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The purpose of this study was to assess the impact
of phase II dose-selection strategies on the likelihood of
success of phase III clinical programs, comparing both
traditional and adaptive approaches.

We evaluated the impact of the phase II approach
to dose selection (including traditional, design-adaptive,
and analysis-adaptive approaches), the sample size used
in phase II, the number of doses studied in phase II, and
the number of doses selected to advance into phase III on
the probability of demonstrating efficacy, of demonstrat-
ing a lack of toxicity, of phase III trial success, and on
the probability of overall success of the combined phase
II/phase III programs. The expected net present value
was used to quantify the financial implications of differ-
ent strategies.

We found that adaptive dose allocation approaches
(in particular, the Bayesian general adaptive dose alloca-
tion method) usually outperformed other fixed dose al-
location approaches with respect to both probability of
success and dose selection. Design-adaptive approaches
were more efficient than analysis-adaptive approaches.
The allocation of additional resources into phase II im-
proved the probability of success in phase III and the ex-
pected net present value. Bringing two doses forward into
phase III testing also increased the probability of success
and improved the expected net present value. The over-
all probability of success in phase III ranged from 35%
to 65%, consistent with recent industry experience. This

success rate could likely be improved with additional in-
vestment in phase II, the use of design-adaptive dose-
finding designs when possible, increasing the power of
phase III trials, more explicit consideration of toxicity
concerns, and better dose selection.
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1. Background

The overall success rate of drug development pro-
grams has been decreasing, including the success rate of
phase III clinical trials. Selection of one or more doses
to advance into phase III clinical trials is one of the most
challenging decisions during drug development. The in-
creasing attrition rate in phase III is likely due, in part, to
faulty dose selection; namely, selecting a dose that is too
low to achieve the desired benefit or one that is too po-
tent, resulting in unacceptable toxicity. Dose selection af-
fects more than the probability of regulatory approval. A
well-selected dose will have a more desirable risk/benefit
profile and thus will result in a greater market value for
the product, improved patient care, and greater benefit to
society.

In 2005, the Pharmaceutical Innovation Steering
Committee of the Pharmaceutical Research and Manu-
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facturers of America (PhRMA) formed several working
groups to investigate the decreasing success rates of drug
development programs. One of these groups, the Adap-
tive Dose-Ranging Studies (ADRS) working group, was
created to analyze existing and to develop new adaptive
dose-ranging methods. In November 2007, the Journal of
Biopharmaceutical Statistics published the group’s first
product, a comprehensive phase II simulation study com-
paring performance of adaptive phase II dose-ranging
methods, entitled “Innovative Approaches for Designing
and Analyzing Dose-Ranging Trials” (Bornkamp et al.
2007). Trial performance was measured by multiple pa-
rameters: ability to detect a dose response, identifying a
clinically relevant treatment effect, accuracy in selecting
a target dose, and estimation of the dose-response curve.

This article builds on this prior work to assess the
impact of phase II dose-selection strategies on the suc-
cess of phase III clinical programs, comparing both tradi-
tional and adaptive approaches. Specifically, we consider
the probability of success for demonstrating efficacy, the
probability of success for demonstrating lack of toxicity,
and the overall probability of success in phase III. Phase
II approaches are also compared based on the probability
of success of regulatory approval after phase III and ex-
pected profits as assessed by expected net present value
(NPV).

During the design of an adaptive dose-ranging study,
multiple choices must be made that significantly impact
the probability of success, supply requirements, logisti-
cal matters, and resulting costs. We consider a number of
these choices below.

1.1 Statistical Methodology

The most accurate statistical methods for selecting
the best dose to advance into phase III will yield the
highest probability of success in phase III. The choice of
methodology will also have financial and logistical im-
plications since methods that allow more flexibility, al-
though potentially more efficient, are also more difficult
to implement.

1.2 Number of Doses to be Studied

Traditional approaches to phase II development rely
on designs that include up to several doses and a control.
In some therapeutic areas, such as oncology, only one
dose may be studied. Unfortunately, at the beginning of
phase IIb one usually has very limited data on the clini-
cal endpoints, or even biomarkers, as well as very limited
information on toxicity. Thus, doses that are selected for
phase II evaluation may be too low to achieve maximum
efficacy, or may be in a region of the dose-response where

the efficacy has reached a plateau and toxicities predom-
inate. Alternatively, the spacing between the doses may
be too wide (Grieve and Krams 2005), and a dose with an
optimal balance of efficacy and toxicity may lie between
two adjacent doses.

On the other extreme, with designs like Bayesian
general adaptive dose allocation (GADA), one may be
tempted to study a large number of doses (e.g., the
ASTIN trial; Grieve and Krams 2005). Accordingly, one
should ask if, for any given situation, there is an optimal
number of doses to be studied so that, beyond that num-
ber, learning about the dose-response is not improved or
may even be less efficient. Furthermore, the impact of in-
cluding many doses on the trial’s logistical requirements
and the cost of supplies should be considered.

Others have evaluated the impact of the number
of doses included in phase II (Bornkamp et al. 2007;
Ivanova, Bolognese, and Perevozskaya 2008). Specifi-
cally, Bornkamp et al. (2007) considered three differ-
ent scenarios, namely five equally spaced doses, seven
doses, and nine equally spaced doses. In this study we
will consider two options: five equally spaced doses and
nine equally spaced doses.

1.3 Number of Interim Assessments

Phase II studies often benefit from flexibility in their
design. During the process of “searching” for the best
dose, it is desirable to be able to discontinue doses with
apparently inadequate efficacy or with excess toxicity, or
to add doses if the efficacy plateau has not been reached
and there is no apparent toxicity even with the highest
dose studied. Additionally, some designs like GADA and
the D-optimal response-adaptive approach (Bornkamp et
al. 2007) allow for adjustment in the allocation ratio
based on data observed in the trial itself, so that future
patients are preferentially allocated to the most relevant
parts of the dose-response curve. The number of interim
assessments can vary widely; the key question is whether
there is an optimal number of interim assessments, ei-
ther from the point of view of statistical efficiency or to
balance statistical efficiency with logistical difficulty. In
the current study, however, for reasons of practicality, we
considered the frequency of interim assessments to be out
of our scope.

1.4 Optimal Size of Phase II Relative to Phase III

Calculating the sample size required for an adaptive
phase IIb trial can be quite complex. The primary objec-
tive of a phase IIb trial is to select the “best” dose(s) for
use in a confirmatory trial, where the definition of the best
dose is based on an optimal balance of efficacy and toxic-
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ity. In addition, during phase IIb, one also hopes to obtain
a good estimate of the efficacy of the selected dose(s),
to be used in calculating the sample size required for
subsequent phase III trial(s). Trade-offs associated with
a smaller sample-size investment in phase IIb include:
(1) more doses may have to be studied in the confirma-
tory phase due to insufficient knowledge of the dose re-
sponse, increasing phase III cost and complexity; (2) a
larger sample size may be necessary in the confirmatory
phase due to uncertainty regarding the treatment effect, to
avoid having the confirmatory trial fail for lack of demon-
strated efficacy (Type II error); and (3) a greater proba-
bility of having to discontinue a dose in phase III due to
previously unappreciated toxicity. On the other hand, a
larger phase IIb study may both increase costs and delay
the initiation of phase III. A long delay can also reduce
the expected net present value (NPV) of the product.

Bornkamp et al. (2007) addressed the impact of two
sample sizes, 150 and 250 subjects, on multiple phase IIb
outcomes. We extend that prior work by addressing the
following questions: (1) what is the impact of the phase
II sample size on the probability of success in the phase
III; and (2) what is the impact of the phase II sample size
on the product’s expected net present value?

1.5 Dose-Selection Criteria for Phase III

The selection criteria for selecting the dose(s) to be
carried forward into phase III may be based solely on
efficacy or on a balance of efficacy and toxicity. The re-
liability of any criteria is limited by the amount of infor-
mation available in phase II. This limitation is particu-
larly important in assessing toxicity, given that toxicity
information is usually accrued at a slower rate than in-
formation on efficacy. If the dose-selection criteria are
based on efficacy only, then one may choose a dose with
a minimum clinically significant difference or a dose be-
yond which there is no meaningful improvement in ef-
ficacy. Toxicity considerations can then be incorporated
into the decision criteria qualitatively, perhaps by using
an independent data monitoring committee (IDMC) to
provide a dose selection recommendation to the spon-
sor. Another method for incorporating toxicity consid-
erations into dose selection criteria is to create a utility
function which combines the positive benefits from ef-
ficacy and the negative effects of toxicity (Berry et al.
2001; Dragalin and Fedorov 2006). Finally, toxicity con-
siderations can be incorporated into decision criteria im-
plicitly, by selecting a dose with a certain percent of the
maximum efficacy, for example, a dose delivering 95%
of the maximum efficacy, denoted the ED95 (Grieve and
Krams 2005).

1.6 Number of Doses to Take into Phase III

While advancing a single dose into phase III is ap-
pealing and allows a simpler trial design, there are rea-
sons to consider advancing more than one dose into the
confirmatory stage (Hemmings 2007). Sometimes the
difference in efficacy between two doses in phase II is
too small to allow a reliable choice, or an unexplained
or implausible inverse dose relationship might have been
observed. More often, the toxicity data collected during
phase II may be inconclusive. It may be unclear after
phase II if the efficacy of the lower doses is sufficiently
good to warrant an approval while, simultaneously, there
may remain some concerns associated with the toxicity
of the higher doses. For many indications, the increase
in the expected revenue from an increased probability of
product approval may be greater than the additional costs
incurred by considering another dose in phase III. In or-
der to address this issue, we have conducted a formal cost
analysis.

2. Methods

2.1 Objectives

The purpose of this study is to assess the impact of
phase II design characteristics on the probability of suc-
cess in phase III (defined as the probability of two suc-
cessful, pivotal confirmatory trials, as usually required
for regulatory approval) and on the expected net present
value of the product. The impacts of the following phase
II characteristics were studied: (1) the statistical ap-
proach to dose selection; (2) the sample size used in
phase II; (3) the number of doses studied in phase II; and
(4) the number of doses selected to advance into phase
III.

2.2 Scenarios

To include a broad range of scenarios in the sim-
ulations, we considered all seven statistical approaches
to phase II dose selection described by Bornkamp et al.
(2007), four efficacy/toxicity dose-response profiles (see
Figure 1), two phase II sample sizes (total of 150 and 250
patients), two numbers of doses to be included in phase
II (5 and 9), and either one or two doses selected in phase
II to advance into phase III.

2.3 Primary Endpoint

As in the study by Bornkamp et al. (2007), the exam-
ple indication used in this study was neuropathic pain and
the primary endpoint was a change in pain from baseline
to Week 6, as measured by a Visual Analog Scale (VAS).
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Figure 1. Assumed efficacy-dose response profiles. This figure shows the four dose-response relationships assumed in the simulations, denoted
umbrella (quadratic), Emax, linear, and logistic. These represent a subset of the dose-response relationships considered by Bornkamp et al. (2007).

The VAS takes values between 0 (no pain) and 10 (high-
est pain) on a continuous scale (Gallagher, Liebman, and
Bijur 2001).

2.4 Phase II Design

2.4.1 Statistical Approaches

In this study we focused on the statistical approaches
to dose selection that were described and evaluated by
Bornkamp et al. (2007). These approaches can be classi-
fied into three broad groups:

1. Traditional: The traditional approach relies on
analysis of variance (ANOVA) to compare each
dose’s response to control, using Dunnett’s adjust-
ment (Dunnett 1955) to control for multiplicity.
The data analysis is completely prespecified and
no adaptation is used in either the design or the
analysis.

2. Adaptive Design: Approaches that allow study
design parameters to be changed during trial
conduct based on the data collected within the
trial. Two design-adaptive approaches were stud-
ied: (1) Bayesian general adaptive dose alloca-
tion (GADA); and (2) the D-optimal response-
adaptive approach (D-Opt). The GADA method

uses Bayesian dose-response modeling to borrow
information across nearby doses and longitudinal
modeling to use all available information from
subjects with incomplete data. Dose allocation is
based on minimizing the variance of the parameter
of interest (e.g., the response at the target dose).
In the D-Opt method, allocation proportions are
adapted in a group sequential manner to maximize
the expected information over the dose-response
curve, according to the D-optimality criterion.

3. Adaptive Analysis: Approaches in which the best
method for analysis is driven by the data collected
during the trial, but there are no response-adaptive
changes in dose allocation during the trial. The fol-
lowing adaptive analysis methods were studied: (1)
a combination of modeling and multiple compar-
isons procedures proposed by Bretz, Pinheiro, and
Branson (2005), denoted MCP-Mod; (2) a multiple
trend test (MTT) approach based on selecting three
curves (upper, lower, and middle) from a class of
sigmoid Emax models to minimize the power of the
associated triple trend test; (3) Bayesian model av-
eraging (BMA) in which a set of relatively simple
dose response models, and priors that include both
model weights and the model parameters them-
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selves, are updated using standard Bayesian infer-
ence to obtain posterior estimates for the dose-
response; and (4) a nonparametric linear regres-
sion approach (LOCFIT) that relies on model-free,
nonparametric regression, with a local quadratic
regression technique used for the dose-selection
step.

More detailed descriptions of each of these methods
can be found in Bornkamp et al. (2007).

2.4.2 Dose-Response Profiles

Four assumed dose-response relationships for effi-
cacy were simulated. These are denoted logistic, linear,
umbrella, and Emax. The four assumed dose-response
curves were

1. Logistic: 1VAS = 0.015 − 1.73/(1 + exp(1.2 ∗
(4− dose)))+ ε

2. Linear: 1VAS = −(1.65/8) ∗ dose+ ε

3. Umbrella: 1VAS = −(1.65/3) ∗ dose +
(1.65/36) ∗ (dose2)+ ε

4. Emax: 1VAS = −1.81 ∗ dose/(0.79+ dose)+ ε

where 1VAS denotes the change in pain, as assessed by
the visual analog scale (VAS) from baseline to six weeks
of treatment and ε represents the random error. These
dose-response profiles are a subset of those considered
by Bornkamp et al. (2007) and are shown graphically in
Figure 1.

If toxicity were not a factor then, for any monotonic
efficacy response, a higher dose would always be more
successful without any upper limit on the dose. This is
not the case in practice and, accordingly, we have im-
posed a toxicity penalty on increasing doses selected for
inclusion in phase III. The toxicity penalty function re-
flects the probability of a treatment-limiting toxicity be-
ing detected for a patient in a phase III trial. Four dif-
ferent toxicity penalty functions were applied, with each
theoretical efficacy profile having a corresponding toxic-
ity penalty function. It was also assumed that the dose-
response for the probability of detecting excess toxic-
ity in phase III would become steeper at higher doses.
Specifically, we assumed:

• For placebo, the assumed probability of a
treatment-limiting toxicity occurring for a patient
in phase III was 5%.

• The probability of a treatment-limiting toxicity oc-
curring for a patient in phase III for the target dose
was 6%. The target dose for each assumed efficacy

dose-response profile was the dose that yielded a
separation from placebo of −1.3 units in the VAS.
Since the dose in a dose-response model is de-
fined on the continuous scale, the target dose was
rounded to the nearest integer.

• The toxicity penalty function (i.e., the probability
of treatment-limiting toxicity occurring for a pa-
tient in phase III) was assumed to be linear be-
tween placebo and the target dose.

• At the dose just above the target dose, the as-
sumed probability of treatment-limiting toxicity
was 7.5%, unless this dose is also the maximum
dose studied (dose 8).

• The probability of a treatment-limiting toxicity in-
creased to 12% at the maximum dose (dose 8).

• The toxicity penalty function was exponential be-
tween the dose just above the target dose and the
maximum dose.

The resulting dose-response relationships, for the prob-
ability of a treatment-limiting toxicity occurring for a
patient in phase III, are shown in Figure 2, with each
toxicity dose-response profile corresponding to an effi-
cacy dose-response profile in Figure 1. The toxicity dose-
response profiles were constructed on an ad-hoc basis
to more severely penalize the selection of doses above
the upper limit of the target dose intervals defined in
Bornkamp et al. (2007). The goal was to favor the selec-
tion of doses within the target dose interval correspond-
ing to underlying dose-response efficacy model.

2.4.3 Phase II Sample Sizes

We used simulated sample sizes for the phase II tri-
als of 150 and 250 subjects, to mirror the prior work of
Bornkamp et al. (2007).

2.4.4 Number of Doses Studied in Phase II

Bornkamp et al. (2007) studied the performance of
phase II designs with five equally spaced, seven un-
equally spaced, or nine equally spaced doses. For the
work here, for reasons of practicality, we limited our
simulations to either five or nine equally spaced doses.
Specifically, the five doses were 0, 2, 4, 6, and 8 with “0”
denoting placebo and the other values denoting the dose
in an appropriate unit (e.g., milligrams). The nine doses
were the integers from 0 to 8, again with “0” denoting
placebo and the others the dose in an appropriate unit.
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Figure 2. Toxicity penalty functions. The toxicity penalty functions show the assumed probability that a patient would have a treatment-limiting
toxicity during a phase III trial, as a function of the dose selected for study in phase III and the underlying assumed efficacy dose-response
relationship.

2.4.5 Dose Selection Strategy

For dose selection, results from Bornkamp et al.
(2007) were used. These results included the estimated
dose-response for each combination of statistical dose-
selection method, assumed dose-response, phase II sam-
ple size, and the number of doses studied. In the original
work, the simulations had been repeated a minimum of
5,000 times for each scenario.

As a first step, we estimated the change from base-
line (difference between the response to any given dose
and placebo) in each simulated phase II trial. We then se-
lected the dose according to the rule associated with the
phase II statistical approach being evaluated. The dose
selection rules are detailed in Bornkamp et al. (2007).
The dose selection step occurred separately for each in-
dividual simulated phase II trial and since each simulated
trial was based on a different realization of simulated trial
data, different simulated trials might yield different se-
lected doses. Thus, even for a particular combination of
statistical dose-finding approach, phase II trial size, as-
sumed dose-response, etc., and with a single-dose phase
III design, we considered quantitatively the fact that dif-
ferent doses might be brought forward into phase III.
Since each pair of phase III trials that constituted a phase
III program were always based on the same simulated
phase II trial, they always included the same dose for

evaluation.
To evaluate phase III designs with two active doses,

the first dose was selected as described above. For the
second dose, we considered the dose immediately above
and the one immediately below the first selected dose,
selecting the one whose response was closer to the target
efficacy, the minimum clinically meaningful difference
(MCMD). Since each pair of phase III trials that consti-
tuted a phase III program were always based on the same
simulated phase II trial, they always included the same
two doses for evaluation.

2.5 Phase III Design

Our modeling of the phase III program assumed that
two pivotal confirmatory studies were necessary for a
successful submission. Thus, phase III success was de-
fined using a two-sided α = 0.05 on both trials, this being
a standard regulatory requirement. We then considered
two phase III designs, with either one or two active dose
arms with the doses selected as described above. Dun-
nett’s procedure (Dunnett 1955) was applied to control
for multiplicity for studies with two active dose arms.

2.5.1 Sample Size for the Phase III Study

For phase III trials with one active dose arm, the sam-
ple size was calculated to be 86 patients per arm, assum-
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ing the MCMD of −1.3 with a standard deviation (σ ) of
2.6, a two-sided α=0.05, and a power of 90%. These as-
sumptions were consistent with those used by Bornkamp
et al. (2007) except that the variance (σ 2) was inflated by
50%, under the assumption that the phase III populations
would be more diverse than those enrolled in phase II.

For phase III trials with two active dose arms, the
sample size was calculated to be 99 patients per arm. The
assumed MCMD, power, and standard deviation were the
same as for the phase III trial with one dose. To control
the Type I error rate, Dunnett’s adjustment was applied
(Dunnett 1955), resulting in a two-sided α = 0.027. It
was also assumed that one of the doses was going to fail,
so that the power determination was based on a single
arm. This results in a conservative estimate for the re-
quired sample size, equivalent to powering the trial for
one active arm using a two-sided α = 0.027, but includ-
ing an additional dose.

2.5.2 Probability of Success

For any given selected dose and corresponding dose
response model, we calculated the theoretical “true”
treatment effect. To evaluate the phase III designs with
a single active dose, the assumed theoretical response for
each selected dose was used to determine the power of
the phase III trial that would follow, based on the sample
size, α level, and this “true” effect size. This calculated
power represents the probability of success in demon-
strating efficacy.

The rule for determining unacceptable toxicity was
based on the difference in the number of patients ex-
periencing treatment-limiting toxicities between an ac-
tive dose and placebo arms. For the single active dose
case (N = 86/arm) the critical value for the rule was
4 (i.e., if the difference in number of patients experi-
encing treatment-limiting toxicity was 4 or more, the
dose would fail due to unacceptable toxicity). The crit-
ical value for the two active dose case (N = 99/arm)
was 3. Those critical values were chosen to ensure a
small chance (<5%) of failing a dose when its treatment-
limiting toxicity probability was the same as placebo, but
sufficiently high probability (> 70%) of rejecting doses
with treatment-limiting toxicity probabilities of 12% or
higher. The probability of success in demonstrating lack
of toxicity was then derived for each selected dose(s) un-
der a given toxicity dose-response profile, with respect
to the appropriate rule. The calculation of the probabil-
ity of success was then done assuming that successes in
demonstrating efficacy and a lack of toxicity were inde-
pendent. While this is a strong and potentially unrealistic
assumption, it allows a qualitative assessment of the im-
pact of the various factors considered in simulation sce-
narios. Further evaluations incorporating stochastic de-

pendence between efficacy and toxicity will be a topic of
future research.

For phase III trials with two active dose arms, we de-
clared success if at least one of the doses had significant
efficacy and lacked unacceptable dose-limiting toxicity.
The multiplicity correction to the Type I error rate, using
Dunnett’s procedure, was applied for efficacy. If one dose
was successful for efficacy only, while only the other
dose lacked unacceptable dose-limiting toxicity, then the
study was declared a failure. Likewise, the phase III pro-
gram was only declared a success if one of the selected
doses demonstrated both efficacy and a lack of unaccept-
able toxicity in both studies (i.e., the same dose in both
studies).

2.6 Comparisons Based on Financial Measurements

The goal of a drug development program is to bring
clinically meaningful enhancements to the armamentar-
ium of treatment options at the earliest possible time. The
best design for a single trial is one which provides scien-
tific integrity and validity, and delivers the highest infor-
mation value per resource unit invested. In other words,
we want to make the most of the information provided
by each subject participating in the trial. To address these
goals, we used simulated scenarios to compare each ap-
proach’s operating characteristics. In addition, however,
one must consider financial implications and, rather than
looking at the cost of any one trial in isolation, we must
consider the overall objectives of the clinical develop-
ment plan and make design choices with the end in mind.
Some questions to be addressed are:

• Does additional investment in phase II pay off suf-
ficiently, in terms of the improved probability of
success and consequent improvement in the ex-
pected net present value that it is worth investing
more in phase II?

• Similarly, does it pay to invest more in phase III
by including more than one drug dose in the con-
firmatory studies?

• What is the optimal resource allocation to the
phase II program relative to the phase III program?

The financial analysis should consider three aspects,
namely: (1) the information value of a design—the level
of certainty with which the research question is an-
swered; (2) the direct cost of a design—the cost to con-
duct the trial, including investigator cost, drug supply,
and management costs; and (3) the earliest time point
at which we acquire sufficient information to make the

475



Statistics in Biopharmaceutical Research: Vol. 2, No. 4

Table 1a. Phase II drug development program structures and costs used in determination of net present value

Traditional phase II Adaptive phase II

Criteria 250 Subjects 150 Subjects 250 Subjects 150 Subjects

Enrollment period 12 months 12 months 12 months 12 months
Total trial duration 18 months 18 months 18 months 18 months

No. of sites 50 50 50 50
No. of pages per CRF 260 250 260 250

No. of trials 1 1 1 1
No. of subjects per trial 250 150 250 150

Cost (USD) per each trial $15,178,016 $12,416,266 $15,293,254 $12,493,409

Table 1b. Phase III drug development program structures and costs used in determination of net present value.

Phase III

Criteria 1 Active Dose 2 Active Doses: Normal 2 Active Doses: Fast

Enrollment period 12 months 24 months 12 months
Total trial duration 18 months 30 months 18 months

No. of sites 50 50 100
No. of pages per CRF 260 270 270

No. of active dose arms 1 2 2
No. of trials 2 2 2

No. of subjects per trial 172 297 297
Cost (USD) per each trial $13,069,977 $17,095,465 $19,019,010

correct decision as to whether to move forward with a
regulatory submission.

In order to compare studies based on the expected
net present value, the first step was to calculate costs for
each individual drug development program, accounting
for all direct and indirect costs. Since the medical indi-
cation of neuropathic pain was used in our prior exam-
ples, cost parameters appropriate for conducting studies
in this indication were used. The trial structure and cost
assumptions used are presented in Table 1. The estimated
costs contain the operating expenditures and resources
that would be assigned to each trial. It was assumed that
both phase III trials would be conducted in parallel and
that the phase III program would not start until phase II
was completed.

In developing the estimated costs shown in Table
1, assumptions related to the number of sites, the trial
enrolment period, and the number of case record form
(CRF) pages were based on trials of a treatment for neu-
ropathic pain that was familiar to one of the authors but
proprietary. For resource estimates, a work-load forecast
was developed to address the required monthly resources
from various functional departments that would be in-
volved in these trials. The estimated resources were cal-
culated to address the activities involved during the set-
up period, the active period, and afterwards. Lastly, the

business model reflected the incurred costs from phase
II onwards and incorporated the period of exclusivity for
the compound from the time of registration.

The expected exclusivity period was calculated un-
der the assumption that the drug was novel and was not
biologic, and thus would have a 20-year patent life. It
was also assumed that it took 4 years in early develop-
ment, 6 years between the start of the patent life and the
beginning of the phase II program, and that registration
required one year. We used a discount rate of 1.1/year for
the net present value and assumed a tax rate of 37.5%.

We assumed the use of a phase II design with five
doses. We considered scenarios in which a larger, two-
dose phase III trial would take longer to complete (30
months versus 18 months) and scenarios in which both
trials could be completed in 18 months (Tables 1b and
2). The last scenario was included so that the impact of
the exclusivity period on the expected net present value
could be better assessed.

Finally, the expected revenues were included in the
calculation of expected net present value, reflecting the
likely market size for our example indication. We as-
sumed the revenue stream would increase linearly to
$500 million over the first 5 years, remain constant over
the patent life, and yield a decreasing income of $20,
$10, and $5 million for the three years after the expira-
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Table 2. Estimated years of patent life remaining after approval

Revenue (years)

Number of Patients Phase III with Phase III with 2 active doses: Phase III with 2 active doses:
in Phase II 1 active dose Normal enrollment Fast enrollment

150 10.5 9.5 10.5
250 10.3 9.3 10.3

tion of the patent. We assumed zero income 3 years after
the patent expired. The expected net present values pro-
vided are presented as mean values and standard devia-
tion, since each simulation run is associated with a single
expected net present value.

3. Results

3.1 Probability of Success in Demonstrating Effi-
cacy

The probability of success in demonstrating efficacy
in a phase III trial, as a function of the underlying dose-

response, the statistical approach, the sample size in
phase II, and the number of doses carried forward into
phase III (one or two), is shown in Figure 3. For almost
all dose-response profiles, adaptive design approaches in
general, and GADA in particular, demonstrated the high-
est probability of success for efficacy. This was true re-
gardless of the phase II sample size, number of doses
studied in phase II, or the number of doses selected to
be advanced into phase III. For the Emax dose-response
profile and the case in which two doses were carried for-
ward to phase III, however, all methods demonstrated a
very strong probability of success. This likely occurred

Figure 3. Probability of success in demonstrating efficacy in a phase III trial. This figure shows the probability of success in demonstrating ef-
ficacy in a single phase III trial, denoted “average power,” as a function of the assumed underlying dose-response profile, the statistical approach
used in phase II, the sample size in phase II, and the number of doses carried forward into phase III (one or two).
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Figure 4. The probability of demonstrating an acceptable toxicity profile in a phase III trial. This figure shows the probability of demonstrating an
acceptable toxicity profile in a phase III trial, as a function of the assumed underlying dose-response profile, the statistical approach used in phase
II, the sample size in phase II, and the number of doses carried forward into phase III.

because this profile implied a very steep improvement in
efficacy with dose, with meaningful efficacy starting as
low as a dose of 2. Therefore, when two doses are se-
lected for phase III evaluation, it is very unlikely for both
to fail on efficacy with this dose-response profile. Phase
II designs with 250 patients show slight, but consistent
improvement over designs with 150 patients.

Selecting two active doses to advance into phase III,
rather than one, resulted in a consistently higher proba-
bility of success for demonstrating efficacy. This may not
be surprising, given that we defined success to include the
possibility that only one of the two doses demonstrated
statistically significant efficacy, and simultaneously used
a conservative approach to sample size calculation that
incorporated the possibility that one dose would fail.

3.2 Probability of Demonstrating a Lack of Toxicity

Figure 4 shows the probability of demonstrating an
acceptable safety profile in a phase III trial, as a func-
tion of the underlying dose-response for efficacy (and
therefore the dose-response for toxicity), the statistical

approach, the sample size in phase II, and the number
of doses carried forward into phase III. It should first be
noted that toxicity was not part of the dose selection cri-
teria, and therefore any comparison of the methods based
on the toxicity of selected doses alone is unlikely to yield
useful insights. The probability of avoiding treatment-
limiting toxicity is just a reflection of how “high up the
dose response curve” various approaches will progress in
their search to find a dose with optimal efficacy.

The most striking characteristic of the results for the
probability of demonstrating a lack of treatment-limiting
toxicity is the gain in the probability of success obtained
by selecting two doses to advance to phase III. This gain
can be attributed to the “distribution of risk” associated
with defining a trial as successful even if only one of the
two selected doses demonstrates a sufficiently safe pro-
file. The largest difference in the probability of demon-
strating a lack of toxicity between designs with one or
two doses carried forward to phase III is for the Emax

dose-response profile. Similar to our observations for the
probability of success for efficacy, this can be attributed
to the large stepwise increase in the risk of treatment lim-
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Figure 5. The overall probability of success for an individual phase III study. This figure illustrates the overall probability of success for an
individual phase III study, meaning success in demonstrating both efficacy and a lack of treatment-limiting toxicity, as a function of the underlying
dose-response profile, the statistical approach used in phase II, the sample size in phase II, and the number of doses carried forward into phase III.

iting toxicity, from one dose to the next, for this dose-
response profile compared to the others.

3.3 Overall Probability of Success for a Single Phase
III Study

Figure 5 illustrates the overall probability of suc-
cess for an individual phase III study, meaning success
in demonstrating both efficacy and a lack of treatment-
limiting toxicity, as a function of the underlying dose-
response profile, the statistical approach used in phase
II, the sample size in phase II, and the number of doses
carried forward into phase III. Adaptive designs in gen-
eral, and GADA in particular, consistently outperformed
other phase II designs and methods. The only exception
to this pattern occurred in some cases with the Emax dose-
response profile. As we observed with the probability of
success for efficacy alone, phase II designs with 250 sub-
jects show consistently better performance than designs
with 150 patients.

We observed that phase III designs with two active
dose arms demonstrated better probability of success for
both efficacy and lack of toxicity when considered sep-
arately. Thus it is not surprising, as shown in Figure 5,

that bringing two doses forward into phase III, rather than
one, increases the probability of demonstrating both effi-
cacy and avoiding toxicity with at least one of the doses.
The only way this might not occur would be if there was
poor matching of safe and efficacious doses, that is, if
two-dose phase III trials tended to find one dose was effi-
cacious but not safe, while the other was safe but not ef-
ficacious. For the scenarios examined this is not the case,
and bringing two doses forward into phase III improved
the overall probability of success. One should note, how-
ever, that a total sample size for one of the phase III tri-
als with active two doses is 297, while the sample size
for a phase III design with one active dose is 172 (Table
1b). The important question, then, is whether the addi-
tional investment in larger phase III trials, as well as in
the larger phase II trial, pays off in terms of expected
revenues. This issue is addressed below.

3.4 Probability of Success for the Phase III Develop-
ment Program

For a phase III program to be successful, individual
trial successes must be achieved in both phase III trials.
The probabilities of success for the phase III program are
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Figure 6. Probability of success for the entire drug development program. This figure demonstrates the probability of success for the entire drug
development program, consisting of one phase II and two phase III trials, as a function of the underlying dose-response profile, the statistical
approach used in phase II, the sample size in phase II, and the number of doses carried forward into phase III.

Figure 7. Number of phase II doses considered and the probability of success for the entire drug development program. This figure demonstrates
the probability of success for the entire drug development program, consisting of one phase II and two phase III trials, as a function of the underlying
dose-response profile, the statistical approach used in phase II, the number of doses (5 or 9) considered in phase II, and the number of doses carried
forward into phase III. The number of subjects used in phase II was held constant at 250.
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shown in Figure 6. The probabilities of success for the
whole program are consistent with those for each phase
III study, except that the probabilities are scaled down,
reflecting the need for both phase III trials to be success-
ful.

Up to this point we have not explored the effect of
changing the number of doses considered in phase II on
the probability of success in phase III and the prior re-
sults assumed that nine doses were evaluated in phase II.
Figure 7 shows the probability of success for the phase
III program, consisting of two phase III trials, as a func-
tion of the underlying dose-response profile, the statisti-
cal approach used in phase II, the number of doses (five
or nine) considered in phase II, and the number of doses
carried forward into phase III. The number of subjects
used in phase II was held constant for these calculations.

In most cases, phase II designs with five treatment
arms performed better than those with nine treatment
arms. This was particularly the case for designs that do
not allow changes in design parameters based on results
from interim analyses. It appears that, for designs that do
not allow for dropping doses or adapting the allocation
ratio, the benefit of studying more doses may be limited
and allocating more patients to individual doses may be
more efficient. With added flexibility in the design, how-
ever, spreading the sample size seems to be more effi-
cient. For the D-Opt method, the performance of designs
with five or nine doses is about equal while, for the more
flexible GADA design, the performance of designs with
nine doses is frequently better than that of the design with
five doses.

3.5 Accuracy of Dose Selection

As noted above, the calculated probability of success
for our simulated phase III programs were quite low,
ranging from 35% to 65%. While a proportion of the
phase III failures can be attributed to treatment-limiting
toxicity, we wanted to further assess the performance of
our dose selection criteria to determine whether poor ac-
curacy or reliability in dose selection was contributing to
the phase III failure rate. Our dose selection criteria were
straightforward—we chose the dose that was the closest
to the MCMD. While the minimum efficacious dose is
of interest, the ultimate goal is to select the dose that op-
timizes the risk/benefit profile. Thus our dose selection
criteria could perform poorly because they were neither
structured to explicitly choose the dose with the best ef-
ficacy nor to explicitly incorporate considerations of tox-
icity.

Figures 8–11 illustrate the accuracy of the dose selec-
tion criteria for the logistic, linear, umbrella, and Emax
dose-response models, respectively. In each figure, the
dose with the highest overall probability of success is
identified, along with the distribution of doses selected
by the individual simulated phase II trials. In general, the

dose-selection criteria failed to select the dose with the
highest probability of success, tending to select a dose
lower in strength. The logistic dose-response model was
an exception, however, and was associated with more ac-
curate dose selection.

3.6 Expected Net Present Value

The years of patent life remaining after approval,
which we term the period of exclusivity, is a key deter-
minant of expected net present value which, of course, is
shortened with increasing duration of phase II or phase
III evaluation. The assumed enrollment times for the
phase II and phase III trial configurations that we have
considered are given in Table 1. The resulting expected
periods of exclusivity are presented in Table 2, demon-
strating that a larger phase II program results in a slightly
shorter exclusivity period, while the consideration of a
second dose in phase III shortens the period of exclusiv-
ity by almost 10%, unless the enrollment can be expe-
dited.

The mean expected net present value associated with
each strategy is shown in Figure 12 and the associated
standard deviations are shown in Figure 13. An increase
in sample size from 150 to 250 in phase II resulted in an
increase in the expected net present value for both adap-
tive and traditional designs. Similarly, considering a sec-
ond dose in phase III improved the expected net present
value after almost all designs, especially if the larger trial
could be completed quickly. The improvement of the de-
sign with two doses over the design with one dose was
the smallest for GADA. This may suggest that use of
more efficient phase II adaptive designs would require
less investment in phase III. The GADA and D-Opt meth-
ods resulted in the largest net present value, and often
the lowest variability, for the logistic, quadratic/umbrella,
and linear dose-response curves, but not for Emax. The
GADA method with one dose in phase III often outper-
formed all nonadaptive phase II methods with either one
or two doses used in phase III. The phase III trial with
two doses and fast enrollment results in steady improve-
ment in the expected net present value over the trial with
normal enrollment despite higher costs associated with
implementing such a trial.

4. Discussion

4.1 Factors Influencing the Probability of Phase III
Success

One striking finding from our simulations is the dis-
appointingly low probability of success for phase III
drug development programs, even under the assumption
that the compound being evaluated has clinically impor-
tant efficacy. Although we powered our studies at 90%,
the probability of phase III program success as a whole
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Figure 8. Distribution of selected dose with logistic dose-response. This figure illustrates the accuracy of the dose selection criteria for the logistic
dose-response model. The red vertical line in each panel represents the dose with the highest overall probability of success.

Figure 9. Distribution of selected dose with linear dose-response. This figure illustrates the accuracy of the dose selection criteria for the linear
dose-response model. The red vertical line in each panel represents the dose with the highest overall probability of success.

482

http://pubs.amstat.org/action/showImage?doi=10.1198/sbr.2010.08101&iName=master.img-007.jpg&w=377&h=248
http://pubs.amstat.org/action/showImage?doi=10.1198/sbr.2010.08101&iName=master.img-008.jpg&w=377&h=248


Dose Selection Strategies and the Probability of Phase III Success

Figure 10. Distribution of selected dose with umbrella dose-response. This figure illustrates the accuracy of the dose selection criteria for the
umbrella dose-response model. The red vertical line in each panel represents the dose with the highest overall probability of success.

Figure 11. Distribution of selected dose with Emax dose-response. This figure illustrates the accuracy of the dose selection criteria for the Emax
dose-response model. The red vertical line in each panel represents the dose with the highest overall probability of success.
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Figure 12. Mean of net present values according to phase II trial design. This figure illustrates the mean expected net present value according to
the phase II design used, the underlying dose response, the number of doses carried forward into phase III, and the rapidity of enrollment in phase
III.

Figure 13. Standard deviations of net present values according to phase II trial design. This figure illustrates the standard deviations of the
expected net present value according to the phase II design used, the underlying dose response, the number of doses carried forward into phase III,
and the rapidity of enrollment in phase III.
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was between 35% and 65% (35% to 60% for the phase III
design with one dose). It is noteworthy that the reported
industry failure rate is somewhere in the middle of that
range. We know that our assumed dose-response profiles
allowed for a maximum differentiation from placebo of
1.65 points, which is larger than the MCMD that we used
for our sample size calculations. So why was the rate of
failure so high? There are several likely reasons for this
that are sometimes ignored, sometimes overlooked, and
rarely addressed in study planning:

• A successful regulatory submission usually re-
quires two pivotal trials; however, power calcula-
tions are traditionally performed at the individual
study level and not at the program level.

• Individual studies and entire drug development
programs may fail because of the observance of
unacceptable toxicity.

• It is likely that suboptimal dose(s) are frequently
selected for evaluation in phase III.

There is a known asymmetry in all stages of drug de-
velopment, in that more attention is given to the evalua-
tion of efficacy than toxicity (O’Neill 2008). This is cer-
tainly true in the planning of most phase II dose-finding
studies and, in this case, this asymmetry was reflected
in our predefined dose-selection criteria. At the end of
phase II, the size of clinical databases is generally lim-
ited, and thus it is generally impossible to draw firm
conclusions regarding product toxicity. Nonetheless, one
should still make the best use of the available data in se-
lecting the dose or doses to be carried forward into phase
III. Some possible approaches to consider are:

• Selecting the maximum dose beyond which no fur-
ther beneficial effect is seen.

• Choosing the highest dose which still appears to
lack toxicity and shows a clinically relevant effect.

• Selecting the dose that yields the largest probabil-
ity of success based on both its observed efficacy
and toxicity profiles.

• Choosing a dose that maximizes a prespecified
“utility” function.

• Selecting the minimum dose that delivers a prede-
fined percentage of the maximum efficacy (e.g., the
ED90).

4.2 Use of Simulation to Guide the Planning of Drug
Development Programs

A key result of the current work is that the use of
a traditional approach (e.g., ANOVA) to dose selection
followed by bringing a single dose forward into phase

III may be associated with a low probability of success
and a markedly diminished expected net present value.
While these results illustrate the potential for poor per-
formance using traditional methods, they do not define
a single best approach for all circumstances, although
adaptive designs (and GADA in particular) appear to pro-
vide the most consistently well-performing approaches.
Choosing the best approach for an individual program
will generally require the use of simulations, similar to
those performed in the current study, to determine the
optimal structure and size for both the phase II dose-
selection and phase III confirmatory trials. In conduct-
ing these simulations, a larger number of options for the
number of doses to be included in phase II should be con-
sidered, as there may be a different optimal number of
doses for any given method used. Based on our simula-
tions, a larger number of doses should be included in a
GADA phase II trial than with non-design-adaptive ap-
proaches.

4.3 Return on Investment in Phase II

While increasing the phase II sample size generally
improves the probability of success in phase III only
slightly, the calculation of expected net present value
demonstrated that this investment is likely to pay off in
the long run. A larger sample size in phase II increased
both the probability of advancing into phase III, as well
as the probability of success in phase III, while it only
slightly increased the cost and slightly shortened the pe-
riod of exclusivity.

The probability of success is consistently much
higher in phase III designs with two active doses than
those with only one active dose and this results in an
increase in the expected net present value. After a tra-
ditional phase II dose-finding design, there is a big im-
provement in the probability of success if two doses are
studied in phase III and the resulting change in expected
net present value is positive. There is a smaller improve-
ment after the conduct of a GADA dose-finding trial.
This suggests that, by using an adaptive design in phase
II, one may reduce but not eliminate the need for a larger
investment in phase III. These conclusions, however, are
based on simulations and calculations conducted under
a specific set of assumptions, and we recommend that
program-specific simulations are used to help with deci-
sion making for any given development program.

5. Conclusions and Recommendations

Based on the specific dose-response relationships
modeled and dose-finding approaches studied, we found
that adaptive phase II dose-finding trial designs, and
GADA in particular, generally outperformed other de-
signs across a variety of the dose-response, sample size,
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number of doses studies, or the number of doses ad-
vanced into phase III. Thus, we believe the development
and evaluation of new phase II design-adaptive dose-
finding designs should be a key area of future develop-
ment. Simulation should play a key role in the devel-
opment and evaluation of new approaches, as well as in
the selection of strategies for specific development pro-
grams.

It is noteworthy that the dose-selection criteria we
applied often failed to select the optimal dose for phase
III. Thus, we believe greater emphasis should be placed
on selecting a dose or multiple doses that have the best
chance for approval based on both efficacy and a lack
of toxicity and that dose-selection criteria should directly
reflect this goal.

In the cases that we modeled, the probability of suc-
cess and the period of exclusivity have more impact on
the average expected net present value than the cost of the
program. This is likely to be the case for any indication
from which large revenues are expected. The investment
into a particular program, however, usually comes from
a limited source of money and it is important to analyze
investments affecting multiple programs at the portfolio
level.
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