM framework for the distribution systems with large penetration of RES. In this

respect, a centralized direct control has been presented for an electric water heater which can effectively

mitigate voltage variations. Muttaqi et al. [105] proposed the applicability of DG to load management. A

comprehensive review on the application of load shedding techniques in distribution systems with DG

presence has been recently carried out by Sapari et al. [106].

- Energy Storage Systems

ESSs have been introduced to power systems as an energy source with almost zero emission, capable of

providing the system and RESs with the required reserve. Such devices are connected to the electrical grid

using a power conversion system and are able to tackle the voltage variation problem in distribution

systems by injecting/absorbing active and reactive power to/from the electrical grid. It should be noted that

such a capability can be achieved over short-term and mid-term horizons while for long-run voltage

variation issues, a huge investment must be made.

The main concern with ESSs relates to their high cost. ESSs have been so far utilized in power systems due

to their capability to provide reserve and regulate the voltage. A Vanadium Redox Battery (VRB) has been

utilized by Wang et al. [107] to solve the voltage rise and drop issues due to deep penetration of rooftop

PVs. Nazaripouya [108] proposed a planning framework for sizing battery ESSs to regulate the voltage

variations in presence of PVs. A coordinated charging/discharging strategy has been suggested by Lee et al.

[109] based on battery ESSs to reduce the voltage and frequency variations where the main control center is

responsible for managing the ESS. Besides, the applicability of employing a coordinated strategy for

managing multiple ESSs has been evaluated in a study by Wang et al. [110] to deal with the voltage rise due

to increased PV penetration.

The optimal integration problem of battery ESSs has been investigated by Jayasekara et al. [111] for

achieving different goals including voltage regulation, loss reduction and peak shaving, which finally leads

to maximizing DG capabilities in distribution systems. Krishan et al. [112] discussed the voltage rise

problem in distribution systems caused by high penetration of solar PV. In this regard, a coordinated

controlled voltage regulation approach on the basis of dynamic droop with battery ESSs has been suggested

to solve the problem of voltage rise and voltage drop in an active DC distribution network.

Table 2 presents taxonomy of some of reviewed references regarding the voltage regulation of distribution
systems in the presence of DG.
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Table 2. Taxonomy of reviewed papers on voltage regulation of distribution systems in the presence of DG

Ref Problem Solution
[73] Voltage regulation in distribution systems with DGs Active and reactive power control of DG
[74] Overvoltage mitigation with small wind turbines Active power curtailment of small wind turbines by controlling

the pitch angle
[75] Voltage rise mitigation due to large PV penetration Droop-based inverter reactive power compensation and active

power curtailment of PVs
[76] Voltage rise reduction due to rooftop PVs and Voltage drop

compensation due to peak load demand
Active power curtailment of PV arrays and battery management

of PEVs
[77] Improving the performance of severely unbalanced three-

phase four-wire low voltage distribution networks with high
residential PV penetrations

Optimal reactive power control and real power curtailment of
single-phase inverters of PVs

[78] Optimal network reconfiguration problem of unbalanced
distribution systems considering the voltage issues caused by

DERs.

Optimal operations of voltage regulation devices, including VRs,
SVCs, D-STATCOMs, and shunt capacitor banks

[79] Reducing voltage violations due to high DG penetration with
low load demand or low DG penetration with high load

demand.

Combination of VAR optimization and network reconfiguration.

[81] Mitigating voltage rise due to PVs and uneven connection of
single-phase generation

Using transformers with single-phase tapping capability and
reactive power control of PV systems

[83] DG participation in voltage regulation in the presence of
OLTC and VR

Proposing a control coordination technique

[85] Voltage regulation in distribution systems in presence of
DGs

Coordinated framework for OLTC and reactive power control of
wind turbines

[86] Optimal voltage regulation in unbalanced radial distribution
system in presence of PV generation.

Coordinated control of OLTC and SVC

[87] Voltage rise mitigation due to large penetration of DGs Coordinated operation of OLTC, capacitor banks, PV, wind
power and dispatchable DGs

[88] Optimal voltage regulation of distribution systems with large
penetration

Coordinated control of PVs, ESSs and OLTCs

[89] Optimal voltage regulation of active distribution systems Applying fuzzy logic for coordinated control of OLTCs,
PVs and wind turbines

[91] Voltage regulation of distribution systems equipped with
renewable DGs

Using D-STATCOM

[92] Voltage regulation of MV networks with radial
configuration

Coordinated control of OLTC and D-STATCOM

[94] Voltage regulation in presence of PVs Controlling the inverter of PVs for reactive power injection
[95] Voltage regulation of distribution systems with renewable

DGs and diesel engine
Controlling the reactive power of PV inverter

[96] Reduction of voltage rise due to large penetration of PVs Coordinating the relation between reactive
power and corresponding feed-in power of each PV system in a

radial grid
[97] Voltage rise mitigation in distribution systems in Australia

with large penetration of residential PVs
Real and reactive power control of distributed PV inverter

systems
[99] Real-time voltage regulation in the presence of variable DG

power generation
Emergency demand response program by determining the tap

changer condition and load curtailment
[100] Voltage control and DSM in electrical grids equipped with

fluctuating wind power
Large-scale ice-thermal storage

[101] Controlling voltage and frequency fluctuations due to
intermittent wind power

Demand response programs using an electric spring

[102] Voltage regulation of distribution systems Distributed control of electric springs
[103] Mitigating the voltage rise due to large penetration of

residential rooftop PVs
DSM using an autonomous energy consumption scheduling

method
[107] Mitigating the voltage rise due to large penetration of

residential rooftop PVs
Employing VRB ESSs

[109] Voltage and frequency deviations reduction in distribution
systems.

Distributed Li-ion battery ESSs

[110] Mitigation of over-voltages due to large penetration of PVs Coordinated operation of multiple lead acid battery ESSs
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6.  Conclusion

Distributed Generation (DG) has been introduced to power systems, particularly at the Low Voltage (LV)

level, to make the existing systems more reliable, secure, and efficient. Simultaneously, DG bring different

challenges to the system as existing systems are not yet ready to accommodate high DG penetration levels.

In this respect, the two main problems are related to protection systems and voltage regulation issues. Since

the current and future trend of electric power systems is set towards increased integration of DG,

particularly Renewable Energy Sources (RES)-based units, a discussion of the impacts of those generation

technologies on distribution networks in needed. In the presence of DG, the protection system setting is

exposed to challenges due to changes in the magnitude and direction of the fault currents. DG units

contribute to the fault current and mainly affect the overcurrent protection systems with regards to

protection coordination. In this regard, alternative protection systems and algorithms can be used such as

Directional Overcurrent Relays (DOCRs). Besides, high-penetration DG, such as photovoltaic (PV) units,

may cause overvoltage in distribution systems which should be effectively treated. Thus, this paper

reviewed the problems caused by the DG regarding protection systems and voltage regulation of

distribution networks. Accordingly, the solutions proposed to mitigate the adverse impact of DG have been

investigated in detail. Overall, a comprehensive review has been made on the impact of DG on distribution

systems both from the protection and voltage regulation points of view.
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