
Journal of Experimental Botany, Vol. 62, No. 14, pp. 4927–4941, 2011
doi:10.1093/jxb/err188 Advance Access publication 25 July, 2011
This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

RESEARCH PAPER

Impact of down-regulation of starch branching enzyme IIb in
rice by artificial microRNA- and hairpin RNA-mediated RNA
silencing

Vito M. Butardo1,2,4,5, Melissa A. Fitzgerald4, Anthony R. Bird1,3, Michael J. Gidley5, Bernadine M. Flanagan5,

Oscar Larroque1,2, Adoracion P. Resurreccion4, Hunter K. C. Laidlaw1,2, Stephen A. Jobling1,2,

Matthew K. Morell1,2 and Sadequr Rahman1,2,*

1 CSIRO Food Futures Flagship, GPO Box 93, North Ryde, NSW 1670, Australia
2 CSIRO Plant Industry, GPO Box 1600, ACT 2601, Australia
3 CSIRO Food and Nutritional Sciences, PO Box 10041, Adelaide SA 5000, Australia
4 Grain Quality and Nutrition Centre, International Rice Research Institute, Los Baños, Laguna 4031, Philippines
5 Centre for Nutrition and Food Sciences, University of Queensland, Brisbane, Qld 4072, Australia

* To whom correspondence should be addressed. E-mail: sadequr.rahman@csiro.au

Received 6 February 2011; Revised 10 May 2011; Accepted 13 May 2011

Abstract

The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose

content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To

elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb

expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene
silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of

other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch

showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of

amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains.

Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the

hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more

pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch

granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of
attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic

index is discussed.
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Introduction

High amylose cereals are attracting considerable atten-

tion because of their potential health benefits, along
with their industrial uses (Jobling, 2004; Morell and

Myers, 2005; Rahman et al., 2007). High amylose maize

(Shannon et al., 2009), wheat (Regina et al., 2006; Sestili

et al., 2010), and barley (Morell et al., 2003; Regina et al.,

2010) have so far been developed. The apparent amylose

content (AAC) of these high amylose cereals ranges from

50% to 90% but, in rice, the highest reported AAC is only

;30% for wild types (Juliano, 2003) and between 25%
and 40% for chemical- and irradiation-induced mutants

(Yano et al., 1985; Nishi et al., 2001; Kang et al.,

2003; Yang et al., 2006). Recently, Wei et al. (2010a)

have reported higher amylose contents, but the

detailed characterization of the rice plants has yet to be

described.
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Amylose is the predominantly linear component of native

cereal starches with a degree of polymerization (DP) <5000,

whereas amylopectin is a very large (DP 5000–50 000) and

highly branched biopolymer (Ball et al., 1998). When rice

starch is debranched by isoamylase, amylopectin chains are

in the range of DP 6–120, while amylose is in the range of

DP 230–10 000 (Takeda et al., 2003; Ward et al., 2006;

Fitzgerald et al., 2009). Granule-bound starch synthase I
(GBSSI), encoded by the Waxy (Wx) gene, is essential for

amylose biosynthesis, while amylopectin is synthesized by

the combined action of several isoforms of starch synthases,

starch branching enzymes, and starch debranching enzymes

(Smith, 2001; Nakamura, 2002; Ball and Morell, 2003;

Tetlow et al., 2004; Jeon et al., 2010).

In most wild-type cereal starches, amylose is usually 15–

25% by weight and amylopectin is in the order of 75–85%
(Ball et al., 1998; Fitzgerald, 2004). Screening a subset of

the International Rice Research Institute’s germplasm

collection revealed that the range of amylose in wild and

cultivated rice ranges from 0% to 30% (Butardo et al.,

2008). To increase the levels of amylose further, one can

overexpress a suitable Wx allele (Itoh et al., 2003;

Hanashiro et al., 2008), but the more common method is

to down-regulate the expression of enzymes involved in
amylopectin biosynthesis to direct starch synthesis towards

amylose production (Morell and Myers, 2005; Regina

et al., 2006, 2010; Rahman et al., 2007).

The prime target for down-regulation to achieve high

amylose is starch branching enzyme II (SBEII) based on

elevated amylose mutants in maize, wheat, barley, and rice

(Boyer and Preiss, 1978; Nishi et al., 2003; Regina et al.,

2006, 2010; Wei et al., 2010a). The two isoforms of SBEII,
SBEIIa and SBEIIb (Vandeputte and Delcour, 2004), share

;80% sequence identity, but their expression patterns

differ. In rice, SBEIIa (RBE4) is primarily expressed in the

leaves while SBEIIb (RBE3) is primarily expressed in the

grains (Yamanouchi and Nakamura, 1992; Ohdan et al.,

2005; Yamakawa et al., 2007), although massively parallel

sequencing data indicate that it is also expressed weakly

in roots and seedlings (http://mpss.udel.edu/rice/mpss_
index.php). In vitro studies suggest that rice SBEIIb acts

preferentially on DP 6 and 7, while SBEIIa acts on a wider

range of chain lengths of DP 6–15 from the outer chains of

amylopectin and possibly amylose (Nakamura et al., 2010).

High amylose rice and maize, which exhibit the amylose

extender (ae) phenotype, result from the inactivation of

SBEIIb (Boyer et al., 1980; Hedman and Boyer, 1982; Yano

et al., 1985; Kim et al., 1998; Nishi et al., 2001). The ae

mutants in rice have higher AAC than their wild-type

parents, but only 35% AAC is found, in contrast to

50–75% in ae maize (Shannon et al., 2009).

Most high amylose mutants in rice have been obtained by

chemical mutagenesis or by exposure to sublethal doses of

radiation (Yano et al., 1985; Kim et al., 2005; Shu et al.,

2006). Mutation of SBEIIb in rice (Yano et al., 1985;

Asaoka et al., 1986) and in maize (Moore and Creech, 1972;
Boyer et al., 1976; Garwood et al., 1976) was accomplished

by directly mutating the genome, hence the expression of

active SBEIIb in the entire plant is affected. Furthermore,

genetically tightly linked but uncharacterized mutations

may also be present in the genome. Possible effects on the

whole plant from such genomic alterations can be avoided

by RNA silencing using seed-specific promoters (Wang

et al., 1998; Kawakatsu et al., 2008; Qu et al., 2008). RNA

interference using hairpin RNA (hp-RNA) has been suc-

cessfully demonstrated in wheat (Regina et al., 2006; Sestili
et al., 2010) and in barley (Regina et al., 2010) endosperm.

Another method that has been recently developed is RNA

silencing by artificial microRNA (amiRNA) (Ossowski

et al., 2008). Although this has not yet been successfully

demonstrated in cereal endosperm, one study was able to

silence the expression of three rice genes systemically in

japonica (Nipponbare) and indica (IR64) backgrounds using

an amiRNA driven by a ubiquitin promoter (Warthmann
et al., 2008).

In the present study, the expression of SBEIIb in the

endosperm has been reduced using both hp-RNA and

amiRNA approaches. The amiRNA approach reduces yet

further the possibility of non-specific targets, and this paper

reports the first, highly effective, use of this technique in the

grain endosperm. It is shown here that the ae phenotype in

rice can be obtained by down-regulating the expression of
SBEIIb alone, thereby further corroborating previous find-

ings that this mutation is due to a defective SBEIIb. It is

further demonstrated that the phenotype in a japonica

background is due solely to the increased proportion of

long amylopectin chains, not to an increase in ‘true’

amylose. Rice grains with different crystalline polymorphs

and digestibility were obtained using the two different

techniques although they only differed slightly in starch
branch length distribution, and these starches are compre-

hensively characterized herein.

Materials and methods

Construction of RNA silencing expression vectors

The construction of SBEIIb hairpin RNA (hp-BEIIb) was based
on previous methods (Regina et al., 2006, 2010). Briefly, a 397 bp
SBEIIb fragment located at the 5’ end of the SBEIIb gene (254–
650 bp of LOC_Os02g32660 based on Oryza sativa MSU Osa1
Release 6.1 Annotation) was PCR amplified (Supplementary Table
S1 available at JXB online) from Nipponbare cDNA and cloned
into pGEM-T Easy (Promega) using Escherichia coli DH5a. The
cloned SBEIIb fragment was inserted in forward and reverse
orientations in an intermediate cloning vector containing a wheat
high molecular weight glutenin (wHMWG) promoter and a nopa-
line synthase (NOS) 3’ terminator (pBx17). The hairpin construct
was then transferred into an Agrobacterium Ti binary expression
vector (pVec8) containing a hygromycin resistance gene driven by
a cauliflower mosaic virus (CaMV) 35S promoter (Wang et al.,
1998). The binary vector containing the hp-BEIIb sequence was
electroporated and maintained in Agrobacterium tumefaciens
AGL1 using LB broth supplemented with 50 lg ml�1 rifampicin
and spectinomycin.
The construction of SBEIIb artificial microRNA (ami-BEIIb)

was based on a previous protocol (Warthmann et al., 2008), with
modifications to express the amiRNA in the endosperm using
pVec8. A 21 nucleotide microRNA (miRNA) target located at the
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middle of the SBEIIb gene (1258–1278 bp) was identified using
Web MicroRNA Designer 2 (WMD2) (Ossowski et al., 2008). An
amiRNA was selected from the list of potential amiRNAs based
on its binding energy and specificity with the target gene. The
secondary structure of ami-BEIIb in the osa-mir528 backbone was
predicted using RNAfold (Hofacker et al., 1994).
The selected amiRNA (TTAATGCGTATCTGTACCATG) was

synthesized by fusion PCR (Supplementary Table S1) using
Expand Taq (Roche) and osa-mir528 (Liu et al., 2005) endogenous
miRNA precursor as stem–loop backbone (Warthmann et al.,
2008). After PCR purification using Wizard SV PCR Clean-up
System (Promega), the amiRNA precursor (254 bp) was cloned
into pGEM-T Easy (Promega) using E. coli DH5a. The resulting
amiRNA (ami-BEIIb) was cloned in the forward orientation as
described above.

Nipponbare transformation

Rice transformation was undertaken by standard procedures as
previously described (Upadhyaya et al., 2000) but using 50 mg l�1

hygromycin to select for transformed calli. Regenerated hygrom-
ycin-resistant plants were acclimatized for 1 week inside a moist
growth chamber before they were individually planted in pots
(8 cm diameter) with soil supplemented with 1 g kg�1 Osmocote
(Scotts Australia). The pots were maintained in submerged tanks
inside a biosafety glasshouse with temperature maintained at
26.563.5 �C. The succeeding generations of transgenic and control
plants were grown under similar conditions.

Genomic DNA analyses

Genomic DNA was extracted from 1-month-old leaves using
a FastDNA Kit (Q-BIOgene). Initial screening for putative
transformants was done using the hygromycin resistance gene
(Supplementary Table S1 at JXB online). The putative trans-
formants were verified using gene-specific primers that amplify
a fragment containing a portion of the wHMWG promoter and
a portion of the forward hp-SBEIIb or ami-SBEIIb fragment
(Supplementary Table S1). PCR amplification was carried out
using HotStar Taq (Qiagen) and products were resolved in
1% agarose in 13 TBE buffer using Hyper Ladder IV (Bio Line)
as molecular weight standards.
Southern blot analysis was carried out as described (Lagudah

et al., 1991) but using 6 M ammonium acetate to precipitate
protein contaminants (QH Zhu personal communication) prior to
the final precipitation with isopropanol. A total of 5 lg of DNA
per sample was digested with the restriction enzymes BamHI/
EcoRI/XbaI and resolved in 13% agarose, using the wHMWG
promoter digested with BamHI/SphI as the molecular weight and
positive control. Hybridization and wash conditions were as
previously described (Rahman et al., 1997), using 25% formamide
for hybridization.

Gene expression analyses

Total RNA from 10 dpa (days post-anthesis) rice grains was
extracted using Trizol Reagent (Invitrogen). Long RNAs were
purified using a Nucleospin miRNA extraction kit (Macherey-
Nagel) and quantified using Nanodrop 1000 (Thermo Scientific). A
total of 5 lg of long RNA template was used to synthesize cDNA
using SuperScript III reverse transcriptase (Invitrogen). Quantita-
tive real-time PCR (qRT-PCR) was done in a Rotor-Gene 6000
(Corbett) using 100 ng of cDNA template amplified using pre-
viously published branching enzyme and starch synthase primers
(Hirose and Terao, 2004; Ohdan et al., 2005; Yamakawa et al.,
2007). Real-time PCR amplification was conducted using Platinum
Taq DNA polymerase (Invitrogen) and Sybr Green I (Invitrogen)
reporter dye. Comparative quantitation was conducted using
tubulin as a reference gene (Toyota et al., 2006), with data

validation and melt curve analysis done using Rotor-Gene 6000
Series Real Time Rotary Analyzer Software (Corbett).

Protein expression analyses

Anti-rice SBEIIa was developed by conjugating the sequence
IPAVAEASIKVVAED or AGAPGKVLVPG (GC was added to
the C-terminal end of both peptides) to either keyhole limpet
haemocyanin or ovalbumin. The antiserum raised in rabbits
against AGAPGKVLVPG conjugated to ovalbumin was validated
to be the most satisfactory and was used for the experiments
described herein. On the other hand, anti-wheat SBEIIb rabbit
polyclonal antibodies (Regina et al., 2005) which were shown by
mass spectrometry to recognize SBEIIb in rice (unpublished data)
were used for the western blot detection of SBEIIb.
Native soluble proteins were extracted as previously described

(Regina et al., 2006). A total of 100 lg of protein quantified using
Coomassie Protein Assay Reagent (Bio-Rad) was loaded into each
lane. Two gels blotted separately were prepared to detect SBEIIa
and SBEIIb individually using anti-SBEIIa and anti-SBEIIb
antisera (1:2000 dilution). The immunoreactive proteins were
probed by goat anti-rabbit immunoglobulins conjugated to
horseradish peroxidase (Bio-Rad). Detection was carried out using
ECL Western Blotting Detection Reagents (GE Healthcare) and
Hyperfilm ECL chemiluminescence film (Amersham Biosciences).
The film was developed using a CP 1000 automatic film processor
(Agfa).
Branching enzyme zymograms were carried out as described

(Nishi et al., 2001), with slight modifications. For each lane,
100 lg of total protein was loaded and resolved using native
PAGE with 3.3% stacking and 5% separating layers. The gel was
incubated overnight with gentle shaking at ambient temperature
using a branching enzyme buffer (Nishi et al., 2003) containing
1 mM dithiothreitol (DTT) and 1.8 mM maltotriose. The addition
of maltotriose was found to enhance the detection of branching
enzyme activity (JP Ral, personal communication). The gel was
stained with iodine solution (0.1% I2 and 1% KI) the following
day. The reduction in branching frequency of debranched starch
was determined based on a reducing end assay (Bernfeld, 1955) as
modified by Regina et al. (2010).

Grain and starch granule analyses

Mature panicles were harvested and dried at 37 �C for at least 3 d.
The seeds were then manually threshed and machine dehulled
(Satake). Ten brown grains from selected lines were chosen and
weighed in triplicate. Grain appearance and dimensions were
determined using a SeedCount (SeedCount Australasia Pty Ltd),
with the digital image analysis software module for medium grain
rice. Opacity was measured using the chalkiness index for the
Australian rice industry standard. Photomicrographs of whole rice
grain samples were obtained using a Leitz M8 stereomicroscope.
Cross-sections of rice grains were observed uncoated with an

environmental scanning electron microscope (Zeiss EVO LS15)
under variable-pressure mode. Images of starch granules were
taken with a back-scattered electron detector. Starch granules were
isolated and viewed under a polarized light microscope to check
for birefringence. The isolated starch granules were also stained
with APTS (8-amino-1,3,6-pyrenetrisulphonic acid) and viewed
under a fluorescence microscope as previously described (Wei et al.,
2010a).
Characterization of starch crystallinity by X-ray diffraction

(XRD) was carried out on a Panalytical X’Pert Pro diffractometer.
The instrument was equipped with a Cu long fine focus tube,
programmable incident beam divergence slit and diffracted beam
scatter slit (both fixed at 0.125 �), and an X’celerator high speed
detector. The samples were examined over the angular range of
4–40 � with a step size of 0.0332 � and a count time of 220 s per
point. Crystallinity was determined using the crystal defect method
as previously described (Lopez-Rubio et al., 2008).
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Solid-state 13C cross-polarization/magic angle spinning
(CP/MAS) nuclear magnetic resonance (NMR) experiments were
performed at a 13C frequency of 75.46 MHz on a Bruker MSL-300
spectrometer. A standard of amorphous, regular maize starch was
prepared by heating a starch suspension (1% w/v) for 30 min at
95 �C. The suspension was then lyophilized. Approximately
200 mg of rice flour was packed in a 4 mm diameter, cylindrical,
partially stabilized zirconium oxide (PSZ) rotor with a KelF end
cap. The rotor was spun at 5 kHz at the magic angle (54.7 �). The
90 � pulse width was 5 ls and a contact time of 1 ms was used for
all starches with a recycle delay of 3 s. The spectral width was
38 kHz, acquisition time 50 ms, time domain points 2 k, transform
size 4 k, and line broadening 50 Hz. At least 1000 scans were
accumulated for each spectrum. Spectra were referenced to
external adamantane. Data fitting was carried out as previously
described (Tan et al., 2007).

Carbohydrate analyses

Brown rice grains from selected lines were polished for 1 min using
a fabricated machine with a circulating abrasive. Opaque or chalky
seeds from each line were ground with a metal ball bearing for 30 s
using an ESPE Capmix (3M). The amylose content of flour
samples was determined by iodine colorimetry against a standard
curve from five rice varieties whose actual amylose contents were
determined by debranched size-exclusion chromatography (SEC;
described below). Amylose estimations were done at two wave-
lengths: the traditional method using 620 nm (Juliano et al., 1981)
and using 720 nm which was found to reduce the effect of long
chain amylopectin on absorbance values (Fitzgerald et al., 2009).
Peak gelatinization temperature (GT) was measured by differential
scanning calorimetry (Cuevas et al., 2010).
The total starch content of rice flour (dry weight basis) was

determined using a Megazyme total starch assay procedure
(AACC Method 76.13) but adapted to a 96-microwell plate
format. For samples which showed a reduction in total starch
content compared with Nipponbare, resistant starch content was
determined (AACC Method 32-40) using the 96-well plate format
(Megazyme, Wicklow, Ireland). The resistant starch content was
added to the amount of solubilized (non-resistant) starch to
determine the actual total starch content.
Analysis of mixed-linkage b-glucan was conducted using

a scaled-down standard method (Megazyme) with modifications,
including using 50 mg of flour that was pre-washed in 1 ml of 70%
ethanol (80 �C, 20 min) to remove free sugars before washing in
50% ethanol (80 �C, 5 min) and resuspending in 1 ml of sodium
phosphate buffer (90 �C, 30 min). Subsequent incubations were
performed at 42 �C, including with lichenase (2 U, 90 min) before
a 20 ll aliquot of supernatant was taken (after 5 min centrifuga-
tion, 14 000 rpm) and addition of b-glucosidase (0.02 U ll�1,
30 min). After incubation with 200 ll of glucose oxidase/peroxi-
dase reagent, the absorbance (510 nm) was used to calculate
released glucose by blank subtraction. All flour incubations were
shaken (1200 rpm) on a Thermomixer (Eppendorf).
Total pentosan content was determined colorimetrically as

previously described by Bell (1985) with modifications. Following
hydrolysis of samples with sulphuric acid (0.5 M, 30 min, 100 C),
sugars were measured by adding 500 ll of freshly prepared reagent
(55 ml of acetic acid, 1.1 ml of HCl, 0.6 ml of 0.7% glucose, and
2.4 ml of 25% phloroglucinol in ethanol) to 100 ll of sample
containing 0–20 lg of pentose sugars (25 min, 100 �C); the mixture
was then cooled for 5 min. The difference in absorbance (A552–
A510) was used to calculate the pentosan content using a xylose
standard and a conversion factor of 0.88 to express the pentose
sugars in a polysaccharide form.
Determination of chain length distribution of amylopectin by

fluorescence-activated capillary electrophoresis (FACE) was per-
formed as previously described (O’Shea and Morell, 1996) with
debranching as described by Ward et al. (2006). Molecular size

distribution of debranched starch was determined by SEC as
previously described (Ward et al., 2006; Cuevas et al., 2010). Two
SEC columns were used: Ultrahydrogel 250 (Waters, Milford,
MA, USA) which starts separating debranched starch at a DP of
;2750, and Proteema (Polymer Standards Service GmbH,
Mainz, Germany) which starts separating at DP ;650. The
molecular weight was estimated from the elution time using
pullulan standards (Shodex P-82) calibrated with the Mark–
Houwink–Sakaruda equation and universal calibration (Castro
et al., 2005; Ward et al., 2006). A waxy rice was used to delineate
the debranched amylose and amylopectin regions with a cut-off
at DP 120 (Fitzgerald et al., 2009).

Resistant starch and glycaemic index predictions

The total resistant starch (RS) content and glycaemic index (GI) of
freshly cooked polished rice grains were predicted using an in vitro
incubation system which models the buccal, gastric, and pancreatic
phases of food digestion as occurs in the human upper gastrointes-
tinal tract. The methods have been extensively validated to have
a high correlation with in vivo RS levels and GI values (AR Bird,
S Usher, B Klingner, DL Topping, and MK Morell, unpublished
data). Rice samples were prepared using the absorption method
using a ratio of water to rice depending on amylose content
(Supplementary Table S2 at JXB online). A total of 50 mg and
500 mg of available carbohydrates were used to predict GI and
RS, respectively. For GI prediction, aliquots of supernatant were
sampled at the designated time points for up to 5 h and the glucose
concentration determined using an automated electrochemical
procedure.
The total starch content of freshly cooked rice was determined

based on a previously published protocol (McCleary et al., 1994)
after freeze drying and milling into a fine powder. The predicted
GI of the sample was calculated as the percentage of available
carbohydrate converted to glucose and released during the time
course of the incubation. For RS, the incubation period was
extended to 16 h and the amount of starch remaining in the sample
at that time was determined using conventional enzymatic and
spectrophotometric techniques. The predicted RS content of the
sample was calculated as the amount of starch remaining in the
digest as a percentage of sample weight.
Neutral non-starch polysaccharides (NNSPs) were measured by

a gas chromatographic technique using a slightly modified version
of Theander et al. (1995) (AOAC 994.13). The insoluble and
soluble NNSPs were separated by selective precipitation. The
insoluble NNSPs were hydrolysed with 1 M sulphuric acid, while
the soluble NNSPs were hydrolysed with 2 M trifluoroacetic acid.

Sampling and statistical analyses

Four generations of transformed lines (T0–T3) were selected for
analysis. Negative segregants and empty vector Nipponbare callus
regenerated by tissue culture were used as a negative controls for
every generation. One-month-old leaves (T0 and T1) and mid-milk
stage (10 dpa) grains (T1 and T2) were used for DNA and protein
analyses, respectively. Homozygous T3 grains (10 dpa) were used
for gene expression analyses. Developing T4 grains (5, 10, 15, and
20 dpa) were analysed by western blot and zymogram to compare
the extent of protein down-regulation between ami-BEIIb and hp-
BEIIb. Mature chalky to opaque grains were used for whole grain
and starch analyses for three generations (T1, T2, and T3) planted
at different seasons to assess stability of traits. At least three
biological replicates from three independent transformed lines
were used for every analysis, each with at least two technical
replicates. IR36 and IR36ae were obtained from Yanco Agricul-
tural Institute (NSW, Australia) and grown at the CSIRO Plant
Industry (ACT, Australia).
Statistical analyses [one-way analysis of variance (ANOVA)

with Tukey post-test, two-way ANOVA with Bonferroni post-
test, and unpaired t-test] were done using GraphPad Prism
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Version 5.03. Standard error of the mean (SEM) was used to
represent error values and error bars. Statistical significance was
defined as P <0.05.

Results

Constructs and genomic DNA screening

Two RNA silencing constructs were cloned into pVec8

(Wang et al., 1998): an artificial microRNA (ami-BEIIb,

Fig. 1A, B) and a hairpin RNA (hp-BEIIb, Fig. 1C), which

were expressed in the rice endosperm using a wheat high

molecular weight glutenin promoter. The selected amiRNA

fragment has a predicted hybridization energy of

–38.39 kcal mol�1, with a putative target cleavage site at
positions 10 and 11, and mismatches at positions 1 and 21

(Fig. 1B).

PCR screening of T0 plants revealed that ;75% of the

putative transformants contained the constructs (Supplemen-

tary Fig. S1 at JXB online). The transgenic plants stably

retained the hp-BEIIb and ami-BEIIb transgene in sub-

sequent generations (T1–T4). Southern blot analyses of

selected T1 plants revealed an insertion of one copy of each
silencing construct for most of the hp-BEIIb and amiRNA

plants tested (data not shown). Segregating PCR-positive T1

seeds (;3:1 ratio based on grain appearance) were planted to

obtain homozygous seeds. Four lines of hp-BEIIb and five

lines of ami-BEIIb were homozygous in the T2 generation

and this was verified up to T4. These lines were used in the

following experiments.

Gene expression analyses

Gene expression analyses of homozygous T3 lines by real-

time PCR revealed a >5-fold decrease in the expression of

SBEIIb in ami-BEIIb lines, while only a 2-fold decrease was

observed in transgenic lines harbouring hp-BEIIb (Fig. 2).

The expression of transcripts for other starch branching

isoforms (SBEI and SBEIIa) and major starch synthase

isoforms (SSI, SSIIa, and SSIIIa) was unaffected (Fig. 2).

Enzyme expression and activity detection

Western blot analyses showed trace levels of SBEIIb protein

in the hp-BEIIb lines at 10 dpa, which was undetectable in

the amiRNA lines (Fig. 3A), while the wild type had

considerably more SBEIIb. The levels of SBEIIa remained

similar to those of the wild-type Nipponbare for both the

ami-BEIIb and the hp-BEIIb lines (Fig. 3B). This was
verified by in-gel activity staining of branching enzymes,

which showed that SBEIIb activity was only detectable

in Nipponbare but not in the transgenic lines, while the

Fig. 1. Diagrammatic representation of the RNA silencing constructs (not drawn to scale). (A) A 21 nucleotide artificial microRNA (ami-

BEIIb)-based osa-miR528 was synthesized by fusion PCR and cloned into Vec8, a Ti binary vector with a wheat high molecular weight

glutenin promoter (wHMGPro) and nopaline synthase terminator (NOS). (B) The secondary structure of the osa-miR528 backbone as

predicted by RNAfold, including information on ami-BEIIb (reverse complement). The predicted target cleavage site (arrow with sequence

bold and highlighted) is located between positions 10 and 11 of the amiRNA, while the two mismatches (grey highlight) are located at

positions 1 and 21. (C) The hairpin RNA (hp-BEIIb) was cloned in Vec8 by inserting a 397 bp BEIIb fragment in the sense (BEIIb/) and

antisense (BEIIb)) orientations. The two fragments are flanked by two rice introns, Rint4 and Rint9, which form a hairpin loop. The

amiRNA and hp-RNA fragments were directionally cloned using several restriction sites (H, HindIII; B, BamHI; K, KpnI; N, NotI; E EcoRI;

S, SpeI).
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SBEIIa activity remained unaffected (Fig. 3C). The activity

of SBEI was unaffected (data not shown).

Western blot detection of developing T4 endosperm

revealed that one homozygous line of ami-BEIIb had stably

down-regulated and almost undetectable amounts of SBEIIb

at 5, 10, 15, and 20 dpa, while one homozygous hp-BEIIb

line had a down-regulated but higher concentration of

SBEIIb (Supplementary Fig. S2 at JXB online). In contrast,

the levels of SBEIIa in both lines were similar to those of

the Nipponbare control at each stage (Supplementary Fig.

S2). The decrease in branching enzyme activity due to

SBEIIb down-regulation led to reduced branching fre-

quency, with a decrease in the number of reducing ends per
milligram of starch from ;19 in Nipponbare wild type to 14

in the ami-BEIIb lines (Fig. 3D).

Grain and starch granule analyses

Polished grains of ami-BEIIb lines were opaque throughout

(Fig. 4A), while polished grains of the hp-BEIIb lines were

chalky, showing streaks of white along the translucent

endosperm (Fig. 4B). In comparison, Nipponbare grain
appeared uniformly translucent (Fig. 4C). Grain weight,

width, and thickness of the transgenic lines were lower than

those of Nipponbare (Table 1). Grain yield of the transgenic

lines was also lower than for Nipponbare (data not shown).

Scanning electron micrographs of ami-BEIIb (Fig. 4D)

and hp-BEIIb (Fig. 4E) lines revealed big and small

rounded starch granules with large spaces in between,

exhibiting a loss of compound granular organization. In

Fig. 3. Enzyme expression and activity detection using western

blots (A and B) and a zymogram (C) using 10 dpa grains. The

levels of BEIIb (A) in rice endosperm are down-regulated to

undetectable levels in ami-BEIIb (A1–A3) and to trace amounts in

hp-BEIIb (R1–R3) lines. The levels of BEIIa (B) are similar for the

transgenic and parental Nipponbare (NB) lines. Enzyme activity

detection (C) shows that BEIIb activity is only detectable in NB but

not in the transgenic lines, while BEIIa activity remains intact. This

result is corroborated by reducing end assay (D) which shows

a decreased concentration of reducing ends in the transgenic lines

which is more pronounced in ami-BEIIb. Mean values with different

letters are significantly different. Error bars indicate the SEM.

Fig. 4. Grain and starch granule morphology of transgenic lines. The

polished grain of ami-BEIIb (A) appeared chalky, and that of hp-BEIIb

(B) had some chalky character, compared with the translucent grains

of Nipponbare tissue culture control (C). At 31000 magnification, the

starch granules of the transformed lines are loose and rounded (D

and E), compared with the tight and angular granules in the control

(F). Big and small rounded starch granules were observed in the

transformed lines. The difference in starch granule morphology

appears to be more pronounced in the ami-BEIIb lines (D). Actual

grain dimensions are reported in Table 1.

Fig. 2. Gene expression analyses by quantitative RT-PCR. The

expression of SBEIIb was reduced 5-fold in ami-BEIIb lines and

only 2-fold in hp-BEIIb lines. The expression of other branching

enzymes and major starch synthases was unaffected. The rice

tubulin gene was used as a reference (Toyota et al., 2006) for

comparative quantitation. Mean values with different letters are

significantly different. Error bars indicate the SEM.
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contrast, the starch granules of Nipponbare appeared

compact, compound, and angular, with fewer spaces in

between (Fig. 4F). Changes in starch granule morphology

were more pronounced in ami-BEIIb (Fig. 4D) than in

hp-BEIIb (Fig. 4E). Isolated starch granules of hp-BEIIb and

ami-BEIIb stained with APTS did not show any distinct

difference from the wild type, and all showed normal

birefringence under polarized light (data not shown).
XRD analyses showed that some hp-BEIIb lines retained

the A-type starch crystalline polymorph (similar to the

Nipponbare as well as another wild type, IR36) while others

showed a mixture of A- and B-type crystallinity, also

known as C-type starch (Fig. 5). In contrast, all ami-BEIIb

lines fully shifted to B-type crystallinity, as also found in the

SBEIIb mutant IR36ae (Fig. 5). These differences were also

consistent with solid-state 13C CP/MAS NMR analyses
(Supplementary Fig. S3 at JXB online).

Starch structural analyses

The total starch content of hp-BEIIb and ami-BEIIb lines was

comparable with that of the control at ;90%, although the

ami-BEIIb lines contain a greater proportion of starch re-

sistant to enzymatic breakdown (Tables 1, 2). When measured

at 620 nm, a >2-fold increase in AAC was observed in ami-

BEIIb compared with Nipponbare (Table 1). The AAC levels
of the hp-BEIIb lines were also significantly elevated com-

pared with the control, but not as high as those of the ami-

BEIIb lines (Table 1). However, when measured at 720 nm,

the amylose content of ami-BEIIb lines was comparable with

that of Nipponbare (Table 1). The hp-BEIIb lines showed

a slight reduction, though this was not significant (Table 1).

Chain length distributions (CLDs) of debranched

starches revealed a decrease in the proportion of amylopec-
tin short chains (DP 6–12) with a concomitant increase in

the longer chains (DP >14) in both the amiRNA (Fig. 6A)

and hp-RNA (Fig. 6B) lines. The decrease in the ratio of

short chains was more pronounced in the amiRNA lines

than in the hp-BEIIb lines (>4% versus <3% for DP 9 and

10) (Fig. 6C). The same trend was observed for the increase

of longer amylopectin chains (Fig. 6C). The increase

reached up to 0.9% at DP 19 for the amiRNA lines, while

the corresponding increase for the hp-BEIIb lines was 0.7%.

The CLD of ami-BEIIb (but not hp-BEIIb) was very similar

to the amylose extender mutant IR36ae (Supplementary Fig.

S4 at JXB online).

The molecular size distribution of debranched starch
showed that the proportion of very long chains (DP >1000)

characteristic of linear or lightly branched amylose was not

altered in either hp-BEIIb or amiRNA lines (Fig. 7). The

proportion of debranched amylose chains (Supplementary

Table S3 at JXB online) roughly corresponds to the

proportion of apparent amylose as measured at 720 nm

(Table 1). Furthermore, an increase in the proportion of

chains greater than DP ;36 but <1000 in the transgenic
lines compared with the wild type was observed and this

was more pronounced for the ami-BEIIb lines (Fig. 7,

Supplementary Table S3). There was also a reduction in

debranched short amylopectin chains (DP 6–36) in the

transgenic lines, which was again more pronounced in ami-

BEIIb lines (Fig. 7, Supplementary Table S3). These results

are consistent with the increase in the average chain length

in the ami-BEIIb samples to DP ;400 compared with DP
;300 in the Nipponbare samples as deduced from the

number of reducing ends per milligram of starch (Fig. 3D).

Peak GT was significantly increased in ami-BEIIb

compared with the wild type (Table 1). The mean GT of

hp-BEIIb was slightly elevated but the difference was not

significant (Table 1).

Nutritional properties

The in vitro RS content of freshly cooked ami-BEIIb grains
was 10-fold higher than that of Nipponbare (Table 2). In

comparison, a 4-fold increase was observed for IR36ae

compared with its parent IR36 (Table 2). Moreover, the RS

content of ami-BEIIb grains was also considerably higher

than that of IR36ae. On the other hand, the RS values

Table 1. Comparison of generated transgenic lines with their parent Nipponbare Values reported are means 6 SEM. Mean values with

different letters are significantly different

Properties ami-BEIIb lines hp-BEIIb lines Nipponbare

Ten brown grain weight (mg) 140.368.5 a 144.265.7 a 205.262.3 b

Length (mm) 5.260.1 5.160.0 5.260.0

Width (mm) 2.760.1a 2.760.1 a 2.960.0 b

Thickness (mm) 2.060.0 a 2.060.0 a 2.260.0 b

Chalkiness (% per grain) 75–100 25–50 0–10

Total starch, flour samples (g 100 g�1) 91.461.7* 91.060.4 90.460.9

Total starch, freshly cooked grains (g 100 g�1) 86.960.6 86.060.4 85.560.0

Apparent amylose content (%) at 620 nm 41.260.5 a 34.061.6 b 19.660.7 c

Apparent amylose content (%) at 720 nm 16.960.4 a 13.760.8 b 15.260.2 a,b

Pentosans (%) 0.3160.02 a 0.2560.01 a 0.0560.01 b

b-Glucan (%) 0.0760.01 0.0560.01 0.0560.01

Neutral non-starch polysaccharides (g 100 g�1) 1.560.2 a 0.860.1 b 0.860.0 b

Peak gelatinization temperature (�C) 80.760.0 a 75.061.2 b 71.260.5 b

*Of which, 9.560.8 g 100 g�1 are resistant starch.
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obtained for hp-BEIIb were not significantly different from

the control (Table 2).

The predicted GI for ami-BEIIb was reduced compared

with Nipponbare and the SBEIIb mutant, IR36ae (Table 2).

The predicted GI of IR36ae was also decreased compared

with its parent IR36. The GI estimate for hp-BEIIb was

also reduced, but this was not significantly different from

the control (Table 2).
The NNSP content of ami-BEIIb lines was approximately

twice that of hp-BEIIb and Nipponbare (Table 1), while the

level of pentosans was significantly greater in ami-BEIIb and

in hp-BEIIb lines compared with the control. On the other

hand, the levels of b-glucans remained unchanged (Table 1).

Discussion

In the present study, the down-regulation of SBEIIb gene

expression (Fig. 2) in the rice endosperm was achieved using

an amiRNA (Fig. 1A, B) and a hp-RNA (Fig. 1C). This led
to the reduction of SBEIIb protein, SBEIIb enzymatic

activity, and the abundance of reducing ends present in

debranched starch (Fig. 3). SBEIIa expression was

unaffected (Fig. 3). The down-regulation of SBEIIb was

further confirmed using endosperm at different stages of

development, which also showed that SBEIIa expression was

unaffected (Supplementary Fig. S2 at JXB online). The

SBEIIa and SBEIIb isoforms are encoded by separate genes
in maize, wheat, and rice (Fisher et al., 1996). In wheat, the

down-regulation of SBEIIa leads to the down-regulation of

SBEIIb (Regina et al., 2006). In the current work, the

mRNA and protein levels as well as the enzymatic activity

of SBEIIa were not affected (Figs 3, 4), similar to what is

observed in an ae maize (Fisher et al., 1996; Gao et al., 1997)

and transgenic barley with down-regulated BEIIb (Regina

et al., 2010). Furthermore, the expression of BEI and other
major starch synthase isoforms were also unaffected (Fig. 3).

Even the expression of SSI, which is slightly down-regulated

in an ae mutant of rice (Nishi et al., 2003). and corn (Boyer

and Preiss, 1978), was not altered (Fig. 2), in either the

hairpin or amiRNA lines. These results indicate that RNA

silencing (Fig. 1) can be gene- and isoform-specific, given

a unique target sequence and an accurate target-finding

algorithm such as Web microRNA Designer (Ossowski

et al., 2008).

Comparison of artificial microRNA and hairpin RNA
techniques

RNA interference using hp-RNA was found to be effective in

down-regulating branching enzymes in wheat (Regina et al.,

2006; Sestili et al., 2010) and in barley (Regina et al., 2010), as

also demonstrated in this study (Figs 1–4). This study also

established that amiRNA (Fig 1A, B) is very efficient in
attenuating SBEIIb expression in rice grains (Fig. 2), demon-

strating the isoform specificity and efficacy of this technique in

regulating gene expression in the rice endosperm.

The amiRNA technique (Fig. 1A, B) was more effective

in reducing SBEIIb gene expression (Fig. 2) and in pro-

ducing more extreme starch properties (Figs 5–7, Tables 1,

2) than the hp-RNA technique for the traits assessed here.

The hp-BEIIb lines, especially those that retained the
A-type polymorph (Fig. 5), might not have exceeded an

RNA inhibition threshold necessary to achieve the pheno-

types produced by the ami-BEIIb lines. This was supported

by the observation that the amount of SBEIIb was more

stably reduced in developing endosperm of an ami-BEIIb

line compared with an hp-BEIIb line (Supplementary

Fig. S2 at JXB online). Very high amylose was not achieved

in potato because the necessary RNA inhibition threshold
was also not exceeded (Safford et al., 1998).

One advantage of the amiRNA technique is that mis-

matches can be deliberately introduced in its 21 nucleotide

sequence (Fig. 2) to facilitate not only mRNA cleavage

(Kasschau et al., 2003; Bagga et al., 2005; Schwab et al.,

2005) but also translational repression (Aukerman and

Sakai, 2003; Chen, 2004). Such mRNA cleavage and

Fig. 5. XRD patterns of starches with down-regulated SBEIIb and

its comparison with the wild type and the amylose extender

mutant. Two hp-BEIIb lines (hp-BEIIb A-type) share the same A-

type crystalline polymorph (peak at 18 �, but not 5 �, 2h) with the

wild-type rices (Nipponbare and IR36) while all four ami-BEIIb

shifted to a B-type polymorph (peak at 5 �, but not 18 �, 2h) similar

to IR36ae. Two hp-BEIIb showed a crystalline structure that is

intermediate between A- and B-type (hp-BEIIb C-type). Data are

off set for clarity.

Table 2. Nutritional properties of freshly cooked grains Values

reported are means 6SEM. Mean values with different letters are

significantly different.

Lines Resistant starch
cooked grains
(g 100 g�1)

Predicted glycaemic
index

Down-regulated BEIIb lines

ami-BEIIb 4.860.2 a 4461 a

hp-BEIIb 0.460.2 b 7968 b

Nipponbare 0.260.0 b 8562 b

amylose extender mutant

IR36ae 3.160.0 c 5462 a

IR36 0.760.4 d 6861 b
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translational repression is consistent with the observation of

the 4-fold reduction in the gene expression of SBEIIb

(Fig. 2) and the undetectable levels of SBEIIb protein and

enzymatic activity (Fig. 3, and Supplementary Fig. S2 at

JXB online).

Effects of down-regulating SBEIIb expression on starch
structure

The ‘amylose’ content of both ami-BEIIb and hp-BEIIb

lines was double that of the control when measured at
620 nm (Table 1), the wavelength routinely used for

Fig. 6. Chain length distribution (CLD) profile of debranched starch (A and B) and mol% difference of ami-BEIIb and hp-BEIIb compared

with Nipponbare (C). Compared with Nipponbare, ami-BEIIb (A) and hp-BEIIb (B) have reductions in DP 6–12 and an increase in DP 13

onwards. A difference plot (C) revealed that the reduction in short DP is more pronounced in ami-BEIIb (up to 4%) than in hp-BEIIb (up to

3%). Likewise, the increase in longer DPs is more pronounced in ami-BEIIb (up to 0.9%) than in hp-BEIIb (up to 0.7%). Error bars

indicate the SEM.
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apparent amylose content estimation (Juliano et al., 1981).

However, the molecular size distribution of debranched

starch revealed that down-regulating BEIIb, at least in

a japonica background like Nipponbare where GBSSI is less

active, does not increase the amount of the very long

amylose chains (Fig. 7, and Supplementary Table S3 at JXB

online). Instead, the reduction in the amount of BEIIb

alters starch properties by increasing the proportion of long
amylopectin chains (DP 37–120) and decreasing the pro-

portion of short amylopectin chains (DP 6–36) (Fig. 7, and

Supplementary Table S3). ‘Long amylopectin’ chains here

refer to the maximum DP spectrum observed in debranched

starch in the absence of a functional GBSSI. Based on the

result of Fitzgerald et al. (2009), debranched chains

observed in the absence of GBSSI, as in waxy rice lines,

have a maximum DP of ;120. In the same study, much
higher DPs are found in debranched starch of rice lines

where GBSSI is catalytically active, which can reach beyond

DP 7000. The general shift to longer branch lengths for

ami-BEIIb compared with hp-BEIIb seen in the SEC data

(Fig. 7) can also be observed in the FACE data (Fig. 6).

Moreover, the proportion of intermediate chains from DP

120–1000 was also elevated (Fig. 7, and Supplementary

Table S3), consistent with either significantly elevated levels

of amylopectin B3 and B4 chains (Hizukuri, 1986) or the

presence of short amylose branches. Longer average chain

lengths and increased proportions of intermediate fractions

were also observed in ae mutants of maize (Ikawa et al.,

1978; Yeh et al., 1981).
The total proportion of long amylopectin and intermediate

chains was 13% higher than Nipponbare for hp-BEIIb and

18% for ami-BEIIb (Supplementary Table S3 at JXB online).

Whether these debranched intermediate chains—longer than

traditionally found in amylopectin and shorter than classic

long chain amylose—are attached to amylopectin or amy-

lose, it is likely that they are the origin of the doubling of

apparent amylose content when measured using 620 nm
(Table 1). No difference in amylose levels was observed in

the transgenic lines compared with Nipponbare when the

estimation was done at 720 nm (Table 1). It is possible that

these intermediate chains complex with iodine in a similar

fashion to amylose, as they represent the main structural

difference between the transgenic starches compared with the

wild type (Figs 6, 7). If these intermediate chains connect

clusters of branching density similar to those of the wild type,
then little change in iodine binding would be expected due to

the disruptive influence of branch points on the formation of

the iodine complex. However, if these intermediate chains are

lightly branched, they could complex with iodine, explaining

the large increase in amylose content in the transgenic lines

(Table 1). It is therefore likely that the increased proportion

of intermediate chains is associated with lightly branched

structures so that that iodine binding occurs similar to linear
amylose.

Effects of amylopectin structure on starch granule
morphology and crystallinity

The ae mutants in maize are often associated with slight

reductions in grain dimensions and weight (Shannon et al.,

2009), as also observed in this study (Table 1). Additionally,

the opacity or chalkiness in grains (Fig. 4A, B, Table 1) is

consistent with previous observations (Nishi et al., 2001;

Sawada et al., 2009). The starch granules of the recombi-

nant lines (Fig. 4D, E) appeared loose and spherical and

seemed to have lost the higher level of organization into
compound granules that is seen in the control (Fig. 5F). The

increase in apparent amylose content also associates with

decreases in the proportion of angular starch granules and

increases in the proportion of elongated forms in maize

(Banks et al., 1974). Furthermore, chains intermediate

between amylose and amylopectin can distort starch

granule morphology (Blennow et al., 2003). The differences

in granular packing could therefore be due to the altered
molecular structure of the transgenic starches (Figs 6, 7).

A-type crystallinity is commonly found in cereal starches,

but mutations in SBEIIb often lead to B-type crystallinity

(Gerard et al., 1999; Tanaka et al., 2004; Kubo et al., 2008).

Interestingly, in the present study, the ami-BEIIb starches

Fig. 7. Debranched HP-SEC of transformed lines compared with

Nipponbare using (A) Ultrahydrogel 250 and (B) Proteema

columns. Intermediate length chains (apparent DP >37) were

increased while the short amylopectin chains (DP <36) were

decreased in both hp-SBEIIb and ami-BEIIb, with the changes

more pronounced in the latter. No change in the proportion of long

chain amylose peak (apparent DP >1000) was observed, while the

mutants have elevated amounts of intermediate material—longer

than traditionally found in amylopectin (DP 6–120) and shorter than

classic long chain amylose (inset).
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completely shifted to a B-type, while hp-BEIIb starches

retained the A-type, or exhibited the intermediate C-type

(Fig. 5, and Supplementary Fig. S3 at JXB online). The

results obtained by Tanaka et al. (2004) are illuminating in

this context. They reported that the absence of BEIIb in the

mutant EM10 resulted in B-type crystallinity but when the

mutation was complemented by the introduction of a BEIIb

transgene, the starch crystallinity changed from B to C to
A, depending on the strength of transgene expression. In the

results of this present study, it is clear that the ami-BEIIb

lines have more reduced SBEIIb expression than

the hp-BEIIb lines (Fig. 3, and Supplementary Fig. S2).

The reduction in the ami-BEIIb is sufficient to phenocopy

the EM10 and 7.8 lines reported by Tanaka et al. (2004),

whereas the reduction in the hp-BEIIb lines phenocopies

lines 9.8 (C type) and 106-1 (A type). Furthermore, the
difference in crystalline polymorphic form between ami-

BEIIb and hp-BEIIb is consistent with the slight increase in

longer amylopectin branches (Hizukuri et al., 1983) in the

ami-BEIIb lines compared with hp-BEIIb lines, as this

could cause a shift from the thermodynamically more stable

A form to the kinetically trapped B form (Gidley, 1987).

A difference in chains of DP 6–12 has also been associated

with a shift from the A-type to B-type polymorph in several
cereals (Hanashiro et al., 1996). Although it is not possible

in this study to separate the effects of the changes in long

amylopectin chains from the changes in the short amylo-

pectin chains, it appears that rice starch exists at the

boundary of the structural requirements for A- versus

B-type crystallinity, and that only a relatively small change

in amylopectin branch lengths of rice starch is sufficient for

this transition.
Wei et al. (2010a) reported that simultaneous antisense

inhibition of SBEI and SBEIIb (TRS line) only led to the

intermediate C-type crystalline polymorph, which may

indicate insufficient down-regulation of branching activity

as also observed in hp-BEIIb lines (Figs 2, 3). However,

alterations in starch granule morphology produced in the

TRS line are more extreme that what was observed in this

study (Wei et al., 2010a, b, c, d), maybe because the
antisense inhibition was done in a high amylose background

(Teqing). Elevated proportions of amylose chains might

introduce additional perturbations in granule packing in

this variety.

Effects of amylopectin structure on functional and
predicted nutritional properties

It is known that ae starch granules are more resistant to

thermal gelatinization than the wild type, at least in part

due to alterations in amylopectin fine structure (Tanaka

et al., 2004; Shannon et al., 2009). The decrease in short

chains and the increase in longer chains (Figs 6, 7, and
Supplementary Table S3 at JXB online) observed in the

ami- and the hp-BEIIb lines is consistent with previous

observations (Nishi et al., 2001) and with the proposed

branching role of SBEIIb in the crystalline lamellae of the

amylopectin cluster in the rice endosperm (Nakamura,

2002; Nakamura et al., 2010). Although B-type crystallites

melt at lower temperature than A-type crystallites of the

same chain length (Whittam et al., 1990), it is probable that

the higher peak GT in ami-BEIIb is due to the elevated

proportions of long amylopectin and intermediate chains as

compared with hp-BEIIb (Fig. 7, and Supplementary Table

S3). It was found that an ;6% decrease in the proportion of

chains of DP 6–12 relative to chains of DP 12–24 can lead
to an increase in GT of at least 10 �C in waxy rices (Cuevas

et al., 2010).

High amylose rice mutants, including the lines developed

in this study, are interesting from a nutritional perspective

because they are typically shown to contain higher levels of

dietary fibre and/or resistant starch (Lee et al., 2006; Shu

et al., 2006; Yang et al., 2006). The alterations in starch

digestibility are consistent with the observed alterations in
starch structure as it is known that linear amylose chains of

DP ;100 have the fastest rate of double helix formation

and retrogradation in water of any starch polymer (Gidley

and Bulpin, 1989). Increases in the proportion of DP 100

chains were observed (Fig. 7, and Supplementary Table S3

at JXB online).

In the lines described here, there is a 20-fold increase in the

proportion of resistant starch in the amiRNA lines compared
with hp-BEIIb and wild-type lines (Table 2). In fact the ami-

BEIIb lines have higher RS content than the traditional

amylose extender mutant IR36ae (Table 2). This is despite the

fact that ami-BEIIb is in a japonica background with

intermediate to low amylose content (Nipponbare), while

IR36ae is in an indica background with a high amylose

content (IR36). Likewise, the ami-BEIIb lines have lower GI

estimates compared with IR36ae (Table 2), despite the former
having a lower proportion of true amylose chains. This

strongly suggests that aside from amylose, intermediate chains

and long chain amylopectin molecules (Fig. 7) may play an

important structural role in rendering the starch molecule less

digestible. In particular, it appears that elevations in the

proportion of intermediate chains may be associated with

increase in the levels of resistant starch in rice.

Implications for starch biosynthetic pathways in cereals

While the rice mutants obtained by traditional mutagenesis

techniques in previous studies as well as the recombinant

lines obtained in this study have high apparent amylose
contents compared with common cultivated varieties, these

are significantly lower than apparent amylose contents that

have been reported for analogous mutations in maize, wheat,

and barley. In ae maize, lack of BEIIb is thought to be

partially complemented by BEIIa and BEI (Liu et al., 2009).

The same mechanism might also exist in rice. However,

maize can produce up to 50–80% amylose when SBEIIb is

altered, with levels increasing due to the presence of some
modifier genes (Shannon et al., 2009). Another reason for

this may be that in maize, the proportion of SBEIIb to

SBEIIa in the endosperm is 50:1 (Gao et al., 1997), whereas

in rice the ratio is closer to 5:1 (Regina et al., 2006).
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In contrast to maize, down-regulation of SBEIIb alone

did not significantly increase the levels of amylose in either

wheat or barley (Regina et al., 2006, 2010). This is because

SBEIIa is expressed at much higher levels in the grains of

both wheat and barley (Regina et al., 2005, 2010), than in

maize and even rice (Gao et al., 1997; Mizuno et al., 2001;

Ohdan et al., 2005). The differences in expression levels of

the SBEIIa and SBEIIb enzymes in cereals therefore appear
to define which of these two enzymes should be down-

regulated to generate high amylose starches. Furthermore,

since down-regulating BEIIa in wheat produces high

amylose (Regina et al., 2006) and down-regulating both

BEIIa and BEIIb (Regina et al., 2010) or SSIIa alone

(Morell et al., 2003) is necessary to produce high amylose in

barley, it appears that producing very high amylose in rice

might require modification of the expression of a different
combination of target isoforms. Even the simultaneous

down-regulation of SBEI and SBEIIb only resulted in

a doubling of the apparent amylose content despite

significant alterations in starch granule morphology (Wei

et al., 2010a, b, c, d). The use of amiRNAs, which has been

successfully demonstrated in this study to be effective in

producing a more extreme starch phenotype than the

conventional hp-RNA constructs, may be helpful in silenc-
ing other genes to produce very high amylose rice grains.

Comparison of the efficacy of these techniques in down-

regulating other genes in the cereal endosperm will be

important to better understand the relative efficacy of the

amiRNA and hp-RNA approaches.

Conclusion

The ae phenotype can be obtained by down-regulating the
expression of SBEIIb in rice using RNA silencing. For the

first time, the amiRNA technique was demonstrated to

facilitate RNA silencing in rice endosperm and was better at

producing a more extreme starch and nutritional phenotype

than the hp-RNA technique in these experiments. For rice

SBEIIb, the greater effectiveness of the amiRNA technique

resulted in distinct differences in rice starch chemistry,

crystallinity, and digestibility compared with the hp-RNA
technique. However, in order to obtain very high amylose

rice grains, the expression of multiple starch-synthesizing

enzymes may need to be down-regulated simultaneously.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. PCR screening of transgenic lines.

Figure S2. Western blot detection of SBEIIa and SBEIIb

in developing endosperms of ami-BEIIb and hp-BEIIb
compared with Nipponbare at four developmental stages.

Figure S3. 13C NMR CP/MAS spectrum and deconvolu-

tion of an ordered subspectrum of rice flour samples.

Figure S4. Chain length distribution difference (mol%) of

generated transgenic lines as compared with IR36ae.

Table S1. PCR primers used.

Table S2. Amylose classification and water to raw rice

ratio used during the absorption method of resistant starch

and glycaemic index estimations.

Table S3. Molecular size distribution of debranched

amylose and amylopectin chains of transgenic lines com-

pared with Nipponbare.
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