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ABSTRACT Driving behavior has a large impact on vehicle fuel consumption. Dedicated study on the

relationship between the driving behavior and fuel consumption can contribute to decreasing the energy

cost of transportation and the development of the behavior assessment technology for the ADAS system.

Therefore, it is vital to evaluate this relationship in order to develop more ecological driving assistance

systems and improve the vehicle fuel economy. However, modeling driving behavior under the dynamic

driving conditions is complex, making a quantitative analysis of the relationship between the driving behavior

and the fuel consumption difficult. In this paper, we introduce two kinds of machine learning methods for

evaluating the fuel efficiency of driving behavior using the naturalistic driving data. In the first stage, we use

an unsupervised spectral clustering algorithm to study themacroscopic relationship between driving behavior

and fuel consumption, using the data collected during the natural driving process. In the second stage,

the dynamic information from the driving environment and natural driving data is integrated to generate

a model of the relationship between various driving behaviors and the corresponding fuel consumption

features. The dynamic environment factors are coded into a processable, digital form using a deep learning-

based object detectionmethod so that the environmental data can be linked with the vehicle’s operating signal

data to provide the training data for the deep learning network. The training data are labeled according to its

fuel consumption feature distribution, which is obtained from the road segment data and historical driving

data. This deep learning-based model can then be used as a predictor of the fuel consumption associated

with different driving behaviors. Our results show that the proposed method can effectively identify the

relationship between the driving behavior and the fuel consumption on bothmacro andmicro levels, allowing

for end-to-end fuel consumption feature prediction, which can then be applied in the advanced driving

assistance systems.

INDEX TERMS Driving behavior modeling, data mining, deep learning, vehicle fuel economy.

I. INTRODUCTION

A combination of emissions from coal combustion and urban

vehicle use has become the primary source of air pollu-

tion in most of the world’s major cities [1], [2]. According

to the World Health Organization, transportation emissions

are a significant and growing contributor to particulate air

The associate editor coordinating the review of this manuscript and
approving it for publication was Yuan Zhuang.

pollution, which makes up 30% of particulate matter emis-

sions (PM) in European cities and 50% of PM emissions

in OECD countries [3]. One study estimated that approx-

imately 1.03 million deaths were associated with ambi-

ent PM 2.5 air pollution in the 74 largest cities of China

in 2013, which accounted for 32% of all reported deaths [4].

As a result, much research has been focused on reducing

vehicle emissions. As has been demonstrated in various

studies [5]–[7], driving behavior, such as speed control,
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preferred rate of acceleration, and vehicle control stabil-

ity, have a major effect on fuel consumption, regardless of

the type of vehicle being driven. By accurately identifying

relationships between driving behavior and fuel consump-

tion, Advanced Driving Assistant Systems (ADAS) can be

designed to give more accurate and intelligent eco-driving

advice [8], [9]. By studying the driving behavior’s impact on

the fuel consumption, we can know how some drivers cost

more energy than others so as to help high energy cost drivers

to achieve fuel-effect driving style. Besides, as the fundamen-

tal technology of the ADAS systems or eco-driving coaching

system, the effective driving behavior-energy consumption

model can be applied to decrease the commercial vehicle’s

fuel cost [10], optimal the charging station location [11],

decrease the transportation’s greenhouse gas emission [12]

and so on. Thus, discovering the precise relationship between

driving behavior and fuel consumption, in order to reduce

vehicle emissions and increase fuel efficiency, has become

an important studying area and the motivation of our study.

However, effective analysis model for driving behavior’s

impact on fuel consumption is rarely studied. In this paper,

we aimed to design a machine learning based method which

can analyze and predict a reasonable relationship between

the driving behavior and fuel consumption. The eco-driving

system or ADAS system can obtain driving state from the

proposed model so as to give more reasonable advice to the

driver to keep fuel-efficient driving.

Quantitative analysis of the relationship between driv-

ing behavior and fuel consumption is a natural and direct

approach. However, traditional fuel consumption models

such as the Vehicle Specific Power (VSP) model [13],

the Comprehensive Modal Emission Model (CMEM) [14]

and the International Vehicle Emissions model (IVE) [15]

are specifically designed to evaluate the fuel economy perfor-

mance of engines, and the process of calibrating these models

is very complex [16]. In contrast, most driving behavior

modeling studies have focused on specific driving scenar-

ios, such as lane changes [17], [18], arterial corridors [19],

signalized intersections [20], and so on. These models focus

on identifying safe or comfortable driving, which are diffi-

cult to link to fuel consumption. As a result, the integration

of driving behavior parameters or models with traditional

fuel consumption models is a problem which remains to be

resolved. Many researchers have proposed two-stage meth-

ods, where statistical or machine learning methods are used

to identify a driver’s driving style, and then the features of that

driving style are compared with the related fuel consumption

features. J. E. Meseguer et al. used a three-layered neural

network to classify drivers into quiet, normal and aggres-

sive groups [21]. They then analyzed the fuel consumption

features for each group. E. Gilman et al. used 17 driving

behavior factors to identify fuel-efficient driving behavior for

a driver coaching system [22]. The driving behavior factors

were evaluated according to their distributions, calculated

from a historical driving trip. R. Trigui et al. analyzed the

impact of various driving behaviors on fuel efficiency using

mathematical modeling [23]. The study first divided driving

behavior into two levels; maneuvering level and control level

behavior. Then, by identifying the various parameters of

their model, the authors simulated three different behaviors;

aggressive driving, eco-driving and normal driving. Their

results showed that their proposed model could accurately

match measured fuel consumption and real driving behavior.

C. Lv et al. proposed an unsupervised machine learning

method using Gaussian mixture models to recognize three

typical driving styles, and then provided the optimal control

strategy for each driving style in order to improve energy

efficiency [24]. All of the studies cited here succeeded in

identifying fuel-efficient driving behavior, however their lack

of detailed consideration of the impact of various traffic

condition limits the usefulness of their results as driving

behaviors are also influenced by various static or dynamic

environmental factors [25], [26].

Therefore, some researchers have also examined driving

environment features, which can be deduced or directly

obtained from naturalistic driving data, in their analyses of

driver fuel consumption, resulting in more nuanced assess-

ments. M. Ehsani et al. discussed in detail the effects of exter-

nal environmental factors on vehicle fuel consumption [27],

but did not carefully examine the effect of driving behavior,

only mentioning that speed and acceleration are the two

most important parameters. J. Rios-Torres et al. classified

driving styles into three categories by analyzing real-world

data, and then examined the effect of each driving style on

fuel consumption [28]. The results of this study show that

vehicle fuel consumption can vary widely compared with

standard US Environmental Protection Agency (EPA) driving

cycles, depending on the driver’s driving style and the driving

scenario.

The studies mentioned above investigating the relation-

ship between driving behavior and fuel consumption have

achieved good results, but unanswered questions remain.

Most of these studies have employed statistical or rule-based

methods to analyze the relationship between driving behav-

ior and fuel consumption, so these methods require huge

amounts of long-term driving data as well as prior knowledge

of the data’s statistical feature. The ordinary methods usually

need lots of expert skills to extracted prior knowledge from

the raw data set. And the results have limited universality

because the experiments have mostly been conducted on a

limited variety of traffic conditions. Although the machine

learning method also need considerable amount of data,

the learning-based method can learn the inner feature or the

knowledge from the raw data automatically.

Thus, in this paper we propose an approach which employs

two machine learning methods, in order to push the research

of the fuel-efficient driving behavior one step further. In the

first stage, we use an unsupervised machine learning method

to analyze the fuel efficiency of driver behavior macroscop-

ically, as shown in the upper section of Fig. 1 (circled in

red). Inspired by some previous studies [29]–[31] in which

machine learning was used for driving behavior analysis,
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FIGURE 1. Two-stage architecture of the proposed driving behavior modeling method. In the first stage (outlined in red) unsupervised machine
learning is used to obtain the macro-level fuel consumption features of driver behavior. In the second stage (outlined in blue) an LSTM is used to
analyze short-term driving behavior and driving environment data to predict real-time fuel consumption.

in this study we employ a parallel spectral clustering algo-

rithm [32] to classify the driving signal dataset collected from

multiple drivers. Drivers are divided into three groups based

on similarities in their driving styles.We then analyze the data

to extract the data points which lie in the same fuel consump-

tion zone. Due to the properties of spectral clustering, prior

knowledge about the data is not required, so this clustering

method is suitable for dealingwith unique sets of driving data.

A parallel calculating structure is also used to improve the

efficiency of the clustering process.

The other machine-learning method used in this study is

Long Short-Term Memory (LSTM), which is a powerful

method for modeling behavior [33]. In contrast to previous

studies which using LSTM to analyze the fuel consumption

model [34], [35], in this paper we include more features of

the dynamic traffic environment, in form of video frames,

in our learning model, as shown in the lower part of Fig. 1

(circled in blue), so as to make the network more robust and

general to a wider variety of traffic conditions. In addition to

analyzing the fuel efficiency of a driver’s historic or long-term

driving behavior, our learning-based method is designed to

also examine short-term driving data, making the prediction

results adaptive to dynamic traffic conditions. The input end

of the model uses video frame, GPS and ECU information,

while the output is a real-time prediction of the level of fuel

consumption. This structure allows end-to-end evaluation of

the fuel-efficiency of driving behavior.

This paper is organized as follows: The paper’s objec-

tives and related research are described in the Introduction.

Section II provides details about the spectral clustering algo-

rithm we employed and describes the collection of driving

behavior data using data mining. Section III describes our

use of an LSTM to predict short-term fuel consumption

features and describes the model’s performance using repre-

sentative fuel consumption feature prediction results. Finally,

in Section IV we discuss our findings and conclusions.

II. DATA COLLECTION AND UNSUPERVISED EXTRACTION

OF FEATURES OF FUEL-EFFICIENT DRIVING BEHAVIOR

A. DATA COLLECTION PROCESS

1) EXPERIMENT DESIGN

Research by Ericsson [26] suggests that driving behavior

is affected by various factors such as street design, traffic

management methods, traffic conditions, weather conditions

and the driver’s mental and physical condition. In order to

evaluate the effect of the driver’s condition on vehicle fuel

consumption and simplify the verification process, in this

study we fixed the vehicle type, trip route and weather condi-

tions used in our experiment. The only variable factors are the

drivers (i.e., their driving behavior) and the traffic conditions.
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FIGURE 2. Two types of roads used for data collection. Left: Expressway
loop with two lanes. Right: Ordinary road with one lane in each direction.

FIGURE 3. Overall map of the roads used for data collection. Yellow line
is the expressway and the white line is the ordinary road.

If more than one route were used in the experiment, it would

be difficult to determine which factors were primarily respon-

sible for variation in fuel consumption. Therefore, all of the

data for our experiment was collected using a fixed route

which included some variation in road types. Examples of the

two types of roads used in our study are shown in Fig. 2. The

total distance of all of the road segments was about 15.2 km,

which consisted of a 5.3 km expressway loop with two lanes

in each direction and 9.9 km of ordinary road with one lane

in each direction. The detail route map and road information

are shown in Fig. 3.

Our data was collected using 30 normal passenger cars

with a 1.2T (85kw) gasoline engine and a six-speed

automatic transmission (6AT). Fuel consumption increases

by 0.38±0.079% each time the air temperature decreases

by 1◦C [36]. Therefore, in order to avoid the possibility

of variations in air temperature obscuring the relationship

between driving behavior and fuel consumption, the data

collection was conducted in the autumn from September to

November. 202 drivers are selected to join the experiment,

the information of the drivers is shown in Fig. 4. As the super-

vised and unsupervised learningmethod need lots of samples,

so we try out best to find the experiment participants as much

as possible.We choose these 202 drivers from our university’s

students and the cooperator’s staffs. All the participants drove

in the experimental route for 10 circuits a day and the whole

experiment of single drivers last a week.When processing our

experiment, we did not give time limitation or some special

FIGURE 4. Age and sex distribution of all the experiment participants.

FIGURE 5. Data collection system (for driving data and GPS information).

driving tasks to the participants in order to avoid extra mental

pressure. We just tell them the research goal, experimental

route and drive as they usually do. Most of the experiment

participants are in normal emotion and will be paid after the

experiment.

2) DATA COLLECTION AND REDUNDANT DATA PRUNING

The data collection system (DCS) in Fig. 5 is divided

into three parts: a vehicle-mounted data collection system

(VMDCS), a wireless transmission system (WTS) and a

data center (DC). The VMDCS uses On-Board Diagnostics

(OBD) to obtain the vehicle’s operating information from

the ECU, and uses GPS to track the vehicle’s position. The

WTS uses a wireless transmission unit (WTU) installed on

the vehicle which communicates with the base station via

4G broadband to upload the collected data. Messages from

the WTS include a receiving module IP address so that

the data can be transmitted to the DC via the internet. The

DC server shows the vehicle’s position and real-time vehicle

information on the Web. The collected data is stored in an

SQL database.
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FIGURE 6. Correlation coefficients of various vehicle operation
parameters with fuel consumption. Red bar: Strong correlation, Yellow
bar: Moderate correlation, Blue bar: Weak correlation.

In order to improve calculation efficiency, we selected

vehicle operation data with a strong relationship to driving

behavior, and used the Pearson correlation coefficient (PCC)

[37] to determine the relevance of each parameter to vehicle

fuel consumption. We treated positive and negative accel-

eration as different parameters because their effects on fuel

economy differ. For example, when calculating fuel cost,

if negative acceleration is less than zero, instantaneous fuel

consumption is zero. The calculated correlation coefficients

for various features are listed in Fig. 6, where PCC value ρ is

represented by different color bars according to the following

standard guidelines; when |ρ| > 0.5 = strong correlation,

when 0.5 > |ρ| > 0.3 = moderate correlation, when

|ρ| < 0.3 = weak correlation [38]. In Fig. 6, ‘Negative acc’

and ‘Negative acc variance’ have a negative correlation with

fuel consumption, so in fact, the PCC of these two parame-

ters are negative values. Then, before using an unsupervised

clustering method to abstract the data distribution features,

we first pruned the weakly correlated data parameters.

3) FUEL CONSUMPTION CALCULATION

To calculate fuel consumption, we integrated instant fuel

consumption information from the ECU to obtain accumu-

lated fuel consumption data. In order to verify the results

of our calculations, we compared our calculated results

with the results from a fuel consumption analyzer under

various traffic conditions. The differences between these

two fuel consumption measurement approaches are shown

in Table 1.

From the data in Table 1, we can conclude that the dif-

ference between our calculation method and actual fuel con-

sumption is less than 6%. As the route used in our experiment

is only 15 km in length and the goal of the study is to

evaluate the effect of driving behavior on fuel consumption,

this difference can be ignored.

TABLE 1. Difference between calculated fuel consumption and fuel
consumption analyzer results.

FIGURE 7. Data compression process based on road segment.

B. DATA SEGMENT CONSTRUCTION

As our research goal is to analyze and predict the impact

of driving behavior on fuel consumption within a limited

time frame (25 to 35 minutes), in this section we describe

the spectral clustering method we used to compare inner

similarity within the data set, so as to cluster data with similar

features into the same cluster. Our spectral clustering method

can only handle data sets of the same size. The data collection

rate was 10Hz and we collected 15,000-21,000 data points

per circuit of the driving route (we treated each circuit of the

driving route as an independent data set). Since the amount of

data collected in each data set varied, we needed to compress

each data set to the same size.

As shown in Fig. 7, we firstly partitioned the raw data

set into several subsets. The driving route was divided into

50 road segments according to their location distribution.

And then the whole data will be divided according to

their belonging road segment (each data points contain the

GPS position). As each road segment contains a different

number of data points, we needed to calculate each segment’s

minimum data size Sn. For example, S1 is the minimum data

size of the first road segment (calculated from the entire

data set associated with the first road segment). Each data

set allocated to road segment 1 is then compressed to size S1.

After data compression, each data set will have the same data

size Sall , as shown in equation (1):

Sall =

50
∑

i=1

Si (1)
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In contrast to using maximum information entropy to select

the size limit of the data, as in our previous study [39], the data

compression method adopted in this paper allows us to retain

most of the data points.

C. UNSUPERVISED DATA FEATURE EXTRACTION

1) SPECTRAL CLUSTERING ALGORITHM

Unsupervised machine learning is usually used for data dis-

tribution analysis or data set inner feature abstraction. In this

paper, we adopt spectral clustering to study the features of

our self-collected dataset. As described previously, we col-

lected driving data sets of the same size from multiple drivers

during natural driving along a fixed route. Spectral clustering

performs data clustering as a graph partitioning problem

without making any assumptions about the form of the data

clusters. Due to this characteristic, we do not need to have

prior knowledge of the driving behavior data. This is very

important for our research because the data sets which are

obtained from the data collection platform vary from driver

to driver. Spectral clustering is a suitable method for working

with these kinds of ‘random’ data sets. In additions, spectral

clustering is reasonably fast, especially for sparse data sets

of up to several thousands of points. Furthermore, spectral

clustering is not dependent on the dimensions of the data sets.

The first step of the spectral clustering process is to construct

driving data layout graph G, which is an undirected similarity

graph for the parameters of the data points, all of which are

scalar. We use X to represent the entire raw driving data set:

X = {x1, x2, . . . , xN } , xi ∈ Rl×Sall (2)

Each xi contains the six selected fuel-efficiency linked

parameters which were chosen as described above, so l= 6 in

this case. N is the total number of data samples. Graph G is

weighted using the distances between each pair of vertices

xi and xj, which are represented by non-negative weight wi,j.

Because there has been no definitive determination of how

the designs of similarity graphs influence spectral clustering

results [29], here we use a full-connection to construct simi-

larity matrix W, and use a Gaussian function to calculate wi,j
as follows:

wi,j = exp

(

−

∥

∥xi − xj
∥

∥

2

2δ2

)

, δ = 10 (3)

Similarity matrixW ∈ RN×N is constructed using the terms

of wi,j. Obviously, matrix W is a symmetric matrix for G,

which is an undirected similarity graph. We then build degree

matrix D, which is a diagonal matrix with degree (d1, . . . , dn)

as the diagonal. The degree of vertex xi is defined as:

di =

N
∑

j=1

wi,j (4)

Two other parameters are defined, the volume of a cluster,

Vol(C), and the border between two clusters, Cut (C1,C2),

which are calculated as follows:

Vol(C) =
∑

i∈C

di (5)

Cut (C1,C2) =
∑

i∈C1

∑

j∈C2

wi,j (6)

Next, similarity graph G is partitioned into disjointed

sets. There are different graph cutting methods, such as

MinCut [40], RatioCut [41] and NCut [42]. MinCut is simple

and effective, but it often fails to satisfactorily solve the

problem due to possible singularity problems. RatioCut and

NCut take into consideration the vertices and edge weights to

make the clusters more balanced, but RatioCut is relatively

slow, so in this study we chose Ncut, which is an NP-hard

problem [40], as our border determinationmethod. In order to

obtain optimal clustering results, we used the object function

shown in (7), where (A1, . . . ,Ak) are the final clustering

groups. This object function is used again in (10). Ai is the

complementary set of Ai:

minNcut(A1, . . . ,Ak ) = min(
1

2

k
∑

i=1

W (Ai,Ai)

Vol(Ai)
)

= min(

k
∑

i=1

Cut(Ai,Ai)

Vol(Ai)
) (7)

A group of indicator vectors hj =
(

h1,j, . . . , hn,j
)T

are then

defined as follows:

hi,j =











1
√

Vol
(

Aj
)

, xi ∈ Aj

0, xi /∈ Aj

(8)

Matrix H ∈ RN×k which contains the k indicator

vectors hi,j as columns, is then constructed. Normalized graph

Laplacians [44] are then introduced as:

Lsym = D− 1
2 LD− 1

2 = I − D− 1
2WD− 1

2 (9)

Due to the following given properties:










H ′H = I

h′
iDhi = 1

h′
iLhi = Cut

(

Ai,Ai
)

/Vol (Ai)

(10)

the Ncut problem is then reformulated as:

argminA1,...Ak Tr
(

H ′LH
)

subject to H ′DH = I (11)

By substituting T = D− 1
2H , we can change the Ncut

problem into a simpler form:

argminT∈RN×k Tr

(

T ′D
− 1
2
LD− 1

2 T

)

subject to T ′T = I

(12)

Then, according to the Rayleigh-Ritz theorem [32, 45],

this standard trace minimization problem can be solved using
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matrix U, which contains k eigenvectors as columns, cor-

responding to the first k eigenvalues (in increasing order)

of Lsym. Finally, by taking each row of matrix U as new data

sets, we then cluster them into k groups using a K-means

clustering algorithm. If the unit in row i of matrix U belongs

to group Cj, the original data xi in the raw data set X also

belongs to group Cj.

2) PARALLEL SPECTRAL CLUSTERING ALGORITHM

The time complexity of a spectral clustering algorithm

is O(n3), where n represents the amount of data. If n is greater

than 5,000, the time cost of spectral clustering using conven-

tional calculation methods will be excessively high, therefore

we introduce a method of parallel spectral clustering which

employs cloud computing. The cloud computing platform

Spark [46] is suitable for parallel calculations involving big

data. By analyzing the inner calculation mechanism of our

spectral clustering method, we see that three processes are

responsible for most of the calculation time cost: construction

of the similarity matrix, calculation of the eigenvalues of the

graph Laplacians and the final K-means clustering.

The process of parallel spectral clustering using the Spark

platform can be described as follows:

Step 1: Calculating the similarity matrix in a parallel

manner.

First, we store the entire raw data set in a Hadoop dis-

tributed file system (HDFS), since data sets in HDFS can be

accessed by the whole calculating cluster. We then use the

Spark resilient distributed dataset (RDD)mapmethod (shown

in Fig. 8) to assign the spilt data set to several parallel calcu-

lating tasks. Because the similarity graph is fully connected,

the similarity matrix is symmetrical. As a result, we just need

to calculate wi,j, ∀1 ≤ i ≤ j ≤ N. The detailed method for

dividing the data to construct sub-sets is shown below:

Raw data set: X = x1, x2, . . . , xN

Fragment set:

X1 =
{

x1,X
′
1

}

,X − X ′
1 = ∅

X1 =
{

x2,X
′
1

}

,X − X ′
1 = {x1}

...

XN =
{

xN ,X ′
N

}

,X − X ′
N = {x1, x2, . . . , xN−1} (13)

Fragment set X1 will be assigned to Task 1, as shown

in Fig. 8. The job of the Task 1 model is to calculate
(

w1,1, . . . ,w1,n

)

. Expanding to arbitrary Task i, the fragment

set Xi will be offered to Task i to calculate
(

wi,1, . . . ,wi,n
)

.

The final step is to integrate the results of all of the tasks

in order to construct the similarity matrix. An overview of

the method of calculating the similarity matrix in a parallel

manner is shown in Fig. 8.

Step 2: Simplifying the calculation of the eigenvalues of

the graph Laplacians.

Lanczos algorithm [47] is the method used to calculate the

eigenvalues, and the calculation process is shown in Fig. 9.

FIGURE 8. Method of calculating the similarity matrix in a parallel
manner.

FIGURE 9. Method of calculating the eigenvalues of the graph Laplacians.

Based on the process shown in Fig. 9, the following rela-

tionships can be derived:

V′LV = T, V = {v1, v2, . . . , vn} (14)

T = tridiag(B,A,B), B = {b1, . . . , bn} ,

A = {a1, . . . , an} (15)

By observing the Lanczos algorithm calculation process,

we find that most of calculation time cost is due to the process

of L × vj, so we split L into n rows and multiply each row

by vj. We thenmerge the results to get the final value of L×vj.

An overview of the calculation process is shown in Fig. 10.

The parallel calculation process increases memory cost, but

the inner memory assignment mechanism limits this problem

to a tolerable level.

Step 3:K-means is an iteration process, so we split the data

into several smaller data sets.
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FIGURE 10. Parallel calculation of the eigenvalues of the graph
Laplacians.

FIGURE 11. Method of calculating K-means in a parallel manner.

We first choose random center points for the whole data

set and assign the center points to each data subset. The

subset data will be used to calculate the distance between

the subset data and the randomly chosen center points. Next,

the subset data results are sent to a task which integrates

all of the results of the data subsets, in order to obtain new

center points for thewhole data set. This process will continue

until the center points satisfy the demands of the overall data

set. Compared to the traditional K-means process, parallel

K-means calculation converts global calculation into regional

calculation, which simplifies the calculation object in order

to reduce the time cost. The parallel K-means calculation

process is shown in Fig. 11.

FIGURE 12. Driving data clustering results.

FIGURE 13. Driving data clustering results for all of the selected
parameters (Blue, Yellow and Red refer to the data clusters shown
in Fig. 12).

3) FEATURE EXTRACTION RESULTS

A total of 8,984 natural driving data samples (i.e., the number

of completed trips) were selected during the data collection

process described in Subsection A above. Using the parallel

spectral clustering algorithm described above, the data sam-

ples were then clustered into three groups, with each group

containing drivers with similar driving styles or behavior,

as shown in Fig. 12. The X and Y axes of Fig. 12 represent

velocity and positive acceleration, respectively. The points

in the blue cluster represent the drivers who drove at low

velocity with low positive acceleration. The points in the

yellow cluster represent the drivers who preferred to drive at

low velocity but who used high rates of acceleration. Points in

the red cluster represent the drivers who preferred to drive at a

high velocity andwhose acceleration ranged from high to low.

We break the clustering results down statistically using our

six selected fuel consumption-related parameters in Fig. 13.

In Fig. 14, the data points of each of the clusters are plotted on

2-D and 3-D graphs according to fuel-consumption and their

serial number within the data set. Average fuel consumption

for drivers on the blue line was 3.68 L/100 km, on the yellow

line 5.14 L/100 km and on the red line 7.44 L/100 km.
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FIGURE 14. Fuel consumption distribution of the three-cluster group.

There are several phenomena illustrated in Fig. 13 which

are worth noting. First, we find that fuel-consumption within

each cluster differs and that fuel-consumption increases

steadily from the blue to the yellow to the red cluster,

i.e., there is a surprising amount of variation within each

group, but this variation is constrained by a clear trend.

Second, some outlier points exist, which represent drivers

whose fuel consumption was actually higher than that of

some of the drivers in the next cluster. A numerical analysis

of these outlier points is shown in Table 2. We can see

clearly in the Fig. 14 that the height of each cluster, which

represents increasing fuel consumption, differs. We can also

see that the three clusters have overlapping areas, which can

be observed in the areas of the 3D graph containing blended

colors. These overlapping areas represent the outlier points.

Because the spectral clustering process is based on a data

graph partition algorithm, the points on the periphery of each

cluster group will tend towards randomness, which means

the points on the boundaries will join the clusters randomly.

Additionally, the six chosen parameters represent only the

major factors affecting fuel-consumption, but not all of the

factors related to vehicle operation. As a result, some data

points which have high fuel-consumption attributes may also

share other attributes with data points in the lower fuel con-

sumption clusters. What’s more, long-term fuel consumption

is deduced by observing instantaneous fuel consumption,

as shown in Table 1, so the calculated fuel consump-

tion values could have an error rate of 0.8%-5.9%, which

could also affect the final clustering results. Finally, the over-

all proportion of outlier data points is about 20.69%.

From the above results, we can conclude that drivers who

operate their vehicles with relatively low fuel consumption

are those who change their driving speed moderately and

drive their vehicles at a relatively low average speed. The pro-

posed parallel spectral clustering algorithm was able to accu-

rately cluster the drivers according to their fuel-consumption

using vehicle operation data, with an approximate clustering

accuracy rate of 79.31%.

TABLE 2. Numerical analysis of outlier points.

In order to verify the performance of the clustering method

used in this study, we compared our clustering results with

those of the kernel fuzzy C-means (KFCM) [30] andK-means

clustering methods [48]. Performance of the three clustering

methods are compared in Table 3.

From this comparison we can see that the proportion of

outlier points when using KFCM is 4% higher than when

using the proposed parallel spectral clustering method. When

using the K-means method, the data points are less tightly

clustered compared with the other two clustering methods,

and the proportion of outlier points is the highest of all the

clustering methods. Therefore, the proposed parallel spectral

clustering method achieved the best clustering performance

of the three methods.

We then compared the calculation efficiency of the

proposed parallel calculating structure with normal spectral

clustering. Different sample sizes were chosen to verify the

proposed method’s superior performance. The results are

shown in Fig. 15. When the amount of data being calculated

is greater than 10,000 data points, the time cost of normal

spectral clustering using Matlab is almost 18 times higher

than when using the parallel spectral clustering method. Fur-

thermore, as the amount of data increases, the time cost of

normal spectral clustering increases sharply.

In this section we described the clustering method used to

obtain themacroscopic relationship between driving behavior

and fuel consumption. In the next section, an LSTM-based
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TABLE 3. Comparison of different clustering methods.

FIGURE 15. Comparison of calculation efficiency of classical and parallel
spectral clustering methods.

method is proposed to analyze this relationship in a more

detailed or microscopic way.

III. PREDICTION OF SHORT-TERM FUEL CONSUMPTION

USING LSTM

The clustering-based method proposed in Section II above

can only provide relatively long-term (25 to 35 minutes)

assessment of the impact of a driver’s behavior on fuel

consumption. When attempting to perform relatively short-

term prediction (30 seconds to 5 minutes), the clustering-

based method does not work well for classifying driving

behavior according to fuel efficiency. Besides, our clustering

method is, in fact, a kind of classifier, so it has no prediction

ability. Therefore, in this section we propose the use of a

time series learning method (an LSTM network) to model the

relationship between driving behavior and fuel consumption,

allowing us to predict the short-term fuel consumption state of

a driver’s behavior. As a driving behavior pattern represents

the driver’s interaction with a dynamic driving environment,

and fuel consumption can be treated as the cost result of this

process, in this section we add dynamic driving environment

information to our learning data. In the series data construc-

tion process described in this section, we first explain how

we coded driving environment factors into a digital form.

Then the environmental feature data and the behavior data are

integrated into time-series data using a sliding window. Fuel

consumption state will be the label for the constructed time-

series data set. The LSTM-based model is then trained using

the time-series data. The model’s classification performance

and prediction accuracy will be discussed at the end of this

section.

A. TIME-SERIES DATA CONSTRUCTION

1) CODING OF ENVIRONMENTAL FACTORS

As explained in our previous study [49], we divided the envi-

ronmental factors into two categories, dynamic environmen-

tal features (other vehicles, brake lights of leading vehicles,

pedestrians, etc.) and static environmental features (features

which remain invariable for relatively long periods of time,

including road structures such as intersections and curves).

The driving environment factors used for training our model

are shown in Table 4. Some of the dynamic features are

captured by a camera mounted on the vehicle. As shown

in Figs. 2 and 16, two types of roads were used in this

study. In Fig. 16, the gray car is the experimental vehicle,

the red vehicle is the leading vehicle or leading vehicle in

the right lane, the blue vehicle is a parked vehicle, the green

vehicle is the first on-coming vehicle in the opposite lane

and the yellow vehicle is the second on-coming vehicle in

the opposite lane. In ordinary-road scenes (one lane in each

direction), the motorcycle or motorbike and the pedestrian

are also considered to be environmental factors which can

affect the driver’s behavior. Thanks to the development of

object detection technology, we can easily extract these traffic

environment factors. In this study we used YOLOv3 [50],

a deep learning-based, real-time object detection method,

to obtain the relative positions of these traffic factors. Using

this position information, we can code the traffic factors into

a digital form.

Examples of the raw output of the YOLO network are

shown in the two images on the left of Fig. 17. Environmental

factors beside the road which will not affect driving behavior

are also detected by YOLO. As the camera position is fixed,
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TABLE 4. Driving environment factors considered in the training data.

FIGURE 16. Road types and dynamic traffic factors considered in this
study.

a lane detection program can be used to determine lane

position. Using the lane boundary indicator (blue dotted line

shown in upper left image of Fig. 17), we can remove the

detected environmental factors which are not located within

the range of the road lane. The other noise in YOLO’s output

is the multi-bounding box. We first identify the unneeded

multi-bounding boxes by comparing the center points of

FIGURE 17. Correction of raw YOLO output.

FIGURE 18. The classified traffic factors label for the object detected
by YOLO.

each box, and then remove the box with the lower confidence

rating.

After removing the redundant roadside data and the

unneeded bounding boxes, we classify the environmental fac-

tors, using the feature categories listed in Table 4, according

to their positions in the camera image, as shown in Fig. 18.

In our previous study [46], we discovered that providing

the positions of the detected environmental factors helps the

LSTM learn driving behavior more effectively. So, in this

study, we use the same method to change the continuous

positions of traffic objects into discrete locations using a

mapping grid. As shown in Fig. 19, the positions of traffic

factors, such as the vehicles in the photo, are labeled as the

belonging to an area or zone, in this case areas A2 and B1.

The size of each object is labeled according to the length of

the yellow line under the object.

2) FUEL CONSUMPTION FEATURE LABELING AND TIME

SERIES DATA CONSTRUCTION

In (16), BT represents the driving behavior data set from

one trip along the fixed driving route, while S represents

the size of the data (the number of behavior data points)

collected during the time period it took to complete the route.

S is calculated by applying the method shown in Fig. 7

(compression of all of the data sets into the same size).
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FIGURE 19. Position zones for identifying the locations of traffic
factors [49].

The only difference in compressing process used in this

section is that here, we divide the experimental road into

150 segments instead of 50 in order to obtain much more

detailed data features. N in (16) represents the driving behav-

ior categories strongly and moderately correlated with fuel

consumption (N = 6, which are listed in Fig. 6).

BT =







b1,1 · · · b1,S
...

. . .
...

bN ,1 · · · bN ,S







N×S

(16)

In (17), ET represents the environmental data set from one

trip along the driving route. S is the size (number of envi-

ronmental data points) of the environmental data collected

during the period of time it takes to complete one circuit of the

driving route. M represents the environmental factor number

from the list in Table 3 (M = 13).

ET =







e1,1 · · · e1,S
...

. . .
...

eM ,1 · · · eM ,S







M×S

(17)

When collecting the driving data, in addition to the camera

frames we also collect the driving behavior data associated

with each frame simultaneously, so that each set of behavior

data corresponds to one camera frame. This allows us to

integrate driving behavior data set BT and environmental data

set ET into a single dataset XT :

XT =





















b1,1 · · · b1,S
...

. . .
...

bN ,1 · · · bN ,S

e1,1 · · · e1,S
...

. . .
...

eM ,1 · · · eM ,S





















(M+N )×S

(18)

Fuel consumption F can then be calculated as follows:

F (XT ) = {F1,F2, . . . ,Fi, . . . ,FI } (19)

Function f(x) in (20) and (21) represents the hypothetical

equation which describes the nonlinear relationship between

FIGURE 20. Time series data composition using sliding window.

driving behavior, driving environment and fuel consump-

tion features. To deduce function f (x) would be relatively

difficult, so here we treat f (x) as a ‘black box’, so our

LSTM-based method is applied to simulate the computations

of this ‘black box’. As the input for the LSTM should be data

in a time-series format, the raw training data must first be

converted into time-series data. As shown in Fig. 20, we use

a sliding window to construct each set of time-series data,

and the data label is each data segment’s fuel consumption Fi.

The window size is 50 data points and the size of the sliding

step is 15 data points, so in (21), step = 15 and j = 50.

Fi is mapped into the data segment’s distribution to obtain

its ranking level. For example, in Fig. 20, F1 belongs to

the low fuel consumption level (marked with dotted points),

so the ‘‘time-series data 1’’ will be labeled as ‘‘low fuel

consumption’’. The green, yellow, and red labels represent the

low, medium, and high fuel consumption group respectively.

The fuel consumption group is judged by the other driver’s

historical records.

F1 = f





















b1,1 · · · b1,j
...

. . .
...

bN ,1 · · · bN ,j

e1,1 · · · e1,j
...

. . .
...

eM ,1 · · · eM ,j





















(20)

Fi = f





















b1,1+(i−1)×step · · · b1,(i−1)×step+j

...
. . .

...

bN ,1+(i−1)×step · · · bN ,(i−1)×step+j

e1,1+(i−1)×step · · · e1,(i−1)×step+j

...
. . .

...

eM ,1+(i−1)×step · · · eM ,(i−1)×step+j





















(21)
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FIGURE 21. The unfolded structure of the LSTM network and the inner
composition of an LSTM node.

The boundaries of the fuel consumption levels are defined

by the trisection lines, and the equation for calculating the

boundaries is shown in (22). Results (0,0,1), (0,1,0) and

(1,0,0) represent low, moderate and high fuel consumption,

respectively. Fi is the current data segment’s fuel consump-

tion and Favg,i is the expected value of the remaining driving

process data in that data segment.

Ii =











(0, 0, 1), Fi < 0.6Favg,i

(0, 1, 0), 0.6Favg,i < Fi < 1.2Favg,i

(1, 0, 0), Fi > 1.2Favg,i

(22)

After completing the labeling process, we can obtain our

training data with fuel consumption feature labels. The labels

are not only obtained by calculating detailed fuel consump-

tion, but also obtained by comparing the fuel consumption

distribution with all of the other drivers’ fuel consumption

distributions.

B. FUEL CONSUMPTION PREDICTION MODELING BASED

ON LSTM

1) LSTM COMPONENTS AND THEIR MATHEMATICAL

EXPRESSIONS

As the state of the art in information processing and behavior

modeling, LSTM is widely used in machine translation [51],

speech recognition [52], driving behavior analysis [53], and

other applications. LSTM is in fact a kind of Recurrent Neu-

ral Network (RNN) [33, 54]. Standard RNNs usually suffer

from the vanishing gradient problem, but LSTMs include a

‘forget gate’, which can prevent backpropagation errors from

vanishing or exploding. The structure of the LSTM used in

this study is shown in Fig. 21.

An LSTM is a recurrent network which produces a state

as its output, and the state of current network is passed on to

the next step in the network for further calculation. As shown

in Fig. 21, each node of the LSTM network is composed

of three main components, a ‘forget gate’, an ‘input gate’

and an ‘output gate’. The ‘forget gate’ determines the effect

of the information from the previous step on the calcula-

tions of the current network, which is the key feature of

the LSTM, allowing it to avoid the problems of gradient

vanishing or exploding. The function of the ‘forget gate’ can

be expressed mathematically as follows:

F forget = σ
(

Wf · [yi−1, xi] + bf
)

(23)

σ (x) =
1

1 + e−x
(24)

As σ (x) is a sigmiod function, Fforget is always smaller

than 1. Furthermore, Fforget will be multiplied by previous

network state Si−1 to form part of the new state Si, so Fforget
determines how much state Si−1 will affect current network

state Si.

The second part of the LSTM is the ‘input gate’, which

mainly decides what should be newly added to the current

network state. First, we should find which part of the previous

state should be updated, so we use the following equations to

define the update procedure:

Fin = σ (Wi · [yi−1, xi] + bi) (25)

And then the updated value can be determined as follows:

Snew = tanh (Wnew · [yi−1, xi] + bnew) (26)

Current network state Si can be obtained from the updated

state value and the remaining previous network state:

Si = Fin × Snew + Fforget (27)

The third part of the LSTM is the ‘output gate’, which

uses current network state Si to generate the final output.

Using current inner state Si, we decide which data we can

output, then the data is multiplied by Fout (which ranges

from 0 to 1) to determine which data can be output. The

calculation process is shown in the following equation:

yi = tanh (Si) × σ (Wo · [yi−1, xi] + bo) (28)

In this paper, input xi = XT in (18), and the size of XT ,

which is defined by the sliding window in Fig. 20, is 50.

2) LSTM NETWORK TRAINING PROCESS

First, we need to pre-process the training data. All of the time-

series data is normalized into a range of 0 to 1. We code each

data set’s label into a one-hot form: high fuel consumption

is (0, 0, 1)T , medium fuel consumption is (0, 1, 0)T and low

fuel consumption is (1, 0, 0)T .

To build the LSTM network, we used TensorFlow [55],

which is an end-to-end open source software platform for

machine learning. The LSTM block is based on the LSTM

node unit ‘‘tf.nn.rnn_cell.LSTMCell’’ [56] which is provided
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TABLE 5. Hyper-parameters and the training strategy of the LSTM
network.

FIGURE 22. Structure of the neural network with two hidden layers, each
of which contains 150 ReLU nodes.

by the TensorFlow API. The hyper-parameters and the train-

ing strategy of the LSTM network are shown in Table 5.

The output of the LSTM is put into a Softmax classifier,

which calculates its probability of belonging to each class.

The Softmax function can convert the output of the LSTM

into a range from 0 to 1. The mathematical expression of the

Softmax function is as follows:

Ci =
eyi

∑

j e
yj

(29)

where Ci is the output confidence rate, i.e., the dataset’s

probability of belonging to a certain fuel consumption

group.

C. RESULTS OF FUEL CONSUMPTION PREDICTION

USING LSTM

1) TRAINING DATA

The entire data set is divided into six groups randomly, with

each group containing 5,000 data points of time-series data.

The six groups of data are divided as follows: four groups

FIGURE 23. AUC values for each modeling method and each test group.

FIGURE 24. Fuel consumption data distributions of three representative
drivers.

are used for training, one group is used for validation and

one group is used for testing. Because the training process

involves cross-validation, each group will be treated as a

training data group, a validation group or a testing group.

2) COMPARISON OF LSTM PREDICTION RESULTS WITH

THOSE OF OTHER MACHINE LEARNING METHODS

We compared the performance of two other machine learning

methods with the performance of the proposed LSTM-based

method. One of those methods was kernel-based Support

Vector Machine (SVM) [58], and the other was a multi-layer

neural network. In addition, LSTM networks with different

number of nodes were also evaluated.

SVM is a very powerful machine learning method which

maps the objects to be sorted into high-dimensional feature
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FIGURE 25. Short-term fuel consumption prediction performance using LSTM-based classifier and fuel consumption features for three representative
drivers.

spaces. It is widely used for semantic parsing [59], image seg-

mentation [60], facial recognition [61] and other applications.

MATLAB’s Statistics and Machine Learning Toolbox [62]

was used to construct our SVM-based classifier.

The multi-layer neural network we used had two hidden

layers, and each layer contained 150 rectified linear units

(ReLU), as shown in Fig. 22. The output of the network is

passed into a Softmax layer, and the probabilities of the data

belonging to each of the three fuel consumption categories

are calculated.

Two criteria were considered in our evaluation, the clas-

sifier accuracy rate and the area under the curve (AUC) of

receiver operating characteristics (ROC) [63]. The classifier

accuracy rate is a direct index which can be used to judge the

performance of the prediction model, however it cannot eval-

uate the classification performance of the model. AUC is a

probability value, which is the general standard for evaluating

classifier performance. In Fig. 23 we show each classifier’s

performance for each of the six testing groups. We can see

in Fig. 24 that the LSTM with 150 nodes achieved the best

overall performance.

Next, we experimentally evaluated the short-term fuel

consumption estimation performance of our proposed

LSTM-based prediction method. Three representative drivers

who belonged to different fuel consumption groups were

selected to test the performance of our deep learning-based

predictor. The fuel consumption data distributions for these

three drivers are shown in Fig. 24.

The LSTM-based classifier’s prediction accuracies for

these three drivers are illustrated in Fig. 25.

The red lines represent the predicted fuel consumption

category based on the driver’s fuel consumption features over

time, while the light blue bars represent the actual distribu-

tion of the fuel consumption features corresponding to the

driver’s behavior. The average prediction accuracy for the

three selected drivers was 81%.

IV. DISCUSSION AND CONCLUSION

In this paper, we first used the unsupervised machine learning

method of spectral clustering to classify drivers into three

groups using six driving behavior-based fuel consumption

features.We then analyzed themacro-behavior of each group,

focusing on power demand (speed and acceleration) and

control stability (variation in speed and acceleration). Our

results showed that the proposed spectral clustering-based

method could accurately identify drivers with different fuel

consumption profiles, and clearly modeled the relationship

between the real-world driving data and the corresponding

fuel consumption features.

In addition to the estimation of fuel consumption using

vehicle operation data, we also performed a qualitative analy-

ses of driving behavior, as shown in Fig. 13. Speed and accel-

eration information reveal the amount of power demanded by

a driver, while variance in speed and acceleration represent

the range of dynamic control exercised by drivers [25], [26].

The results of our analysis showed that high fuel consumption

drivers (those in the red cluster) tend to maintain a relatively

steady, high demand for power, while their dynamic control of

the vehicle is less stable. Their acceleration rates are higher

and their pedal control behavior is less stable compared to

drivers in the low fuel consumption cluster. Drivers in the

median yellow cluster showed the lowest speed distribution,

but their gas and brake pedal operation characteristics were

similar to those of the low efficiency drivers in the red cluster.

Drivers in the blue cluster had the lowest fuel consumption,

since they tended to maintain a consistent speed, and their

dynamic control of the vehicle was the most stable among the

three groups. We also compared the spectral cluster method

with other state of art clustering method such as k-means

and KFCM. As show in Table.3, spectral cluster method can

achieve the best clustering performance of the three methods.

However, there were drawbacks to our proposed method,

in that the spectral clustering-based method requires
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relatively long-term data to produce accurate classification

results. So, for real-time and short-term fuel consumption

feature prediction, this unsupervised method is not appropri-

ate. Furthermore, the results of data mining can only show

the impact of a driver’s behavior on fuel consumption on a

macro-level.

Therefore, in the second stage of our study we attempted

to use a supervised machine learning-based LSTM method

to build a link between short-term driving data and the fuel

consumption features. The proposed LSTM-basedmodel was

able to accurately predict driver behavior, achieving a maxi-

mum AUC of 0.836, which is considered to be good human

behavior prediction performance [64]. As shown in Fig. 23,

the LSTM-based method achieved better classification

performance than the SVM or NN-based methods. LSTM

networks with different numbers of hidden nodes were also

evaluated in this study, revealing that the LSTMwith 150 hid-

den nodes achieved the best average AUC, compared to

LSTMs with 125 or 200 hidden nodes. Three representative

drivers were then selected for a more detailed evaluation of

the model’s performance. As shown in Fig. 25, the short-

term fuel consumption performance of the drivers could be

accurately predicted using the proposed method, although

some prediction error did occur. However, an average overall

prediction accuracy of more than 80% was achieved.The

whole prediction process is end-to-end, as the input of the

model is the driving behavior and dynamic traffic condition

data. After the raw data is reformatted and then processed by

the model, the output is a prediction of which fuel consump-

tion group a particular driver belongs to.

In conclusion, we made three contributions in this paper;

firstly, we propose a clustering-based data-mining method

which can analyze the behavior and its fuel consumption

result in a macro view. The method can serve as a group

behavior assessment mechanism for the public transporta-

tion department or the commercial transportation company

to evaluate the energy cost distribution. Secondly, we also

propose a micro fuel consumption evaluation model by

learning the driving behavior. The model shows good pre-

diction ability which can be integrated into the ADAS sys-

tem or the eco-driving coach system to evaluate and obtain the

fuel-cost behavior of the single drivers. The predicted state

can make the ADAS or eco-driving system give more rea-

sonable and adaptive fuel-efficient driving strategy or detail

manipulation. Thirdly, we widen the deep learning method’s

application area, to our knowledge, it is the first time that

the deep learning method is used for learning the driving

behavior’s impact on fuel consumption feature.

There are some limitations in our study and in our pro-

posed method. First, the shortcomings of the collected data

will mainly affect the deep-learning based method. As the

collected data are collected from two kinds of road and the

traffic environment factors are not all coded into the time-

series data, so the LSTM can just learn the limited feature

from the fixed traffic condition and the environment it ever

meet. When facing different road types, for example the

road with four lanes, it will suffer prediction performance

decreasing. Second, the prediction accuracy of the proposed

LSTM-basedmethodwas not extremely high.We suspect this

is mainly because the model input information included a

limited number of traffic conditions, and because the form

of this input information was relatively basic. As a result,

the LSTM could not accurately predict fuel consumption in

very complex or unknown situations. And our deep-learning

based method is the model can just predict the fuel consump-

tion level of the driving process so it is hard to givemore detail

fuel cost information. What’s more, compared with other

state of the art behavior prediction method, LSTM or deep

learning network need lots of training data and training time.

If other new behavior factors which affect the fuel consump-

tion need to be added into the network, the model need to

revised the original parameter and training process should

be reprocessed. This will limit the generality of the model.

Third, we only used one type of experimental vehicle, so we

need to do further research to determine whether the proposed

LSTM-based model can be adapted to other types of vehicles.

At last, the driver’s personal feature such as age, sex, driving

experiences and so on, are not further studied in this study.

So, in our future work, firstly we aim to use larger scale

naturalistic driving data to make our prediction model with

more robustness. Then the other factors’ effect, such as group

personality feature or vehicle type, on the fuel consumption

analysis should also be studied in order to make the fuel

consumption prediction model more general.
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