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Impact of DNA Sequencing and Analysis Methods on 16S
rRNA Gene Bacterial Community Analysis of Dairy Products

Zhengyao Xue,a Mary E. Kable,a* Maria L. Marcoa

aDepartment of Food Science & Technology, University of California, Davis, California, USA

ABSTRACT DNA sequencing and analysis methods were compared for 16S rRNA V4

PCR amplicon and genomic DNA (gDNA) mock communities encompassing nine

bacterial species commonly found in milk and dairy products. The two communities

comprised strain-specific DNA that was pooled before (gDNA) or after (PCR ampli-

con) the PCR step. The communities were sequenced on the Illumina MiSeq and Ion

Torrent PGM platforms and then analyzed using the QIIME 1 (UCLUST) and Divisive

Amplicon Denoising Algorithm 2 (DADA2) analysis pipelines with taxonomic compar-

isons to the Greengenes and Ribosomal Database Project (RDP) databases. Examina-

tion of the PCR amplicon mock community with these methods resulted in opera-

tional taxonomic units (OTUs) and amplicon sequence variants (ASVs) that ranged

from 13 to 118 and were dependent on the DNA sequencing method and read as-

sembly steps. The additional 4 to 109 OTUs/ASVs (from 9 OTUs/ASVs) included as-

signments to spurious taxa and sequence variants of the 9 species included in the

mock community. Comparisons between the gDNA and PCR amplicon mock com-

munities showed that combining gDNAs from the different strains prior to PCR re-

sulted in up to 8.9-fold greater numbers of spurious OTUs/ASVs. However, the DNA

sequencing method and paired-end read assembly steps conferred the largest ef-

fects on predictions of bacterial diversity, with effect sizes of 0.88 (Bray-Curtis) and

0.32 (weighted Unifrac), independent of the mock community type. Overall, DNA se-

quencing performed with the Ion Torrent PGM and analyzed with DADA2 and the

Greengenes database resulted in the most accurate predictions of the mock commu-

nity phylogeny, taxonomy, and diversity.

IMPORTANCE Validated methods are urgently needed to improve DNA sequence-

based assessments of complex bacterial communities. In this study, we used 16S

rRNA PCR amplicon and gDNA mock community standards, consisting of nine, dairy-

associated bacterial species, to evaluate the most commonly applied 16S rRNA

marker gene DNA sequencing and analysis platforms used in evaluating dairy and

other bacterial habitats. Our results show that bacterial metataxonomic assessments

are largely dependent on the DNA sequencing platform and read curation method

used. DADA2 improved sequence annotation compared with QIIME 1, and when

combined with the Ion Torrent PGM DNA sequencing platform and the Greengenes

database for taxonomic assignment, the most accurate representation of the dairy

mock community standards was reached. This approach will be useful for validating

sample collection and DNA extraction methods and ultimately investigating bacterial

population dynamics in milk- and dairy-associated environments.

KEYWORDS 16S rRNA, DNA sequencing, dairy, microbiome, microbiota, milk

Advancements in massively parallel DNA sequencing technologies have resulted in

a dramatic increase in knowledge of the microorganisms found in natural envi-

ronments, food systems, and the human body. 16S rRNA gene amplicon sequencing, in

particular, has been a cornerstone for investigating bacterial diversity and phylogeny.
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This approach has enabled the simultaneous identification of the majority of bacteria

in complex microbial communities. Although analysis of 16S rRNA gene diversity has

provided significant new perspectives on bacterial habitats, there remain challenges to

sample preparation, DNA sequencing, and data analysis approaches for ensuring

accurate measurements of bacterial populations.

To address these issues, recent studies have compared sample collection meth-

ods (1–3) and storage conditions (2, 4–9). These studies generally showed that

differences in bacterial composition caused by those methodological alterations are

relatively minor compared to intersample variation (1, 3, 5–9). DNA extraction

methods, on the other hand, can result in major changes to estimates of bacterial

proportions between Gram-positive and Gram-negative bacteria, which are more or

less difficult to lyse (4, 7, 10–15). Moreover, PCR can also introduce bias depending

on the DNA polymerase (16), number of cycles (17), and variable region of the 16S

rRNA gene being compared (4, 18, 19).

DNA sequencing platforms, including 454 pyrosequencing, Illumina, Ion Torrent,

and Pacific Biosciences have also been shown to cause variation in bacterial community

assessments (4, 18–21). Moreover, data analysis methods, especially read clustering

approaches (i.e., generating representative sequences), are known to have a significant

impact on the interpretation of bacterial composition (21–27). De novo sequence

clustering can result in unstable operational taxonomic units (OTUs) between projects

that are composed of different sequences with each clustering iteration (28, 29).

Reference-based sequence clustering tends to result in fewer sequence variants than de

novo methods (21, 23), but can still lead to overestimation of bacterial community

diversity caused by insufficient read quality control and error filtering (27). As a result,

there is now an effort to move away from OTU-based methods toward DNA sequences

that represent single nucleotide variation (30, 31). One of the amplicon sequence

variant (ASV) clustering methods is DADA2 (Divisive Amplicon Denoising Algorithm 2),

which builds a quality-based model for filtering error and identifying variation in 16S

rRNA gene sequences (26).

Herein, we sought to compare different DNA sequencing, read assembly, and data

analysis strategies for the capacity to accurately detect the composition of a mock

bacterial community consisting of nine species commonly found in milk. To eliminate

biases introduced by sample type and DNA extraction method and focus on close

examination of the biases introduced by PCR, sequencing, and bioinformatics analyses,

we employed two different mock communities consisting of either organism-specific

PCR amplicons or purified genomic DNA (gDNA) (Fig. 1). This approach allowed us to

compare the performance of two popular benchtop DNA sequencers (Illumina MiSeq

and Ion Torrent PGM), paired-end read assembly of Illumina MiSeq, OTU (QIIME 1 open

reference)/ASV (DADA2) analysis methods, and reference taxonomy databases (Green-

genes and RDP). Our results showed that the combination of DADA2 and the Green-

genes analysis pipeline, paired with Ion Torrent PGM sequencing, results in the most

accurate representation of the mock communities.

RESULTS

Comparison of representative sequence analysis of 16S rRNA V4 region reads
generated with the Illumina MiSeq and Ion Torrent PGM. A mock community was

prepared by combining 16S rRNA V4 region PCR amplicons from nine bacterial strains

(Table 1) in equimolar quantities prior to DNA sequencing on the Ion Torrent PGM and

Illumina MiSeq instruments. Sequences were either assembled (Illumina MiSeq) or

maintained as single-end reads (Illumina MiSeq and Ion Torrent PGM). A low percent-

age of reads were identified as chimeras (0 to 1.4%) (see Table S1 in the supplemental

material), and the remaining reads were analyzed using QIIME 1 (UCLUST) following the

open-reference pipeline at a 97% threshold or DADA2 pipelines for OTU or ASV

identification using the Greengenes (version 13.8) and RDP (version GOLD for QIIME 1

and version 11.5 for DADA2) reference databases. Total reads after quality filtering for

each sequencing and read assembly method are shown in Table S1.
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Illumina MiSeq paired-end assemblies. QIIME 1 analysis of Illumina MiSeq paired-

end assembled reads with recommended parameters (32) resulted in total OTU num-

bers that were at least 4.2-fold greater than the expected nine OTUs encompassing

strains included in the mock community (Table 2). When the Greengenes database was

used for OTU alignment, 85 OTUs were identified. The majority of those OTUs (i.e., 65)

were assigned to taxa included in the mock community. Although the numbers of OTUs

varied for each taxon, a single OTU representative encompassed the majority (� 60%)

of reads for each of the mock community members (Table 2). For example, out of nine

Staphylococcus OTUs identified with Greengenes, 99% of the reads were represented by

one OTU. The remaining 20 OTUs identified with Greengenes were either designated as

taxa that were not included in the mock community or were designated only to the

order level. When the RDP database was used as the reference database for QIIME 1

analysis, the total OTUs decreased to 70, despite the increase in spurious “other”

FIG 1 Schematic diagram of the experimental design. Genomic DNAs were individually prepared from
nine bacterial broth cultures, purified, and combined for the gDNA mock community. Additionally, each
gDNA was amplified separately and pooled for the PCR amplicon mock community.

TABLE 1 Bacterial strains and expected relative abundances in the gDNA mock
community

Strain

No. of 16S

rRNA gene

copiesa
% of

totalb
Genome

referencec

Bacillus subtilis S44 10 16.67 NA
Clostridium tyrobutyricum ATCC 25755 6 2.29 64
Corynebacterium bovis ATCC 7715 1 2.78 65
Enterococcus faecalis ATCC 29212 4 9.28 66
Escherichia coli ATCC 700728 7 8.95 NA
Lactococcus lactis IL1403 6 17.82 67
Pseudomonas fluorescens A506 6 7.08 68
Staphylococcus aureus ATCC 29740 5 12.44 NA
Streptococcus agalactiae ATCC 27956 7 22.7 NA

aNumber of 16S rRNA gene copies per genome based on genome reference.
bPercentage of total bacterial 16S rRNA gene in the mock community according to DNA concentration.
cNA, not available. For strains that lack whole-genome sequences, the genome sizes and 16S rRNA gene
copy numbers of the reference strain were used (69–72).

PCR Amplicon and gDNA Mock Community Analysis
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assignments (Table 2). Nevertheless, the overall OTU number remained considerably

higher than the expected nine OTUs based on the mock community composition.

The numbers of ASVs identified with DADA2 from Illumina paired-end assemblies

were lower than the numbers of OTUs assigned with QIIME 1 (Table 2). Because DADA2

assigns ASVs independently from taxonomic reference databases, total ASV numbers

were the same using both Greengenes and RDP. The only distinction was that one

Clostridiaceae ASV and both Escherichia ASVs identified using Greengenes were desig-

nated as Clostridium and Enterobacteriaceae in RDP (Table 2).

Illumina MiSeq unassembled single-end reads.Without read assembly, the QIIME

1 pipeline resulted in 68 and 36 total OTUs with the Greengenes and RDP databases,

respectively (Table 3). These OTU numbers were lower than the paired-end assemblies

(Table 2). DADA2, on the other hand, resulted in a slightly higher number of ASVs (40

ASVs) than the paired-end assemblies (38 ASVs) (Tables 2 and 3). More reads were

regarded as “other” taxa, and this result was most likely due to the shorter lengths of

TABLE 2 OTU/ASV distribution of the 16S rRNA PCR amplicon mock community following
Illumina MiSeq DNA sequencing and paired-end assembly

Taxonomy

No. (%) of OTUs/ASVs bya:

QIIME 1 DADA2

Greengenes RDP Greengenes RDP

Bacillaceae 1 (100)
Bacillus 10 (83) 3 (99) 2 (90) 2 (90)
Clostridiaceae 3 (73) 3 (51) 1 (100)
Clostridium 3 (87) 5 (99) 4 (86) 5 (85)
Corynebacterium 14 (80) 7 (80) 2 (91) 2 (91)
Enterococcaceae 1 (100)
Enterococcus 4 (99) 2 (99) 3 (85) 3 (85)
Enterobacteriaceae 4 (99) 9 (71) 2 (88)
Escherichia 2 (88)
Lactococcus 6 (99) 1 (100) 3 (89) 3 (89)
Pseudomonas 10 (74) 6 (75) 3 (85) 3 (85)
Staphylococcus 9 (99) 4 (80) 3 (89) 3 (89)
Streptococcus 2 (80) 2 (99) 2 (89) 2 (89)
Other 20 (17) 26 (71) 13 (20) 13 (20)
Sum 85 70 38 38

aEach value represents the average number of OTUs/ASVs (n � 3) and mean percentage of sequence reads
assigned to the most abundant OTU/ASV within that taxon.

TABLE 3 OTU/ASV distribution of the 16S rRNA PCR amplicon mock community following
Illumina MiSeq DNA sequencing without paired-end assembly

Taxonomy

No. (%) of OTUs/ASVs bya:

QIIME 1 DADA2

Greengenes RDP Greengenes RDP

Bacillus 9 (97) 2 (99) 3 (67) 1 (100)
Clostridiaceae 1 (100) 1 (100) 1 (100)
Clostridium 3 (99) 3 (99) 3 (99) 3 (99)
Corynebacterium 9 (96) 7 (95) 2 (75) 2 (75)
Enterococcaceae 1 (100)
Enterococcus 2 (99) 2 (99) 2 (60) 2 (60)
Enterobacteriaceae 4 (99) 8 (93)
Escherichia/Shigella 1 (100)
Escherichia 1 (100)
Lactococcus 6 (99) 2 (99) 1 (100) 1 (100)
Pseudomonas 11 (91) 4 (99) 2 (65) 2 (65)
Staphylococcus 12 (98) 3 (99) 2 (76) 2 (76)
Streptococcus 4 (92) 2 (99) 1 (100) 1 (100)
Other 6 (28) 2 (91) 22 (12) 25 (89)
Sum 68 36 40 40

aEach value represents the average number of OTUs/ASVs (n � 3) and mean percentage of sequence reads
assigned to the most abundant OTU/ASV within that taxon.
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the unassembled, single-end MiSeq reads. Between the two reference databases,

Greengenes resulted in more accurate taxonomic assignments with DADA2. Two

Bacillales ASVs and one Clostridiales ASV that were included in the “other” ASV category

by RDP were assigned as Bacillus and Clostridiaceae with Greengenes. Moreover, the

Escherichia/Shigella ASV in RDP was unambiguously allotted to the Escherichia genus by

Greengenes (Table 3).

Ion Torrent PGM reads. The application of QIIME 1 with the Greengenes database

to the Ion Torrent reads resulted in the highest number of OTUs out of any of the

methods applied (Table 4). The use of RDP in QIIME 1 also yielded high OTU numbers,

comparable to those found for the paired-end Illumina MiSeq assemblies (Table 4).

Conversely, DADA2 resulted in only 13 ASVs (Table 4). The 4 additional ASVs compared

to the expected 9 ASVs were created due to errors in the homopolymer regions (see

Fig. S1 in the supplemental material), and the 13 ASVs were distributed across the 9

bacterial taxa included in the mock community, with the exception of one ASV with

ambiguous taxonomy (Bacillales) identified using RDP, which was identified as Bacillus

using Greengenes. Greengenes also improved the assignment of Escherichia coli to the

genus level, as opposed to the family level in RDP (Table 4).

For each of the three DNA sequencing/read curation methods tested, DADA2

assigned fewer ASVs per taxon and resulted in fewer spurious ASVs than QIIME 1

(UCLUST) assigned OTUs, except in Illumina single-end results analyzed with the RDP

database. DADA2 taxonomic identification was more specific with the Greengenes than

the RDP database. Therefore, the combined DADA2/Greengenes approach was used for

the subsequent analyses described below.

Assessments of the gDNA mock community were altered depending on DNA

sequencing platform. A gDNA mock community was prepared by mixing equal

quantities of gDNA from the nine milk-associated bacterial species prior to barcoded

16S rRNA V4 region PCR amplification (Fig. 1). The PCR products were then used for

sequencing on either the Illumina MiSeq or Ion Torrent PGM, followed by analysis with

the DADA2/Greengenes method. More chimeras were found for the gDNA mock

community (ranging from 0.3 to 4.6%) than the PCR amplicon mock community

(Table S1), indicating amplification errors arose from multitemplate PCR. However,

except for the known variation in platform-dependent read lengths, nucleotide se-

quences of the most abundant ASVs assigned to each of the nine mock community

species were identical between the Illumina MiSeq (single and paired ends) and Ion

Torrent PGM platforms (see Illumina MiSeq paired-end assembly in Fig. S2, Illumina

TABLE 4 OTU/ASV distribution of the 16S rRNA PCR amplicon mock community following
Ion Torrent PGM sequencing

Taxonomy

No. (%) of OTUs/ASVs bya:

QIIME 1 DADA2

Greengenes RDP Greengenes RDP

Bacillaceae 3 (88)
Bacillus 21 (75) 8 (95) 2 (95) 1 (100)
Clostridium 5 (70) 7 (99) 1 (100) 1 (100)
Corynebacterium 15 (75) 11 (88) 1 (100) 1 (100)
Enterococcaceae 2 (56) 2 (50)
Enterococcus 7 (98) 2 (99) 1 (100) 1 (100)
Enterobacteriaceae 13 (95) 17 (60) 1 (100)
Escherichia 1 (100)
Lactococcus 6 (99) 1 (100) 2 (99) 2 (99)
Pseudomonas 13 (71) 8 (66) 2 (99) 2 (99)
Staphylococcus 21 (97) 7 (65) 2 (99) 2 (99)
Streptococcus 6 (83) 2 (99) 1 (100) 1 (100)
Other 6 (40) 2 (71) 0 1 (100)
Sum 118 67 13 13

aEach value represents the average number of OTUs/ASVs (n � 3) and mean percentage of sequence reads
assigned to the most abundant OTU/ASV within that taxon.
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MiSeq single-end reads in Fig. S3, and Ion Torrent PGM reads in Fig. S4 in the

supplemental material). Nucleotide sequence alignments of those ASVs to the corre-

sponding ASVs identified from the PCR amplicon mock community also showed 100%

nucleotide sequence conservation (Fig. S2 to S4).

For both Illumina MiSeq assembled and unassembled (single-end) reads, the gDNA

mock community resulted in high numbers of ASVs (Table 5). These numbers were

higher than those found for the PCR amplicon mock community (Tables 2 and 3) and

were primarily due to the higher quantities of spurious ASVs (e.g., Clostridiales, Lacto-

bacillus, and Oscillospira) present at low proportions (0.02 to 3.85% of total reads for

each ASV) (see Table S2 in the supplemental material). As a result, the Shannon index

of the gDNA mock community was elevated compared to the PCR amplicon mock

community for both paired-end and single-end Illumina MiSeq results (Fig. 2), and

these values were significantly increased compared to the expected � diversity based

on mock community composition. Interestingly, the same number of 13 ASVs was

found for the gDNA and PCR amplicon mock communities when the Ion Torrent PGM

was used (Table 5), and the Shannon index of the gDNA mock community resembled

the PCR amplicon mock community expected value (Fig. 2).

Ion Torrent PGM sequencing with the DADA2/Greengenes method resulted in

more accurate representations of the gDNA and PCR amplicon mock communi-

ties. DNA sequencing approaches were next compared for their capacity to yield the

TABLE 5 ASV distribution of the gDNA mock community following different sequencing
methodsa

Taxonomy

No. (%) of OTUs/ASVs byb:

Illumina

Ion TorrentPaired end Single end

Bacillus 4 (86) 2 (96) 2 (95)
Clostridiaceae 3 (92) 1 (100)
Clostridium 4 (80) 2 (94) 1 (100)
Corynebacterium 2 (96) 1 (100) 1 (100)
Enterococcus 3 (88) 1 (100) 1 (100)
Escherichia 2 (96) 1 (100) 1 (100)
Lactococcus 3 (88) 3 (67) 2 (99)
Pseudomonas 3 (94) 1 (100) 2 (99)
Staphylococcus 2 (90) 2 (99) 2 (99)
Streptococcus 3 (90) 2 (99) 1 (100)
Other 116 (12) 111 (10) 0
Sum 145 127 13

aResults are based on the DADA2 analysis pipeline with the Greengenes database.
bEach value represents the average number of OTUs/ASVs (n � 3) and mean percentage of sequence reads
assigned to the most abundant OTU/ASV within that taxon.

FIG 2 � diversity measurements of mock community samples. Shown is the Shannon index of (A) the
PCR amplicon mock community and (B) the gDNA mock community. The results shown were analyzed
following the DADA2 pipeline and Greengenes database. Each bar represents the mean � standard
deviation (SD) from three replicates. � diversity measurements for each community were compared to
expected values using ANOVA with Bonferroni’s multiple-comparison test. P values of �0.05 were
considered to be significantly different from the expected values and are indicated by an asterisk above
each bar plot.
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expected � diversity and proportions of bacterial taxa included in the two mock

communities. According to UPGMA (unweighted pair group method using average

linkages) hierarchical clustering of Bray-Curtis dissimilarity metrics, results from the

three DNA sequencing approaches (Illumina MiSeq paired-end assembly, single-end,

and Ion Torrent PGM) were all in different clusters compared to the expected bacterial

composition, independent of the gDNA or 16S rRNA PCR amplicon community type

(Fig. 3A). Conversely, UPGMA of the weighted Unifrac distance metrics clustered the

sequences according to mock community type (Fig. 3B). These comparisons showed

that the gDNA mock communities sequenced with the Ion Torrent PGM were the most

similar to theoretical (expected) proportions. No single method was found best suited

for representing the PCR amplicon mock community (Fig. 3B). To assess whether the

use of DADA2/Greengenes influenced this outcome, the other data analysis methods

were compared, and it was found that the DNA sequencing platform used was

consistently influential on mock community � diversity (e.g., QIIME 1 with the Green-

genes database is shown in Fig. S5 in the supplemental material).

Examination of the relative abundances of individual taxa across the three DNA

sequencing approaches showed that for the 16S rRNA PCR amplicon mock community,

the proportions of most bacterial species were mostly not significantly altered com-

pared to expected theoretical values. Exceptions to this finding were the reduced

FIG 3 Relative proportions of taxa and UPGMA hierarchical clustering of the mock communities. UPGMA
hierarchical clustering was based on the (A) Bray-Curtis dissimilarity matrix and (B) weighted Unifrac distance
matrix. Expected taxa (9 bacterial species) are labeled with the corresponding taxonomic level from the DNA
sequencing results. Each bar contains the results from each of the three mock community replicates tested using
different DNA sequencing methods. The results shown were analyzed following the DADA2 pipeline with the
Greengenes database.

PCR Amplicon and gDNA Mock Community Analysis

September/October 2018 Volume 3 Issue 5 e00410-18 msphere.asm.org 7

msphere.asm.org


proportions of Enterococcaceae and Enterococcus found for Illumina paired-end assem-

blies and Streptococcus for both Illumina MiSeq methods as well as the Ion Torrent PGM

platform (Fig. 4). For the gDNA mock community, the proportions of Escherichia and

Streptococcus were significantly different from expected for all three DNA sequencing

platforms. The proportions of Pseudomonas were also significantly lower than expected

for the single- and paired-end assemblies from the Illumina MiSeq, and the proportions

of Bacillus and Lactococcus were also altered for the paired-end assemblies. Lastly, there

were higher proportions of “other” taxa for both Illumina MiSeq methods (Fig. 4),

especially in the gDNA mock community. Overall, even though DNA sequencing with

the Ion Torrent PGM combined with DADA2/Greengenes analysis did not completely

provide the expected bacterial composition, this approach resulted in the most accu-

rate representations of the bacteria and their proportions in both gDNA and PCR

amplicon mock communities.

DISCUSSION

By comparing DNA sequencing methods, analysis algorithms, and reference data-

bases using dairy relevant bacterial DNA (PCR amplicon and gDNA) mock communities,

we found that the DADA2/Greengenes data analysis methods with the Ion Torrent PGM

yielded the most accurate interpretations of the 16S rRNA V4 variable region relative to

the other methods (Illumina MiSeq, QIIME 1, RDP) tested. This conclusion is notable

considering that DADA2 was developed for analysis of Illumina DNA sequence reads

(26). Although successfully applied for that purpose (25, 33), our findings show that the

DADA2 algorithm is compatible with the Ion Torrent reads and error profile. Moreover,

our study also offers new and detailed 16S rRNA data comparisons on single- versus

multitemplate PCR and single- versus pair-end assembled Illumina reads, which can be

broadly informative to benchmark bioinformatics workflows and to the study of

bacterial diversity and composition in other microbial habitats besides dairy products.

Application of DADA2 and QIIME 1 (UCLUST) analysis pipelines to the same 16S

rRNA gene data showed that DADA2 assigned fewer total and spurious OTUs/ASVs than

QIIME 1 even with stringent filtering (32). Because read length was kept consistent

FIG 4 Relative abundance of taxa in the 16S rRNA PCR amplicon and gDNA mock communities. Relative abundances of expected taxa are labeled with the
corresponding taxonomic level from sequencing results. “Amplicon” represents the 16S rRNA PCR amplicon mock community, and “gDNA” represents the gDNA
mock community. The results shown were analyzed following the DADA2 pipeline with the Greengenes database. Each bar represents the mean � SD from
three replicates. Proportions for each community were compared to expected proportions using ANOVA with Bonferroni’s multiple-comparison test. P values
of �0.05 were considered to be significantly different from the expected values and are indicated by an asterisk above each bar plot.
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within each DNA sequencing and data assembly platform, platform-specific differences

in OTU/ASV numbers were mainly derived from the core algorithms used for filtering

and clustering representative sequences. The DADA2 core algorithm includes error-

rate-based denoising, isBimeraDenovo chimera identification, and ASV inference (26). In

QIIME 1, the core analysis includes the USEARCH chimera identification and OTU

picking strategy (34). Comparison of OTUs and ASVs using the QIIME 1 and DADA2

pipelines, respectively, also showed that the DADA2 analysis pipeline was able to assign

ASVs to more specific taxonomic levels (genus) than QIIME 1. This could be the result

of the different taxonomy classifiers employed by DADA2 (RDP’s naive Bayesian clas-

sifier) and QIIME 1 (UCLUST classifier) (35).

OTU and ASV taxonomy assignments were also compared with consideration to 16S

rRNA gene reference databases. Results from the different combinations of analysis

methods and reference databases showed that the majority of OTUs/ASVs detected

were representatives of bacterial taxa included in the 16S rRNA PCR amplicon and

gDNA mock communities. Each bacterial species was represented by at least a single

OTU/ASV. Additional OTUs/ASVs were largely due to low-abundance sequence variants.

DNA sequences of the predominant ASVs/OTUs were 100% identical between gDNA

and PCR amplicon mock communities, further supporting the precision of the tech-

nique. When QIIME 1 was applied, the RDP_GOLD database (36) yielded lower numbers

of total OTUs than found with Greengenes 13.8, independent of whether the Illumina

MiSeq or Ion Torrent PGM was used to generate the DNA sequence reads. However, the

RDP_GOLD database has not been updated since 2011 (36) and could potentially be

missing many bacterial sequences, leading to less differentiation between OTUs. With

the DADA2 pipeline, ASVs were inferred prior to taxonomy assignment (26), resulting

in the same total ASV numbers for both the RDP 11.5 and Greengenes 13.8 databases.

However, assignments of DADA2 ASVs were still influenced by reference database-

specific taxonomic nomenclature and DNA sequences (37), such that Greengenes

provided deeper, more accurate taxonomic assignments than those found with RDP.

The Illumina MiSeq and Ion Torrent PGM methods also clearly impacted the out-

comes of our mock community analyses. The Illumina MiSeq is well established and

known for its low error rate, high-volume read outputs, and low sequencing cost per Gb

(38, 39). Although Illumina MiSeq reads had higher Phred quality scores, for both

single-end and paired-end assembled Illumina MiSeq reads, greater numbers of unex-

pected taxa and OTUs/ASVs were observed compared to the Ion Torrent PGM. This

finding could be the result of differences in library preparation methods, external

contamination, index switching (40), and/or substitution errors (41, 42) specific to the

Illumina MiSeq. To reduce misassigned reads, previous studies have suggested using a

dual-index strategy (43) and stringent filtering at the index region (40), as well as

sequencing of negative controls for in silico removal of contaminant reads (44). In

contrast, the use of the Ion Torrent PGM with our read trimming parameters resulted

in the lowest numbers of DADA2 assigned ASVs. At 13 ASVs for both mock commu-

nities, this number was only slightly greater than the nine predicted. All 13 ASVs were

repeatedly assigned to members of the mock communities, except for one low-

abundance ASV when RDP was applied. The four additional ASVs were the result of

read errors in the homopolymer regions, a common Ion Torrent error model (20, 38, 39)

that still passed the DADA2 filtering with recommended parameters (https://benjjneb

.github.io/dada2/faq.html#can-i-use-dada2-with-my-454-or-ion-torrent-data). This error

model could be further reduced by increasing the homopolymer error penalty value.

Interestingly, the Ion Torrent PGM reads resulted in the highest numbers of OTUs when

QIIME 1 was used to analyze the data. This might have been due to the higher number

of erroneous reads that were passed by QIIME 1 filtering, but were identified as

sequence chimeras and artifacts by DADA2.

For the PCR amplicon mock community, bacterial diversity analyses based on the

DADA2/Greengenes pipeline showed that the results from the Illumina MiSeq were

similar to Ion Torrent PGM and the in silico expected values. However, the gDNA mock

community relative abundances of certain bacteria in the gDNA mock community were
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significantly altered compared to expected proportions according to the paired- and

single-end Illumina MiSeq methods. This was particularly the case for Streptococcus and

Lactococcus. Because Streptococcus and Lactococcus have similar 16S rRNA gene se-

quences, variation in their relative abundances could be caused by the accumulation of

substitution errors, a common error that occurs with the Illumina MiSeq instrument (41,

42). No spurious taxa were found in either the PCR amplicon or gDNA mock community

in Ion Torrent results analyzed with the DADA2/Greengenes pipeline. In contrast, the

gDNA mock community contained 9-fold and 5-fold more “other” spurious taxa com-

pared to the PCR amplicon mock community in Illumina paired- and single-end results,

respectively. To this regard, the majority of these taxa (and proportion of reads, �74%)

were assigned to bacterial orders, families, and genera that are highly related to the

species included in the mock community (e.g., Clostridiales, Lactobacillus, Oscillospira,

and Turicibacter). This, together with the lower numbers of ASVs found for the corre-

sponding PCR amplicon community and single-end results, indicates that errors result-

ing from paired-end Illumina MiSeq assembly are augmented by combining multitem-

plate PCR with joining forward and reverse reads. This issue can be mitigated by using

single-end reads (as shown by the data here), fewer PCR cycles (33), and increasing the

denaturing time (45).

By the use of bacterial DNA standards from nine dairy-relevant bacterial species, we

found that DNA sequencing and analysis pipelines contributed significant variations to

OTU/ASV distributions and observed bacterial diversities. Moreover, PCR biases and

errors from multitemplate DNA amplifications are not entirely filtered with the Illumina

MiSeq method. Overall, the Ion Torrent PGM DNA sequencer combined with the

DADA2/Greengenes pipeline led to more accurate OTU/ASV assignments and bacterial

diversity measurements of the PCR amplicon and gDNA mock communities under our

study conditions. The Ion Torrent PGM method is recognized for shorter run times,

lower instrument cost, and flexibility in sequencing scale per run by the use of different

sequencing chips (38, 39). Therefore, this platform could be of particular use to study

dairy and other food products with short shelf life times. Moreover, with DADA2 being

wrapped in the QIIME 2 platform, we agree with the QIIME 2 developers that new

sequencing results should be analyzed using QIIME 2 with a standardized analysis

pipeline (e.g., DADA2) instead of QIIME 1 (UCLUST) (46). Further improvements might

be reached by refinements to taxonomy classifiers (35), updating reference databases

to emphasize bacteria found in different environments, such as dairy foods, and/or

testing other reference databases, such as SILVA (37, 47, 48). Lastly, we recognize that

upstream sample processing and DNA extraction protocols can introduce significant

biases into assessments of bacterial community composition (1–15). Therefore, the data

analysis methods applied here should be tested using whole-cell mock communities

containing different proportions of bacteria as well as on complex environmental

samples. Moreover, to increase reproducibility, consistent methodology and inclusion

of negative and positive controls in each run/project are recommended (49). The

findings here and the continued development of microbial diversity analysis methods

should result in even more reliable comparisons within and between bacterial habitats.

MATERIALS AND METHODS

Bacterial strains and culture conditions. Bacterial strains representing species commonly found in
bovine milk were used to construct a mock bacterial community (Table 1). Each bacterial strain was
grown in standard laboratory culture medium with negative controls for that species and harvested at
early stationary phase by centrifugation at 13,000 � g for 2 min. The laboratory culture media were as
follows: Bacillus subtilis, Pseudomonas fluorescens, and Escherichia coli, LB (Lennox broth; Thermo Fisher
Scientific); Enterococcus faecalis and Streptococcus agalactiae, brain heart infusion broth (Thermo Fisher
Scientific); Staphylococcus aureus, tryptic soy broth (Becton Dickinson); Corynebacterium bovis, tryptic soy
broth (Becton Dickinson) with 0.1% Tween 80; Lactococcus lactis, M17 broth (Becton Dickinson) with 0.5%
glucose; and Clostridium tyrobutyricum, reinforced clostridial broth (Becton Dickinson). All strains were
incubated at 37°C, with the exception of B. subtilis, L. lactis, and P. fluorescens, which were incubated at
30°C. B. subtilis, C. bovis, E. faecalis, E. coli, and P. fluorescens were grown under aeration (250 rpm).

Genomic DNA extraction and PCR amplification. Genomic DNA was extracted using the MagMAX
Total nucleic acid isolation kit (Thermo Fisher Scientific, Vilnius, Lithuania) according to the manufac-
turer’s protocol with the repeat bead beating method on a FastPrep-24 instrument (MP Biomedicals LLC).
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The DNA concentration was measured with the Qubit 3.0 fluorometer using the Qubit double-stranded
DNA (dsDNA) HS assay kit (Life Technologies, Eugene, OR). PCR amplification was performed using Ex Taq

DNA polymerase (TaKaRa, Otsu, Japan) and primers F515 and R806 (50) with a random 8-bp barcode on
the 5= end of F515 for sample multiplexing (51, 52). PCR was initiated at 94°C for 3 min, followed by 35
cycles of 94°C for 45 s, 54°C for 60 s, and 72°C for 30 s, with a final extension step at 72°C for 10 min.
Negative controls were run for each barcoded primer. No PCR product for the negative controls was
observed on a 1.5% agarose gel. PCR products were pooled and then gel purified with the Wizard SV gel
and PCR clean-up system (Promega, Madison, WI).

Preparation of the mock communities. A schematic experimental design for preparing the mock
communities is shown in Fig. 1. For the gDNA mock community, 100 ng gDNA isolated from each of the
strains was pooled in three separate replicates. The proportion of each bacterial strain in the gDNA mock
community was determined by taking into account the genome size and 16S rRNA gene copy number
(Table 1). To construct the amplicon mock community, gDNA of the nine bacterial strains was amplified
in triplicate by using three different barcoded PCR primers. Amplicon concentrations were measured
with the Quant-iT PicoGreen dsDNA assay kit (Life Technologies, Eugene, OR) prior to pooling at equal
molar concentrations.

DNA sequencing. For Illumina sequencing, the KAPA HTP library preparation kit (KK8234, Kapa
Biosystems, Pittsburgh, PA) was used for the ligation of NEXTflex adapters (Bioo Scientific, Austin, TX) to
the 16S rRNA amplicons prior to 250-bp paired-end sequencing (with 7% PhiX control) on an Illumina
MiSeq instrument at the University of California, Davis, Genome Center (http://genomecenter.ucdavis
.edu/). For Ion Torrent sequencing, non-barcoded Ion A and Ion P1 adapters were ligated to the pooled
amplicons, followed by templating, enrichment, and sequencing on the One-Touch 2 and One-Touch ES
systems and Ion PGM using the 400 sequencing kit and a 318 v2 chip (Life Technologies, Carlsbad, CA).

16S rRNA gene sequence analysis. An in silico mock community, termed “expected,” was created
using the 16S V4 amplicon sequences from published genomes and reference genomes for the specific
bacterial species (Table 1). In addition, the expected 16S V4 region copy numbers were normalized based
on the genome size and 16S rRNA gene copy numbers.

Illumina MiSeq sequencing outputs were trimmed with the fastx_tools (53) to keep the first 245 and
170 bases for the forward and reverse reads, respectively (for quality profiles, see Fig. S6 and S7 in the
supplemental material). The Ion Torrent sequence output BAM file was converted to FASTQ format using
BEDTools (54), and reads shorter than 200 bp were also removed. The first 280 bases of the Ion Torrent
reads were kept for analysis (for quality profiles, see Fig. S6 and S7 in the supplemental material).

The FASTQ files were then analyzed with QIIME version 1.9.1 and DADA2 1.6.0 (26, 55). In QIIME 1,
Illumina reads from the two orientations (forward and reverse) were analyzed either with or without
assembly where the join_paired_ends.py (fastq-join method) (56) script was used with minimum 100-bp
overlap and 1% maximum difference between overlapping sequences. Ion Torrent single-end and
paired-end assembled Illumina FASTQ files then had the barcode (8 bases) and primer regions (forward
primer, 21 bases; reverse primer, 20 bases) removed and were demultiplexed using the split_libraries-

_fastq.py script with no barcode error and quality filtered at Q30. Chimeric sequences were identified
using USEARCH (34, 36) with both the de novo and reference-based methods against the Greengene
database version 13.8 (57, 58) via the identify_chimeric_seqs.py command with default parameter values.
Sequences from both Illumina and Ion Torrent as well as the in silico mock community with expected
proportions were merged as one fasta file for operational taxonomic unit (OTU) clustering using the
pick_open_reference_otus.py script with recommended parameters (32) and the UCLUST method at 97%
similarity thresholds. The Greengenes version 13.8 (57, 58) and RDP_GOLD (36) databases were used as
references for OTU assignments. Archaea, chloroplasts, and low-abundance (0.005%) OTUs were re-
moved from the OTU tables (32).

In DADA2, for single-end analysis, the truncated Illumina and Ion Torrent FASTQ files after barcode
(8 bases) and primer sequence (forward primer, 21 bases; reverse primer, 20 bases) trimming were
demultiplexed using split_libraries_fastq.py script with no barcode error and no quality filter (-r 999, -n
999, -q 0, -p 0.0001). Since the single-end reads were already quality trimmed, no additional truncation
was performed in DADA2 to be consistent in read length with QIIME 1 analysis. For paired-end analysis,
in order to get matched sequence files, raw Illumina reads were demultiplexed in pairs using the idemp
tool (59) with no barcode error. Barcode and forward and reverse primer regions were then trimmed with
fastx_tools (53). The resulting reads were truncated in DADA2 to keep the first 196 bases of the forward
reads and 121 bases of the reverse reads, which were later merged after ASV inference with no error
allowed and a 51-bp minimum overlap to be consistent with the QIIME 1 method in resulting read
length. For reads from both Ion Torrent and Illumina MiSeq, the error model learning [learnErrors()],
dereplication [derepFastq()], and ASV inference [dada()] were performed in R with the DADA2 default
parameter, except for added parameters for Ion Torrent [dada(HOMOPOLYMER_GAP_PENALTY�-1, BAND-

_SIZE � 32)]. Chimeras were identified and removed after sequence clustering via the removeBimeraDe-

novo() function with the “consensus” method and the isBimeraDenovoTable() function default settings.
Taxonomy was assigned to the resulting amplicon sequence variants (ASVs) using RDP database

version 11.5 (60) and Greengenes database version 13.8 with the minimum bootstrap confidence at 80
(57, 58). Ion Torrent and Illumina single-end and paired-end assembled reads were merged with the
in silico mock community using the phyloseq package in R (61), and singletons and low-abundance
(0.005%) ASVs were removed to be consistent with QIIME 1 analysis. Sequences of spurious ASVs were
further aligned with sequences in the NCBI nr/nt database using BLASTn (62) with default settings.

Statistics. OTU/ASV counts were rarefied at 5,483 sequences per sample to retain all samples for
downstream analyses. Significant differences in the observed mock community composition (� diversity
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and taxonomic distribution) were determined by analysis of variance (ANOVA) with the Bonferroni’s
multiple-comparison test. A P value of �0.05 indicates significance. The significance of sample clustering
was indicated by permutational multivariate ANOVA using the adonis function from the vegan package
in R (63) with a P value of �0.05 through 9,999 permutations.

Accession number(s). Joined- and single-end DNA sequences after quality filtering and trimming
have been deposited in the Qiita database (https://qiita.ucsd.edu) under study ID no. 11351 and in the
European Nucleotide Archive (ENA) under accession no. ERP104377.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00410-18.

FIG S1, TIF file, 2.6 MB.

FIG S2, TIF file, 2.1 MB.

FIG S3, TIF file, 1.5 MB.

FIG S4, TIF file, 1.9 MB.

FIG S5, EPS file, 2.3 MB.

FIG S6, TIF file, 2.1 MB.

FIG S7, TIF file, 2.1 MB.

TABLE S1, PDF file, 0.1 MB.

TABLE S2, PDF file, 0.1 MB.
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