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Abstract. Realistic projections of changes to daily rainfall

frequency and magnitude, at catchment scales, are required

to assess the potential impacts of climate change on re-

gional water supply. We show that quantile–quantile map-

ping (QQM) bias-corrected daily rainfall from dynamically

downscaled WRF simulations of current climate produce bi-

ased hydrological simulations, in a case study for the state of

Victoria, Australia (237 629 km2). While the QQM bias cor-

rection can remove bias in daily rainfall distributions at each

10 km × 10 km grid point across Victoria, the GR4J rainfall–

runoff model underestimates runoff when driven with QQM

bias-corrected daily rainfall. We compare simulated runoff

differences using bias-corrected and empirically scaled rain-

fall for several key water supply catchments across Victo-

ria and discuss the implications for confidence in the magni-

tude of projected changes for mid-century. Our results high-

light the imperative for methods that can correct for temporal

and spatial biases in dynamically downscaled daily rainfall if

they are to be suitable for hydrological projection.

1 Introduction

Modelled hydrological response to climate change, condi-

tioned on regional climate projections, can inform water

supply planning for resilience on multi-decadal and longer

timescales. Global climate models (GCMs) provide broad-

scale projections (length scales of 100+ km) that are too

coarse for direct use in hydrological modelling; hence GCMs

are often dynamically downscaled using regional climate

models (RCMs) to provide regional (∼ 10 km length scale)

projections. RCMs can better capture the spatial variability

in rainfall change at the scale of catchment response, par-

ticularly where there is high spatial variability in rainfall

due to orography (Ekström et al., 2015; Grose et al., 2015;

Casanueva et al., 2016; Di Luca et al., 2016; Rummukainen,

2016). However, RCM rainfall characteristics such as daily

distributions and sequencing often do not match observa-

tions sufficiently well for them to be used directly as input

to hydrological models (Maraun et al., 2010; Ehret et al.,

2012; Rasmussen et al., 2012; Muerth et al., 2013; Räty et

al., 2014). Thus, “bias-correction” (BC) methods are com-

monly applied to adjust RCM rainfall output to match cer-

tain characteristics of the observed rainfall (Teutschbein and

Seibert, 2012). There is no “perfect” bias-correction ap-

proach; thus subjective decisions on their application to-

gether with methodological limitations are a source of uncer-

tainty in bias-corrected RCM rainfall and the resulting hy-

drological changes simulated using them (Lafon et al., 2013;

Teutschbein and Seibert, 2013; Teng et al., 2015; Ivanov

and Kotlarski, 2017; Maraun and Widmann, 2018; Potter et

al., 2018). Reported limitations of many daily rainfall bias-

correction methods include the inability to correct for bi-

ases in multi-day rainfall totals, or the daily sequencing of

wet and dry days (Chen et al., 2013; Addor and Seibert,

2014; Evans et al., 2017). More generally, bias correction

cannot correct for RCM errors inherited from GCM errors

in seasonality, temporal sequencing or large-scale circula-

tion biases that could result in unphysical climate projec-

tions (IPCC, 2015). Bias correction also assumes stationar-

ity in the quantile–quantile mapping (QQM) relationship, as-

suming that the mapping derived for the historical period ap-

plies under future climate conditions (Teutschbein and Seib-

ert, 2013).

There is also debate and uncertainty due to the modifi-

cations in the climate change signal (CCS) caused by the

bias correction (Ivanov and Kotlarski, 2017; Hagemann et

al., 2011; Dosio et al., 2012; Themeßl et al., 2012; Velázquez

Published by Copernicus Publications on behalf of the European Geosciences Union.



2982 S. P. Charles et al.: Impact of downscaled rainfall biases on projected runoff changes

et al., 2015; Mbaye et al., 2016; Switanek et al., 2017; Ivanov

et al., 2018; Sangelantoni et al., 2018). Teng et al. (2015) de-

termined that bias correction altered the change signal for

many characteristics, including high rainfall amounts, which

had a significant impact on simulated runoff and particularly

high flows. Ivanov et al. (2018) examined this issue and con-

cluded that the bias-corrected CCS resulting from correcting

RCM intensity distribution bias is defensible.

Here we report on the impact that bias-correcting daily

rainfall from WRF (Weather Research and Forecasting re-

gional climate model) has on the characteristics of projected

future runoff (i) across the state of Victoria in south-east Aus-

tralia and (ii) in more detail for 10 catchments within Victo-

ria. Potter et al. (2020) found that the QQM bias-correction

approach used to correct WRF-raw daily rainfall, applied on

a cell-by-cell seasonal basis, does not correct for underesti-

mation biases in wet–wet transition probabilities. Hence, as

we show, WRF-BC rainfall will tend to underestimate runoff

compared to runoff simulated using observed rainfall. At the

catchment scale both raw and WRF-BC rainfall underesti-

mate spatial correlation between cells within a catchment,

which is an additional source of runoff uncertainty. Similar

results and limitations have been observed for various BC

methods in the literature (Lafon et al., 2013; Teng et al.,

2015; Maraun, 2016; Rajczak et al., 2016; Maraun et al.,

2017).

2 Study area, data and methods

The state of Victoria in south-eastern Australia (Fig. 1) ex-

periences mild wet winters and hot dry summers, with large

interannual-to-decadal climate variability producing a signif-

icant impact on water availability for agriculture and water

supply for towns and cities (Kiem and Verdon-Kidd, 2010;

Chiew et al., 2014, 2018). Higher runoff is produced in high-

land (Victorian Alps) and coastal catchments along southern

and eastern coastlines. Low-runoff catchments are in the in-

ner western regions and western slopes of the Great Dividing

Range (Hope et al., 2017). Rainfall is projected to decline

across the state, together with increased intensity of extreme

rainfall events (DELWP, 2019).

Given these sensitivities to climate variability and change,

a research partnership (Victorian Climate Initiative, VicCI)

between Victoria’s state government (Department of Envi-

ronment, Land, Water and Planning: DELWP) and Australian

research organisations (Bureau of Meteorology and CSIRO)

was initiated to ensure that water policies and management

decisions were informed by the most up-to-date earth sys-

tems and climate change science (Hope et al., 2017). VicCI

produced projections using daily empirical scaling (Potter et

al., 2016). In this study we investigate QQM-BC dynami-

cally downscaled WRF rainfall simulations for their ability

to reproduce simulated runoff for observed conditions across

the whole state of Victoria and also, in more detail, for 10

water supply catchments selected on the basis of their hydro-

logical model performance in reproducing reference runoff

(study area and catchments shown in Fig. 1). The QQM-BC

approach, using the R package “qmap” using the methodolo-

gies developed by Gudmundsson et al. (2012), is applied for

each 3-month season (i.e. DJF, MAM, JJA and SON) to each

grid cell independently, mapping the simulated (WRF) to

the observed (AWAP) daily rainfall cumulative density func-

tion quantiles such that a WRF-simulated amount is replaced

with the observed rainfall amount for the corresponding per-

centile, with linear interpolation between percentiles and for

upper-tail simulated amounts greater than observed.

Thus, we investigate the historical performance and CCS

of runoff simulated from

a. WRF-raw rainfall.

b. WRF-BC rainfall (BC, by season, using QQM).

c. Observed rainfall that was empirically scaled accord-

ing to annual WRF-raw rainfall changes. For observed

rainfall we use AWAP (Australian Water Availabil-

ity Project) 5 km × 5 km gridded daily climate data,

available Australia wide, interpolated from station data

(Jones et al., 2009). The 5 km × 5 km AWAP daily rain-

fall was resampled to the 10 km × 10 km WRF grid

and then empirically scaled by the WRF change an-

nual factor, to give future rainfall. This empirical scaling

method (Chiew et al., 2009) rescales the historical grid-

cell time series by multiplicatively applying the changes

between historical and future period climate model pro-

jections. This can be applied on an annual basis, on a

seasonal basis, or in a two-step process first on a sea-

sonal and then on an annual to maintain the overall an-

nual change as projected by the climate model.

d. Observed (AWAP) rainfall that was empirically scaled

according to seasonal WRF-raw rainfall changes and

then rescaled to match annual WRF-raw rainfall

changes.

e. The seasonal WRF-BC rainfall from (b) twice rescaled

to firstly match WRF-raw seasonal rainfall changes and

then additionally rescaled to match WRF-raw annual

rainfall changes.

As (a), (c), (d) and (e) have the same annual rainfall changes,

this allows us to assess the impact on runoff projections of

the choices of using BC versus empirical scaling. We show

how the mean, high- and low-flow change characteristics are

influenced by these choices.

2.1 Downscaled inputs to hydrological modelling

As a pragmatic choice due to their ready availability, we use

downscaled simulations from the NARCliM (NSW and ACT

Regional Climate Modelling) project (http://www.ccrc.unsw.
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Figure 1. State of Victoria, Australia, mean annual rainfall for AWAP for 1990–2009 and location of study catchments used for rainfall–

runoff modelling.

edu.au/sites/default/files/NARCliM/index.html, last access:

2 June 2020). Evans et al. (2014) described the experimen-

tal design for these WRF-downscaled simulations, outlin-

ing the selection of four Coupled Model Intercomparison

Project Phase 3 (CMIP3) GCMs (CCCM3.1, CSIRO-Mk3.0,

ECHAM5 and MIROC3.2 (medres)) based on a three-stage

process: (1) the performance of a total of 23 CMIP3 GCMs

was evaluated, and models that did not adequately simu-

late the historical climate of south-eastern Australia were re-

jected; (2) the set of GCMs that performed well was then

ranked on the basis of a measure of their independence; and

(3) the GCMs were then evaluated on the basis of their pro-

jections of future climate change. The four most independent

models that spanned the largest range of plausible future cli-

mates were chosen. These GCMs were used for the bound-

ary conditions for producing future projections and three

WRF configurations (R1, R2 and R3) that vary the combi-

nations of planetary boundary layer, surface layer, cumulus

and short-wave/long-wave radiation physics used. Note that

ongoing WRF research is using CMIP5 GCMs, but these re-

sults were not available to us within the time frame of the

current project. Also, other RCMs could produce different

results when forced by the same GCMs.

Ji et al. (2016) assessed the three WRF configurations,

driven by NCEP/NCAR Reanalysis boundary conditions,

against AWAP (Jones et al., 2009) observations. They con-

cluded that the R2 simulations performed best in terms of re-

producing rainfall seasonal cycles, interannual and decadal

variability and spatial patterns over southeast Australia,

while noting biases in rainfall amounts can be substantial in

some seasons and regions. Olson et al. (2016) also referred

to significant WRF biases in rainfall climatology, noting that

this was not surprising given WRF configuration selection

was on the basis of skill for selected storm events of 2-week

periods, rather than performance at the climatological scale.

Given these findings, we have used WRF-BC R2 simu-

lations over Victoria for reanalysis (NCEP/NCAR and ERA-

Interim for 1990–2009) and GCM historical (for 1990–2009)

and future Special Report on Emissions Scenarios (SRES)

A2 (for 2060–2079) forced simulations. The SRES A2 sce-

nario describes a very heterogeneous world with high pop-

ulation growth and technological change that is fragmented

and slow (Nakicenovic et al., 2000). The SRES A2 emission

scenario was selected for the NARCliM climate projections

because the global emissions trajectory suggested that it was

the most likely scenario. Recent publications have confirmed

that we are tracking at the higher end of the A2 scenario (Pe-

ters et al., 2013). Whilst the SRES A2 is from the previous

generation of CMIP3 scenarios (Nakicenovic et al., 2000),

it is relevant to assessing plausible climate change impacts

as Woldemeskel et al. (2016) have shown that CMIP3- and

CMIP5-projected precipitation changes are similar for south-

ern Australia.
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Note we have only assessed the impact of WRF rain-

fall bias correction and changes, using AWAP-derived mean-

monthly daily potential evapotranspiration (PET) in all cases,

to allow us to examine the impact of rainfall properties and

changes in isolation from other confounding factors such as

temperature and PET change. Changes to PET would cause

an additional reduction in runoff under a warming climate but

would not change the relative results, as presented, in any

considerable manner because the range of change is domi-

nated by the large range in rainfall projections; i.e. PET is a

second-order effect. For example, for a similar region Potter

and Chiew (2011) found increased PET only explained 5 %

of runoff reduction in a prolonged drought. We have desig-

nated the rainfall simulated by WRF model as “raw” rain-

fall, to differentiate from the bias-corrected rainfall (hence-

forth designated “BC rainfall”). The resulting runoff, simu-

lated using the raw or BC rainfall inputs, is thus designated

“raw runoff” or “BC runoff”; note that “BC” refers to the use

of bias-corrected rainfall inputs to rainfall–runoff modelling.

2.2 Hydrological model

We undertook the hydrological modelling experiments us-

ing the GR4J rainfall–runoff model (Perrin et al., 2003). The

GR4J model is based on the unit hydrograph principle and

has been found to be competent in hydrological simulation

for a large number of catchments globally. It has four pa-

rameters representing maximum capacity of the soil moisture

storage (x1), interbasin water exchange rate (x2), maximum

routing storage (x3) and time base of unit hydrographs (x4).

In this study, for rainfall–runoff simulation at each grid

cell, the GR4J model was first calibrated against observed

daily streamflow at 137 unimpaired catchments in the region

for the period 1981–2010 (for calibration details see Figs. S1

and S2 in the Supplement). The calibrated parameters are

then applied for each grid cell in Victoria using the nearest-

neighbour parameter sets (Chiew et al., 2017, 2018). Since

each grid cell is considered as an independent catchment for

the investigation, channel routing describing the connection

between the grid cells is not applied in this case. The objec-

tive function of model calibration is defined as

NSE_daily_bias = (1 − NSE) + 5[ln(1 + bias)]2.5, (1)

where

NSE = 1 −

n
∑

i=1

(

Qmod,i − Qobs,i

)2

n
∑

i=1

(

Qobs,i − Qobs

)2
, (2)

bias =

(

Qmod − Qobs

)

Qobs

, (3)

where NSE is the Nash–Sutcliffe efficiency, Qmod is mod-

elled daily streamflow, Qobs is observed daily streamflow,

Qmod is mean modelled streamflow, Qobs is mean observed

streamflow and n is total number of days in the modelling pe-

riod. This objective function, from Viney et al. (2009), com-

bines the commonly used NSE and the bias to constrain total

model bias in runoff simulation.

Additionally, for a catchment-scale investigation regard-

ing spatial correlation of rainfall within the catchment, two

methods for rainfall–runoff model calibration are compared,

a “distributed” method and a “lumped” method. For the dis-

tributed method, simulations are run for each 10 km × 10 km

grid cell within each catchment using BC rainfall as input,

and the runoff simulated for the cells is averaged (with pro-

portional weighting for cells partially within the catchment)

to produce catchment-mean runoff, which is then assessed

against the AWAP-simulated daily streamflow (millimetres

per day) at the outlet gauge of the catchment. For the lumped

method, GR4J is calibrated using a single areal mean daily

rainfall time series obtained by averaging AWAP rainfall for

the grid cells within the catchment (with proportional weight-

ing for cells partially within the catchment). Corresponding

BC lumped rainfall from WRF is used as the input to GR4J

to simulate runoff for each catchment.

3 Results

3.1 Historical simulations

Table 1 shows that calibration results of the two methods

are comparable at most of the 10 catchments. It is interest-

ing to note that the mean annual runoff from the distributed

modelling is generally slightly greater than the runoff from

the lumped modelling and that the lumped modelling gener-

ally produced a slightly better calibration than the distributed

modelling. Such results are consistent with the findings of

Andréassian et al. (2004). The reason the distributed mod-

elling produces slightly higher runoff is it overweights the

runoff contribution from the grids with higher precipitation.

In the lumped modelling, the catchment-mean precipitation

filters out rainfall intensity in some grids; hence the intensity

signal is attenuated and produces less runoff.

Hereafter, we use the term “reference” runoff simulations

where AWAP rainfall and PET for the 1990–2009 period

were inputs to the GR4J model. The reference runoff sim-

ulations were considered the benchmark to assess the simu-

lated runoff using dynamically downscaled WRF-BC rainfall

for reanalysis-forced and GCM-forced historical runs for the

1990–2009 period. WRF-BC rainfall for GCM-forced 2060–

2079 runs were used to produce simulated projections of fu-

ture runoff.

The WRF-raw rainfall was found to have large absolute

biases compared to AWAP rainfall (Fig. 2a) and therefore

deemed unsuitable for direct use in hydrological modelling.

BC, using daily QQM applied on a seasonal basis (Potter et

Hydrol. Earth Syst. Sci., 24, 2981–2997, 2020 https://doi.org/10.5194/hess-24-2981-2020
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Table 1. Catchment attributes and distributed and lumped calibration (1990–2009 period) runoff and NSE metrics.

Catchment Area Mean annual runoff (mm) NSE NSE

ID (km2) Distributed Lumped Distributed Lumped

221212 731 140 145 0.785 0.783

226204 557 251 248 0.756 0.766

226402 608 147 124 0.704 0.876

235203 721 127 126 0.690 0.697

235208 575 271 223 0.764 0.820

235224 1042 212 210 0.798 0.866

403210 1229 373 358 0.892 0.908

405209 629 375 385 0.853 0.868

405219 704 400 416 0.881 0.883

405227 627 426 403 0.851 0.862

Figure 2. Historical (1990–2009) mean annual rainfall bias (WRF minus AWAP, mm) for (a) WRF-raw and (b) WRF-BC. Columns (left

to right) are WRF runs forced by two reanalyses (NNR and ERAI) and then four GCMs (CCCMA3.1, CSIRO-MK3.0, ECHAM5 and

MIROC3.2).

al., 2020), greatly improved WRF rainfall in terms of annual

(Fig. 2b) and seasonal means.

After bias correction, WRF-BC rainfall still had a slight

overestimation of annual rainfall relative to AWAP, of around

3 mm averaged across Victoria, which is smaller by up to 2

orders of magnitude compared to the WRF-raw rainfall bias.

There was also some spatial consistency to this bias, with

both reanalysis- and GCM-forced WRF-BC rainfall showing

highest overestimation bias (of up to 50 mm) in the south,

east of 146◦ E, adjacent to an area of underestimation (of up

to −15 mm) immediately to the east, i.e. towards the south-

east of the state (Fig. 2b). This residual bias is caused by

approximation in the interpolation for the highest quantiles

(e.g. 99th percentile and above), as discussed in Potter et

al. (2020). The residual bias in the 99th-percentile daily rain-

fall error has a mean of 0.02, 0.01, 0.02, 0.06, 0.04 and

0.03 mm for the WRF runs forced by NCEP/NCAR Reanal-

ysis; ERA-Interim Reanalysis; and the historical runs from

the CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2

GCMs, respectively. These amounts correspond to percent-

age errors of 0.06, 0.01, 0.10, 0.24, 0.14 and 0.11 % for these

runs, respectively. These are mean errors across all grid cells,

with the error for individual grid cells ranging from −2.1 to

+3.0 mm, or 7.5 % to +10.1 %.

Additionally, Potter et al. (2020) have shown that the

QQM-BC approach does not correct for other particular

rainfall characteristics. These include the underestimation

of (i) wet–wet-day transition probabilities (i.e. frequency of

consecutive wet days), (ii) multi-day rainfall accumulations

and (iii) spatial correlation of rainfall events. Thus, despite

WRF-BC slightly overestimating annual mean rainfall com-

pared to AWAP (Fig. 2b), the underestimation of wet–wet-

day transition probabilities and multi-day rainfall accumula-

tions resulted in an underestimation of simulated runoff when

compared to runoff simulated using observed (i.e. AWAP)

rainfall inputs, as shown in Fig. 3. There was an underestima-

tion of mean annual runoff, high flows (99th-percentile daily

flow) and the number of high-flow days (days above 95th-

percentile flow) in most cases (Fig. 3). The magnitude of the

underestimations was larger for the GCM-forced runs com-

https://doi.org/10.5194/hess-24-2981-2020 Hydrol. Earth Syst. Sci., 24, 2981–2997, 2020
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Figure 3. Historical (1990–2009) runoff simulation bias (i.e. runoff using WRF-BC rainfall minus runoff using AWAP rainfall) for (a) mean

annual runoff (mm), (b) daily 99th-percentile runoff (mm), (c) number of days exceeding AWAP 95th percentile and (d) number of days

below AWAP 10th percentile. Columns (left to right) are using WRF-BC rainfall forced by two reanalyses (NNR and ERAI) and then four

GCMs (CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2).

pared to the reanalysis-forced runs, and (in contrast) NNR-

based results for the south-east produced some overestima-

tion biases. The magnitudes of these biases are compared

to the magnitudes of their respective climate change signals

(projected future minus historical) in the next section.

3.2 Projected future simulations

The influence that the bias correction (QQM-BC) has had on

WRF rainfall change was assessed by comparing the WRF-

BC change (BC future minus BC historical) to that obtained

from empirically scaled (ES) change (i.e. from applying

the raw-future-minus-raw-historical change to AWAP histor-

ical). The ES AWAP rainfall, scaled separately according to

both WRF-raw (i) annual and (ii) seasonal rainfall changes,

produced “annual ES change” and “seasonal ES change”, re-

spectively.

Differences between the annual rainfall changes obtained

from the annual ES (Fig. 4a) and seasonal ES (Fig. 4b) in-

dicated differences between WRF and AWAP rainfall sea-

sonality. For example, in the case of the ECHAM5-forced

results there was a Victoria-average annual rainfall increase

of 4.8 mm using seasonal ES compared to 9.6 mm using an-

nual ES. Thus ECHAM5-forced WRF must have produced

too much rain in one or more seasons, compared to AWAP

seasonality, to result in this discrepancy between seasonal

and annual ES changes. That is, if the proportion contributed

by each season had been similar between ECHAM5-forced

WRF and AWAP, then the seasonal and annual ES would

have produced similar annual changes, as can be seen for the

remaining three GCM-forced cases.

The WRF-BC future rainfall was also rescaled for com-

parison with ES results (rescaled twice, seasonally then an-

nually) so as to match the WRF-raw annual rainfall change

signal, as shown in Fig. 4c (i.e. the change signal in mean

annual rainfall is the same in Fig. 4a, b and c). In general the

WRF-BC rainfall changes (Fig. 4d) were wetter (or less dry)

changes than both the WRF-BC rescaled and the ES changes

(Fig. 4a, b and c). In the example of ECHAM5-forced re-

sults, the seasonal ES gave a 4.8 mm Victoria-average in-

crease, whereas BC gave an increase of 16.7 mm, with the

Hydrol. Earth Syst. Sci., 24, 2981–2997, 2020 https://doi.org/10.5194/hess-24-2981-2020
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Figure 4. Mean annual rainfall change (mm) for (a) empirical annual scaling, (b) empirical season scaling, (c) BC rescaled (according to ES

seasonal then annual changes) and (d) BC. Columns (left to right) show CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2.

changes showing similar spatial patterns but with BC giving

larger increases particularly over the high-altitude areas.

It was also possible for WRF-BC rainfall change to have a

different change direction to that of the WRF-raw rainfall, as

evident for MIROC3.2-forced results in the north-east Vic-

torian Alps where the BC has a positive (i.e. wetter) change

in contrast to the ES (i.e. WRF-raw) having a negative (i.e.

drier) change. Hence there was a difference between the sea-

sonal ES average decline of −14.9 mm and the correspond-

ing BC increase of 8.6 mm. In contrast, the magnitudes and

spatial patterns of BC and ES changes were much more sim-

ilar to each other for the results from WRF CCCMA3.1 and

CSIRO-Mk3.0-forced results (Fig. 4).

The impact of these BC and ES rainfall differences on their

corresponding simulated runoff changes were assessed by

comparing runoff simulations using four rainfall input vari-

ations, namely (a) ES-ann: AWAP rainfall scaled according

to WRF-raw annual rainfall changes; (b) ES-seaann: AWAP

rainfall scaled twice, firstly according to WRF-raw seasonal

rainfall changes and then rescaled to match WRF-raw an-

nual rainfall changes; (c) BC RS: the WRF-BC future rain-

fall scaled twice, firstly so as to match WRF-raw seasonal

rainfall changes and then rescaled to match WRF-raw annual

rainfall changes; and (d) BC: the WRF-BC rainfall. For (a)

and (b) the runoff changes were the difference in simulated

runoff using ES-future relative to AWAP-historical rainfall,

whereas for (c) and (d) the runoff changes were the differ-

ence in simulated runoff using BC(-RS)-future relative to

BC(-RS)-historical rainfall.

Consistent with the rainfall change differences shown in

Fig. 4, the mean annual runoff changes (Fig. 5) highlight

that (i) BC produced greater runoff increases than ES for lo-

cations with increased runoff; (ii) BC correspondingly pro-

duced smaller runoff decreases than ES for locations with

decreased runoff; and (iii) BC RS runoff change was drier

than BC, albeit not as dry as the ES runoff changes. This

is due to the combined effect of the remaining biases in BC

RS rainfall (e.g. underestimation of wet–wet-day transitions

https://doi.org/10.5194/hess-24-2981-2020 Hydrol. Earth Syst. Sci., 24, 2981–2997, 2020
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Figure 5. Mean annual runoff change (mm, future minus historical) for (a) ES-ann, (b) ES-seaann, (c) BC RS and (d) BC. Columns (left to

right) show CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2.

and multi-day accumulations) and also rainfall characteris-

tics that BC can change that are not accounted for by ES,

such as changes to upper tails of daily rainfall distributions

producing more intense extreme rainfall and sequencing of

wet and dry days. That is, for wetter projections BC rain-

fall can have more frequent wet days and more intense rain-

fall extremes relative to ES, leading to larger BC runoff in-

creases compared to ES (e.g. ECHAM5). The ability of BC

rainfall to include changes in temporal characteristics is an

important improvement over ES, given ES is constrained to

reproducing the historical sequencing. Thus, for drier projec-

tions, such sequencing and upper-tail changes can mitigate

the runoff decreases seen in the ES results (e.g. CCMA3.1

and CSIRO-Mk3.0). In some cases (e.g. MIROC3.2 for some

areas) these factors have changed ES runoff decreases to BC

runoff increases (Fig. 5). We address our confidence in such

changes in the discussion section.

Correspondingly, the changes to 99th-percentile daily

runoff (Fig. 6) show BC produced larger increases (or smaller

decreases) than ES, and BC has changed the direction from

decreases to increases for certain areas for all cases except

ECHAM5-forced (which did not produce decreases). The BC

RS changes are similar to (slightly less than) BC changes, in-

dicating they are due to BC-derived changes in rainfall char-

acteristics, such as changes to upper tails of rainfall distri-

butions, and potentially changes in wet-day sequencing too,

both of which influence high flows and were not accounted

for by ES.

Changes to the frequency of high-flow days, i.e. number

of days greater than the historical 95th-percentile daily flow,

show larger increases and smaller decreases for BC com-

pared to ES results (Fig. 7). BC RS results are changed com-

pared to the BC results; however in most cases they remain

closer to the original BC than ES results. One exception is

MIROC3.2-forced results, where large BC increases in the

NW are absent in BC RS.
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Figure 6. Change in 99th-percentile daily flow (mm, future minus historical) for (a) ES-ann, (b) ES-seaann, (c) BC RS and (d) BC. Columns

(left to right) show CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2.

3.3 Catchment-scale simulations

The change signal magnitudes are highly dependent on the

driving GCM, with noticeable differences between lumped

and distributed cases. Figure 8 shows a general pattern that,

when there is a projected increase in runoff, in all cases the

lumped results give larger increases than the distributed case.

Likewise for projected decreases, there are greater decreases

(i.e. more negative) for the lumped than for the distributed

cases.

ECHAM5-forced results consistently simulate large runoff

increases of at least +10 % and up to a +32 % increase.

CSIRO-Mk3.0 consistently simulates the largest runoff de-

creases, of up to −29 %, and CCCMA3.1 simulates de-

creases (of up −32 %) for all catchments except for 403210.

MIROC3.2 WRF-BC rainfall produces smaller changes, with

a range from −12 % to +10 %.

Given the historical runoff underestimation biases shown

earlier (Fig. 3), we look at the bias in the simulation of high

flows for the 10 catchments, for the distributed and lumped

calibrations (Fig. 9). There are small differences for most of

the percentiles shown, with a small underestimation of the

90th percentile becoming greater and more variable for the

99th percentile in all cases. The distributed 99th percentiles

have slightly more underestimation than those for the lumped

method for the reanalysis run, whereas for the four driving

GCMs results the lumped results show slightly more under-

estimation than the distributed method. This underestimation

of high flows (90th percentile and above) seen in most cases

will result in underestimation of annual and monthly runoffs;

the reasons for this underestimation are discussed later. The

corresponding projected changes, shown in Fig. 10, show

small decreases for CCCMA3.1 up to the 90th percentile and

a large range from decreases to increases for the 95th and

99th percentiles. CSIRO-Mk3.0 presents a more consistent

decrease with higher percentiles, with a larger range for the

99th, with at least one catchment experiencing an increase.

ECHAM5-forced results presents the most consistent pro-
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Figure 7. Change in number of days exceeding historical 95th-percentile daily flow (future minus historical) for (a) ES-ann, (b) ES-seaann,

(c) BC RS and (d) BC. Columns (left to right) show CCCMA3.1, CSIRO-MK3.0, ECHAM5 and MIROC3.2.

jected changes, with increases particularly for the 99th per-

centile. Relatively small changes, with mainly decreases for

higher percentiles, are seen for MIROC3.2-forced results.

4 Discussion

Potter et al. (2020) have shown that WRF-BC rainfall, while

greatly improved over WRF-raw rainfall (Fig. 2), under-

estimates sequences of wet days, multi-day accumulations

and daily rainfall spatial correlation. We show that these re-

maining biases result in the underestimation of simulated

historical mean seasonal and annual runoff and high flows

(Fig. 3). Whether these biases influence the magnitude of

projected runoff change is the focus of the discussion pre-

sented here. Given that the characteristics of the WRF-raw

rainfall changes are modified by QQM-BC (Fig. 4) and hence

that the WRF-BC-rainfall-derived runoff changes are differ-

ent (Fig. 5), there is a need to assess whether they are more

or less realistic than the runoff changes produced simply

by empirically scaling the historical rainfall series by the

annual or seasonal change signal in the WRF-raw rainfall.

Note that such a comparison does not rely on the ES-derived

runoff changes being correct; i.e. we are not validating the

BC-derived runoff changes against those from ES. We are

merely attempting to determine whether BC runoff changes

are more or less credible, in terms of the characteristics as-

sessed herein.

There is an argument that, because the QQM-BC rain-

fall corrects distributional biases in the WRF-raw rainfall,

the QQM-BC rainfall change signals are more realistic than

those of the original WRF-raw rainfall; however Ehret et

al. (2012) are cautious of this view, stating QQM-BC does

not have physical justification. Hagemann et al. (2011), in-

vestigating hydrological changes globally, has noted that for

some regions the magnitude of change in climate change sig-

nal due to bias correction can be greater than the magnitude

of the signal itself, such that bias-correction uncertainty can
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Figure 8. Distributed versus lumped change (future period relative

to current period) in mean annual runoff (%).

be as large as climate model uncertainty. Several subsequent

studies have investigated how bias correction modifies the

rainfall climate change signal (Dosio et al., 2012; Ivanov et

al., 2018; Mbaye et al., 2016; Potter et al., 2018; Sangelan-

toni et al., 2018; Themeßl et al., 2012). Themeßl et al. (2012)

concluded that QQM-BC is likely to improve the reliabil-

ity of projected changes if the climate model biases are re-

lated to the shape of the distribution, i.e. when RCM bias is

magnitude-dependent. Dosio et al. (2012), investigating EN-

SEMBLES RCMs over Europe, noted that the RCMs had a

tendency to overestimate extreme rainfall and hence the in-

creases in P99 for their bias-corrected results were 2–3 times

smaller than the original RCM increases. Mbaye et al. (2016)

also found that BC reduced the changes in heavy-rainfall

events. Ivanov et al. (2018) concluded that changes to the

CCS due to bias correction are scientifically appropriate and

therefore the BC CCS is more trustworthy than the raw CCS,

due to the removal of model biases that adversely influence

the original CCS. Given the large biases shown in Fig. 2, we

did not have confidence in using WRF-raw rainfall as input

to hydrological modelling; thus our findings implicitly agree

with these previously published conclusions.

Regarding the BC-simulated hydrological changes for

Victoria, comparison of the magnitude of BC mean runoff

bias (in the historical period) (Fig. 3, top row) to BC

mean runoff change (under projected climate change)

(Fig. 5, bottom row) shows cases where the absolute value

of Victorian area-average change is larger than the bias

(CSIRO-Mk3.0-forced change: −8.7 mm, bias: −6.5 mm;

ECHAM5-forced change: 15.4 mm, bias: −6.2 mm) and

cases where the change is smaller than the bias (CCCMA3.1-

forced change: −0.2 mm, bias: −5.5 mm; MIROC3.2-forced

change: 5.23 mm, bias: −8.2 mm). However the range of bias

is much smaller than the range of change, as evident by

the scales on the respective plots (bias ranging from −30 to

+20 mm; change ranging from −150 to +150 mm). Hence

the bias is smaller and spatially consistent compared to the

change signal.

The differences in runoff changes from empirically scaled

rainfall (i.e. based on seasonal and/or annual changes in

WRF-raw rainfall) and BC rainfall are shown in Figs. 5,

6 and 7 for annual mean runoff, daily 99th-percentile flow

and the number of days above reference 95th-percentile

flow, respectively. Comparing ES-ann- to ES-seaann-derived

runoff changes shows similar mean runoff change (Fig. 5),

with three GCM-forced cases very similar and ECHAM5-

forced change larger for ES-seaann (6.2 mm) than for ES-

ann (4.1 mm). For 99th percentile daily flow (Q99) (Fig. 6),

the area-average values are similar; however larger changes

(cases of both decreases and increases) are evident for certain

regions.

Comparing ES-seaann- to BC-RS-derived runoff changes

shows BC RS mean runoff change is wetter than ES-seaann

in all four cases (Fig. 5). The ability of BC RS to include

(through the BC, not the RS) changes to the upper tail of

rainfall distributions and wet-day sequencing – in contrast to

ES, which cannot – is likely to be the reason BC RS is wetter.

Correspondingly, Q99 changes for BC RS are more positive

than for ES-seaann (Fig. 6).

Comparing BC-RS- to BC-derived runoff changes shows

BC mean runoff change to be wetter than BC RS, again in

all four cases (Fig. 5). This supports the case that ES limi-

tations are causing drier projections than BC, given that BC

RS constrained to match ES-seaann changes is drier than BC.

In three out of four cases the Q99 changes from BC are more

positive than for those from BC RS (Fig. 6). Given Q99 is un-

derestimated for historical BC (Fig. 3, second row), this sug-

gests BC changes are more realistic than BC RS and hence

also more realistic than ES changes in Q99; again this could

be because BC can modify the upper tail of rainfall distribu-

tions and also wet-day sequencing.

Muerth et al. (2013) note that the more strongly biased

a climate simulation is, the larger the effect of bias correc-

tion on the change signal of hydrological response. We see

an example of this in the results from the MIROC3.2 GCM,

which had the largest WRF-raw rainfall bias (Fig. 2) cor-

responding with the largest difference between ES and BC

rainfall and runoff change (Figs. 4 and 5, respectively), in-

cluding change of direction from ES runoff decreases to BC

runoff increases in north-central and north-eastern regions.

Confidence in such changes requires caution and relies on

assuming the transferability of the BC from the historical to

the future period (Velázquez et al., 2015). This assumption of

transferability is a caveat on all BC but particularly impactful

in this example.

The remaining BC rainfall biases add uncertainty to the

magnitude of runoff changes, as rainfall that correctly repro-

https://doi.org/10.5194/hess-24-2981-2020 Hydrol. Earth Syst. Sci., 24, 2981–2997, 2020



2992 S. P. Charles et al.: Impact of downscaled rainfall biases on projected runoff changes

Figure 9. Simulated historical-period runoff high-flow percentile bias (simulation using WRF-BC rainfall minus simulation using AWAP

rainfall) of the 60th to 99th daily percentiles for lumped (left) and distributed (right) simulations. Negative values indicate WRF-BC-derived

results are smaller than AWAP-derived results. Box plots show the range across the 10 catchments.

duced wet-day sequencing and multi-day totals would poten-

tially produce different runoff changes. If BC rainfall did not

have the wet-to-wet-day transition and multi-day total under-

estimation biases, then projected increases could be greater

and decreases lesser. Hence confidence in BC results is di-

minished because of these remaining rainfall biases. That is,

while the BC rainfall change could be more realistic than

WRF-raw and ES changes, for the reasons noted above, they

would be more credible without the remaining biases in these

rainfall characteristics.
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Figure 10. Simulated climate change runoff high-flow percentile changes (future minus historical using WRF-BC rainfall) of the 60th to

99th daily percentiles for lumped (left) and distributed (right) simulations. Box plots show the range across the 10 catchments.

We note that GR4J model performance for future climate

conditions differing from the calibration period are an addi-

tional source of uncertainty (Stephens et al., 2019), but we

do not assess such potential deficiencies here. We assume

the bias of the model is constant for both the reference pe-

riod and the projection period. Although it is worth explor-

ing model performance under different climate conditions,

the uncertainty from the discrepancy is assumed to be rela-

tively small. This is because the model was calibrated for a

long period covering different climate conditions to find ro-
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bust parameters. At catchment scales, spatial correlation in

WRF-raw and WRF-BC rainfall is underestimated and thus

runoff is underestimated. This is an additional uncertainty

and unaccounted source of bias in catchment runoff change,

also leading to underestimation in projected runoff changes

(Fig. 8). For historical-period simulations, the annual runoff

has a longer and greater upper tail for the lumped simu-

lations compared to the distributed cases. Correspondingly,

the lumped upper quartile ranges are greater and the lower

quartile ranges are smaller relative to distributed ones. Sea-

sonally, for the low-flow summer and autumn seasons, the

lumped flow has a larger range than distributed. For winter,

lumped simulations produce greater median flows and up-

per tails. In spring, median and upper-tail differences are less

pronounced, with smaller lower tails in the lumped simula-

tions. Regarding the climate change signal, annually, lumped

simulations tend to produce wetter changes than distributed

simulations (an exception is the dry CSIRO-Mk3.0, which

is slightly drier for lumped simulations. Seasonally, runoff

changes are small (in absolute terms) for summer and au-

tumn. Consistent dry projections are seen for spring, with

lumped simulations slightly drier than distributed simula-

tions in contrast to other seasons. For winter, lumped simula-

tions are similar to distributed ones, with wetter projections

having longer upper tails.

As shown in Figs. 9 and 10, for CSIRO-Mk3.0-forced

results the combination of an underestimation of the high-

est daily flows for historical conditions and a projection

for decreases in these high daily flows in the future means

the runoff change may be overestimated (i.e. too large a

projected decrease in runoff). For ECHAM5-forced results,

which also underestimate the historical high flows, the pro-

jected increases may inherently underestimate the runoff in-

creases.

5 Conclusions

Using WRF-BC rainfall from historical GCM-forced sim-

ulations to drive GR4J models produces underestimates of

reference runoff. This underestimation is because the spell

lengths of consecutive wet days are underestimated by WRF-

BC rainfall, compared to observed rainfall, and hence the up-

per tail of the runoff distribution is underestimated.

For projected climate change impact on runoff, using

WRF-raw rainfall would be unrealistic because the runoff

overestimates for historical climate mean that any projected

increase in rainfall will produce too large an increase in

runoff and any decrease in rainfall will produce too small a

decrease in runoff for these particular catchments. For the

WRF-BC-rainfall-derived runoff changes, where historical

runoff is underestimated, an increase in rainfall may under-

estimate the runoff increase and a decrease in rainfall may

overestimate the runoff decrease. This study has attempted to

understand and document some of these issues and impacts

regarding how RCM BC influences hydrological simulations

(Addor and Seibert, 2014), leading to the following conclu-

sions:

1. There is a need for reporting of the caveats and influ-

ences that methodological choices have on projected

hydrological changes derived from dynamically down-

scaled rainfall.

2. WRF-downscaled rainfall requires bias correction to be

suitable for hydrological model input. QQM-BC can re-

produce observed daily rainfall distributions for each

grid cell; however QQM-BC rainfall underestimates

wet-to-wet-day transition probabilities, multi-day totals

and spatial correlation. These QQM-BC rainfall biases

result in runoff biases, with runoff simulations underes-

timating mean seasonal, annual runoff and high flows.

3. WRF-raw rainfall changes are modified by QQM-BC,

and thus runoff changes are modified also. Because

the QQM-BC rainfall corrects distributional biases in

WRF-raw rainfall, the QQM-BC rainfall change sig-

nals are plausibly more realistic than the changes of the

WRF-raw rainfall.

4. Differences in projected future runoff changes from em-

pirically scaled rainfall (i.e. based on WRF-raw rainfall

changes) and QQM-BC rainfall are due to several fac-

tors, including limitations in ES not present in BC such

as limited ability of ES to change multi-day rainfall dis-

tribution upper tails and sequencing. We conclude that

BC runoff changes are more realistic than those from

ES, with the caveat that the remaining BC rainfall bi-

ases due to underestimation of wet sequences, multi-

day totals and spatial correlation need to be addressed

to provide greater credibility for runoff projection.

5. The QQM-BC rainfall biases influence the magnitude

of runoff changes, as discussed above; thus we con-

clude runoff increases may be underestimated and de-

creases overestimated. Additionally, as noted at catch-

ment scales, spatial correlation in WRF-raw and hence

QQM-BC rainfall is underestimated – an additional

source of underestimation of projected runoff changes

(Fig. 8).

Addor and Seibert (2014) discuss the need to better under-

stand the underlying causes of these biases in climate mod-

els as well as a more systematic quantification of their im-

pacts on hydrological response. Other recent studies have

also questioned the application of BC without fully under-

standing the underlying reasons for the biases. Such studies

have recommended “process-based” approaches to evaluate

RCM simulation temporal and spatial realism, and thus cred-

ibility (Maraun et al., 2017; Maraun and Widmann, 2018).

In future work we will assess multiple CMIP5-driven RCMs

for their process performance in this region, with a view to

Hydrol. Earth Syst. Sci., 24, 2981–2997, 2020 https://doi.org/10.5194/hess-24-2981-2020



S. P. Charles et al.: Impact of downscaled rainfall biases on projected runoff changes 2995

developing rainfall bias-correction methods that can reduce

biases in hydrological predictions. We will also continuing

to develop and refine GR4J calibration and parameterisation

methodologies to maximise suitability for hydrological pre-

dictions in a changing climate (Zheng et al., 2019).
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