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ABSTRACT

Leaf area index (LAI) is increasing throughout the globe, implying Earth greening. Global modeling

studies support this contention, yet satellite observations and model simulations have never been directly

compared. Here, for the first time, a coupled land–climate model was used to quantify the potential impact of

the satellite-observed Earth greening over the past 30 years on the terrestrial water cycle. The global LAI

enhancement of 8%between the early 1980s and the early 2010s is modeled to have caused increases of 12.06

2.4mmyr21 in evapotranspiration and 12.1 6 2.7mmyr21 in precipitation—about 55% 6 25% and 28% 6

6% of the observed increases in land evapotranspiration and precipitation, respectively. In wet regions, the

greening did not significantly decrease runoff and soil moisture because it intensified moisture recycling

through a coincident increase of evapotranspiration and precipitation. But in dry regions, including the Sahel,

west Asia, northern India, the westernUnited States, and theMediterranean coast, the greening was modeled

to significantly decrease soil moisture through its couplingwith the atmospheric water cycle. Thismodeled soil

moisture response, however, might have biases resulting from the precipitation biases in the model. For

example, the model dry bias might have underestimated the soil moisture response in the observed dry area

(e.g., the Sahel and northern India) given that the modeled soil moisture is near the wilting point. Thus, an

accurate representation of precipitation and its feedbacks in Earth system models is essential for simulations

and predictions of how soil moisture responds to LAI changes, and therefore how the terrestrial water cycle

responds to climate change.

1. Introduction

Thirty years of NOAA–AVHRR satellite measure-

ments suggest that terrestrial foliar coverage has sig-

nificantly increased over the period of satellite

observation (Xu et al. 2013; Zhu et al. 2016); this finding

is supported by model simulation results (Sitch et al.

2015), long-term forest inventories (Fang et al. 2014),

and the observed enhanced seasonal exchange of CO2

(Forkel et al. 2016). Increased foliar coverage [leaf area

index (LAI)] is expected to significantly influence the

terrestrial water cycle. Ecosystem evapotranspiration

(ET) generally increases with LAI (Jasechko et al. 2013;

Zhang et al. 2015, 2016), which may accelerate the re-

cycling of atmospheric moisture, and thus eventually

affect precipitation P (e.g., Spracklen et al. 2012). It

should be noted that the response ofP to increasing LAI

is complex (Sheil andMurdiyarso 2009) and involves not

only the local sensitivity of P to atmospheric moisture,

but also shifts in atmospheric circulation and large-scale

moisture convergence in some regions (Findell et al.

2011). Air masses exposed to higher LAI have been

found to yield higher P in tropical forests (Spracklen

et al. 2012). In addition, changes in ET and P driven by
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LAI also influence soil moisture, runoff, and the water

yield of catchments (Ellison et al. 2012), where the

change in soil moisture represents the change of back-

ground dryness over the region (e.g., Dai et al. 2004;

Seneviratne 2012), and changes in runoff and water yield

indicate the change of water amount produced by the

region for other regions (e.g., Bosch and Hewlett 1982;

Farley et al. 2005).

Compared with the impact of climate change on the

recent Earth greening, our understanding of the climate

impact of Earth greening is rather limited. Satellite-

derived LAI (Zhu et al. 2013, 2016) has increased sig-

nificantly over all continents during the last 30 years,

with an increase of 8% at a global scale from 1982 to

2011 (Figs. 1a,b and Figs. S1 and S2 in the online sup-

plemental material). Our previous study (Zeng et al.

2017) addressed the impact of Earth greening on land

surface air temperature, and this study focuses on

its impact on the terrestrial water cycle. Recent

observation-driven long-term global ET products (e.g.,

Jung et al. 2010; Zeng et al. 2014; Zhang et al. 2010, 2015,

2016) produced by offline diagnostic algorithms (land

surface schemes that had not been coupled to climate

models) have indicated that Earth greening has con-

tributed to the increasing trend in global land ET over

the last 30 years. However, the offline algorithm used to

separate the contributions of each of the drivers in their

studies cannot isolate the interactions among the

drivers. In the observations, none of the driving factors

can be considered in isolation given their strong in-

teractions with each other. For example, an increase ofP

is likely to increase ET, but the increase of P itself could

also be a result of increasing land ET and stronger re-

cycling (Brubaker et al. 1993; Trenberth 1999; Bisselink

and Dolman 2009; Dirmeyer et al. 2009). Further, these

offline algorithms are incapable of investigating the re-

sponse of the climate system (e.g., P, runoff, water yield,

and soil moisture) to the greening-induced change in

ET. The latter requires coupled model simulations.

In this study, we use a land–atmosphere coupled

global climate model (GCM) to investigate the response

of the terrestrial water cycle to the satellite-observed

increase of LAI over the past 30 years, including changes

in P, ET, soil moisture, runoff, and water yield. To

exclude the large uncertainty in model simulations asso-

ciated with the systematic sea surface temperature (SST)

biases in fully coupled models (Kosaka and Xie 2013),

we performed Atmospheric Model Intercomparison

Project (AMIP) simulations to provide trustworthy de-

cadal climate simulations (He and Soden 2016). We

further applied a large initial condition ensemble (IC-

ensemble; n5 50) approach to reduce uncertainty around

initial conditions (Kay et al. 2015; Sriver et al. 2015). We

used the Institute Pierre Simon Laplace Coupled Earth

SystemModel (IPSLCM, version 4; Dufresne et al. 2013),

which was verified to have a sufficient capacity to re-

produce the historical changes in temperature, P, and ET

over land. Our study is novel for providing a first quanti-

tative estimate of the impacts of the recent Earth greening

(Zhu et al. 2016) on all hydrological components (e.g., ET,

P, runoff, and soil moisture) with fully integrated process

interactions and feedbacks.

2. Materials and methods

a. Climate simulations

The IPSLCM global climate model (Dufresne et al.

2013) from the Institute Pierre Simon Laplace (IPSL)

modeling community was used in this study. It is one of the

Earth system models used in phase 5 of the Coupled

Model Intercomparison Project (CMIP5; Taylor et al.

2012) for the Intergovernmental Panel on Climate Change

(IPCC) Fifth Assessment Report (IPCC 2013). The at-

mospheric model is the Laboratoire de Météorologie Dy-

namique zoom model (LMDZ; Li 1999; Hourdin et al.

2006), and the land surface model is Organizing Carbon

and Hydrology in Dynamic Ecosystems (ORCHIDEE;

Krinner et al. 2005). The latter was modified to replace

LAI at each grid point and for each plant functional type

(PFT) separately, with satellite-observed values. This

aggregation was performed using the native fine reso-

lution of the satellite LAI and land-cover data (;1 km)

for averaging to the model grid. Thirteen PFTs are used

to describe the vegetation cover: bare soil, two tropical

forests, three temperate forests, three boreal forests, two

grasslands, and two agricultural ecosystem types. The

model has been well tested against observations and

with proven capacity in simulating evapotranspiration

(Mueller and Seneviratne 2014; Traore et al. 2014) and

soil moisture (Rebel et al. 2012).

To document the transient response of the terrestrial

water cycle to the satellite-observed LAI for the past

30 years, we conducted two 30-yr-long standard simu-

lations following the protocol defined in the AMIP.

Both simulations are constrained by realistic sea surface

temperature and sea ice from 1982 to 2011, but one is

run with monthly varying climatological (1982–2011)

LAI maps, that is, without any year-to-year variation

(AMIP_STD) and the other is constrained with the

monthly LAI maps from 1982 to 2011 (AMIP_LAI).

The difference between the two model runs (AMIP_

LAI 2 AMIP_STD) isolates the LAI-induced changes

in the terrestrial water cycle. The response of model

behavior to a boundary perturbation (i.e., LAI at the

land surface in this study) is a problem for the
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predictability of the second kind, and it is strongly

influenced by initial conditions, which the atmosphere,

as a chaotic system, has a high sensitivity to (Lorenz

1963). Here, to reduce the uncertainty resulting from

initial conditions, both the simulations were repeated

50 times with different initial conditions (IC-ensemble),

and the average of the ensemble members was ana-

lyzed. The initial conditions were derived from the

model output of an unperturbed 80-yr run forced

with the 1982 LAI distribution—the first 30 years of

the run for the spinup of the model (thus the simu-

lated soil moisture was in balance with the observed

LAI-constrained climate), and the last 50 years of the

run for the initial conditions. Figure 2 shows that a 50-

member ensemble is large enough to allow us to neglect

the uncertainty from initial conditions. These 50-

member ensembles of transient simulations, including

36960 simulation months, need intensive computational

resources. All the transient simulations, with a resolution

of 2.58 latitude 3 3.758 longitude, 19 vertical levels,

and a 1.5-min time step, were run at the Institut du Déve-

loppement et desRessources en Informatique Scientifique/

Centre National de la Recherche Scientifique (IDRIS/

CNRS), France.

FIG. 1. LAI trends and the LAI-induced trends in ET and P. (a) Spatial patterns of the LAI trend for 1982–2011

and (b) the LAI trend in latitude–month space. Spatial patterns of the LAI-induced (c) trend in annual ET, (d) the

ET trend in latitude–month space, (e) the trend in annual P, and (f) the P trend in latitude–month space. LAI-

induced variations of ET and P are isolated from AMIP_LAI2 AMIP_STD. Dots indicate a significant trend for

1982–2011 ( p , 0.05).
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The main simulations (AMIP_LAI and AMIP_STD)

have constant radiative forcings. To address whether the

effects of rising atmospheric CO2 change the climate

feedback of increasing LAI, we further performed four

equilibrium simulations investigating the equilibrium

response of the climate system to increasing LAI. Four

60-yr-long simulations that share the same setup were

forced by different seasonal LAI maps and different

atmospheric CO2 concentrations: one control run (CTL)

with LAI prescribed as the average observed from 1982

to 1986 and CO2 held at 341 parts per million (ppm; the

level of atmospheric CO2 concentration in 1982); two

partial-perturbation runs—transient run (TRN) with

LAI set as in CTL but CO2 at 391ppm (the level in

2011), and transient run for LAI (TLI) with CO2 set as in

CTL but LAI as the average observed from 2007 to 2011;

and another total-perturbation run [recent run (REC),

with both perturbations in CO2 and LAI] simulating the

recent past with LAI as the average observed from 2007

to 2011 and CO2 at 391 ppm. The equilibrium response

of the terrestrial water cycle is isolated from the com-

parison between REC and TRN. ET change between

TLI and CTL shows the sensitivity of ET to LAI when

CO2 was held at the level of 1982, and that between

REC and TRN shows the sensitivity when CO2was held

at the level of 2011. Thus, the difference between

REC 2 TRN and TLI 2 CTL could be used to test

whether the effects of rising CO2 change the sensitivity

of ET to LAI during the past 30 years. The first 10 years

of the simulations were excluded from the analysis to

ensure soil moisture fields were in equilibrium with cli-

mate. The analysis was thus performed on the last 50 years

of the simulations. The long averaging period allows us

to quantify unforced internal climate variability for an-

alyzing the mean effect of LAI differences on climate.

For this experiment, the model was run on the Tianhe

supercomputer (TH-1A) in China, and the model reso-

lution was 1.58 latitude 3 3.08 longitude, with 19 vertical

levels and a 1.5-min time step.

For both the transient and equilibrium experiments,

LAI was prescribed for each grid point and for each PFT

from the AVHRR 8-km global LAI product (Zhu et al.

2013). The solar constant is 1368Wm22. Other green-

house gases and aerosols were kept constant in the

transient experiments to better focus on the land surface

effects [e.g., CH4 is 1650 parts per billion (ppb), N2O is

306 ppb, CFC11 is 280 parts per trillion (ppt), and CFC12

is 484 ppt]. CO2 in the transient experiments has been

set to 341 ppm (1982’s level). The effects of rising at-

mospheric CO2 on the climate feedback of increasing

LAIwere characterized by the equilibrium experiments.

Pixels with a multiyear (1982–2011) average LAI , 0.1

were excluded from the analysis. In the equilibrium

experiment, the monthly sea surface temperature and

sea ice were set from seasonal climatology (1982–2011)

so that the results focus on the land surface effects

(Bounoua et al. 2000; Hales et al. 2004).

b. Observation-based datasets

Long-term forest inventories (McMahon et al. 2010;

Fang et al. 2014), ecosystem model simulation results

(Mahowald et al. 2016; Sitch et al. 2015), and the ob-

served enhanced seasonal exchange of CO2 in the

Northern Hemisphere (Graven et al. 2013; Forkel et al.

2016) are consistent with the evidence of a greening of

Earth during the last 30 years. To quantify the greening,

the long-term NOAA–AVHRR satellite measurements

offer an unprecedented dataset because they are the

only ones covering the last 35 years. Here, the Earth

greening in IPSLCM GCM is constrained by the long-

term global satellite dataset of LAI3g, an 8-km global

LAI product from 1982 to 2011 derived from the

NOAA–AVHRR satellite measurements (Zhu et al.

2013). It was produced by a set of neural networks

trained on best-quality and significantly postprocessed

MODIS LAI and AVHRR Global Inventory Modeling

and Mapping Studies (GIMMS) NDVI3g data for the

overlapping period between the two sensors (Zhu et al.

2013). This satellite LAI product has been extensively

evaluated against field measurements, validated as a

research-quality dataset, and used in numerous previous

studies to understand trends in the terrestrial carbon and

water exchange (Zhu et al. 2013, 2016; Pfeifer et al. 2014;

Zeng et al. 2017).

The monthly LAI from LAI3g was applied to force

IPSLCMGCM in the transient experiment. In addition,

we extracted the multiyear average annual cycle of

global land LAI during the early 1980s (1982–86) and

the early 2010s (2007–11) to be used in the equilibrium

FIG. 2. Plot of the correlation between LAI and LAI-induced

variations in land P (blue line) and ET (green line) vs IC-ensemble

member size.
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experiment. The two periods represent enhanced LAI

at a global scale, although a few regions do show a de-

crease of LAI (Figs. 1a,b and 3a,b). The AMIP provides

observed monthly maps of sea surface temperature and

sea ice from 1982 to 2011 for use in the simulations.

Several observation-based datasets have been con-

structed and applied to detect variations of the terres-

trial water cycle during the past three decades. The five

long-term global land ET products used in this study are

the Flux Network model tree ensemble (FLUXNET-

MTE) ET, based on eddy covariance measurements

(Jung et al. 2010); the Gravity Recovery and Climate

Experiment model tree ensemble (GRACE-MTE) ET,

which in addition used the satellite-observed water mass

balance (Zeng et al. 2014); the remote sensing products

of modified Penman–Monteith (MPM) ET (Zhang et al.

2010); Process-Based Land Surface Evapotranspiration/

Heat Fluxes (P-LSH) ET (Zhang et al. 2015); and

FIG. 3. Patterns of the (top) enhanced LAI, (middle) induced ET change, and (bottom) P change using the

equilibrium experiment (REC2 TRN). (a) Spatial patterns of the LAI change between the early 1980s (1982–86)

and the early 2010s (2007–11) and (b) the LAI change in latitude–month space. Spatial patterns of the enhanced

LAI-induced (c) change in annual ET, (d) the ET change in latitude–month space, (e) change in annual P, and

(f) theP change in latitude–month space. Dots indicate a significant difference in the simulations betweenREC and

TRN based on a two-sample t test ( p , 0.05, n 5 50).
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Penman–Monteith–Leuning (PML) ET (Zhang et al.

2016). All these datasets used vegetation remote sensing

and climate fields as drivers in their algorithms to re-

construct the interannual variability of global land ET

over the last 30 years (Table S1). Because of the lack of

direct observations, it is difficult to estimate the biases in

these products derived from errors in both drivers and

algorithms. Thus we included the five datasets in this

study to define an uncertainty range in the observed land

ET. The two global precipitation datasets for the period

1982–2011 are from observations assembled in the Cli-

matic Research Unit (CRU) time series, version 3.21

(Harris et al. 2014), and the Global Precipitation Cli-

matology Centre Full Data Reanalysis, version 6

(GPCC; Schneider et al. 2011). The global near-surface

air temperatures and potential evapotranspiration for

1982–2011 are also derived from the CRU dataset,

which is grounded on analysis of more than 4000

individual meteorological station records (Harris

et al. 2014).

3. Results

a. Model performance

The LMDZ climate model and ORCHIDEE land

surface model are both largely used state-of-the-art

models in the climate community and have been well

tested against observations. Here, we retested the ca-

pacity of the model to simulate the global climate using

the observation-based reconstructions of near-surface

air temperature, precipitation, and evapotranspiration

from 1982 to 2011. Among all the simulations above, the

one closest to the historical climate is the IC-ensemble

of simulations constrained by realistic sea surface tem-

perature and sea ice and LAI for 1982–2011 (AMIP_

LAI). The model is evaluated by a comparison between

the observation-based reconstructions and this IC-

ensemble of AMIP_LAI. We found that the modeled

temperature is significantly and highly correlated with

the observed surface air temperature at both spatial

distribution (R5 0.99, p, 0.01; Fig. S3d) and temporal

variation (R 5 0.84, p , 0.01; Fig. S3e). Figures S4 and

S5 also show that the model has good capacity in re-

producing global land precipitation (spatial correlation:

R 5 0.70, p , 0.01; temporal correlation: R 5 0.82, p ,

0.01), and global land evapotranspiration (spatial cor-

relation: R 5 0.84, p , 0.01; temporal correlation: R 5

0.89, p , 0.01), respectively.

Because ET is a nexus in the feedback of land

greening to the terrestrial water cycle (e.g., Shukla and

Mintz 1982; Sheil and Murdiyarso 2009; Spracklen et al.

2012; Swann et al. 2012; Makarieva et al. 2013), we also

evaluate the modeled sensitivity of ET to LAI using

three satellite-derived reconstructions of long-term land

ET (FLUXNET-MTE ET, GRACE-MTE ET, and

MPM ET). In our transient experiment, the sensitivity

of land ET to LAI (›ET/›LAI) is calculated from the

regression dET5 k1LAI1 c1, where LAI is the global

average annual LAI from 1982 to 2011, dET is the LAI-

induced change in annual land ET (AMIP_LAI 2

AMIP_STD) from 1982 to 2011, and k1 is the modeled

sensitivity of land ET to LAI. The same approach is also

applied to estimate the observed sensitivity of land ET

to LAI using the long-term observations of LAI and ET:

ET5 k2LAI1 c2, where ET is the global average annual

land ET from 1982 to 2011 from several observation-

based estimates (FLUXNET-MTE, GRACE-MTE,

MPM, and the ensemble of these observations), and k2

is the estimated observed sensitivity of land ET to LAI.

As the observed land ET is also strongly affected by

other factors, we need to estimate the observed sensi-

tivity by statistically controlling precipitation and tem-

perature: ET5k3LAI1 c3P1 c4Ta 1 c5, where P and

Ta are the observed annual land precipitation and sur-

face air temperature during 1982–2011 from the CRU

dataset, respectively, and k3 is the estimated observed

sensitivity of land ET to LAI, statistically controlling P

and Ta. The modeled sensitivity of land ET to LAI is

0.926 0.03mmyr21 decade21 per 0.01m2m22 decade21

(p , 0.01), which is nearly the same as the optimal es-

timate of observed sensitivity (0.96 6 0.13mmyr21

per 0.01m2m22, p , 0.01; the ensemble of observed

›ET/›LAI statistically controlling precipitation and

temperature; Fig. 4a). Furthermore, the modeled sen-

sitivities of land ET to LAI at all latitudes are within the

ranges of the sensitivities from the satellite-derived ob-

servations (Fig. 4).

We noticed that the modeled ›ET/›LAI in our

IPSLCM simulations differs from the modeled

›ET/›LAI in the IPSLCM simulations for CMIP5 (Zeng

et al. 2016), which could be attributed to the following

two factors. First, because ›ET/›LAI is physically

influenced by the magnitude of LAI (Zeng et al. 2016),

prescribing the observed LAI into the model should

automatically adjust the sensitivity to an extent. Second,

more importantly, ›ET/›LAI varied a lot even for the

same model with different resolutions and physical

schemes. For example, using the temporal variations

of ET and LAI from CMIP5 simulations, Zeng et al.

(2016) found that ›ET/›LAI is 4.98 6 0.85mmyr21 per

0.01m2m22 (p , 0.01) in IPSL-CM5A-LR, 3.50 6

0.78mm yr21 per 0.01m2m22 ( p , 0.01) in IPSL-

CM5A-MR, and 1.51 6 0.57mmyr21 per 0.01m2m22

(p , 0.01) in IPSL-CM5B-LR. The climate model used

in this study is IPSLCM, version 4, with a resolution of
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2.58 latitude 3 3.758 longitude, 19 vertical levels, and a

1.5-min time step. Using the same approach as in Zeng

et al. (2016) and calculated with the temporal varia-

tions of ET and LAI from AMIP_LAI simulations,

›ET/›LAI was 0.84 6 0.17mmyr21 per 0.01m2m22

(p , 0.01), which is similar to the estimate from AMIP_

LAI 2 AMIP_STD and within the range of the esti-

mates from the observations using the same approach

(Fig. 4). Zeng et al. (2017) found that accurate representa-

tion of the ratio of transpiration to total evapotranspiration

is the key reasonwhy the IPSLCMmodel used in this study

accurately simulates the response of ET to LAI change.

b. Effects of DLAI on the terrestrial water cycle

The enhancement of LAI (greening) during the last 30

years (Figs. 1a,b) leads to a pronounced increase of ET

(Figs. 1c,d) and P (Figs. 1e,f) over the globe. Spatially,

the trend in ET (DET, defined as ›dET/›t where dET is

the LAI-induced change in annual ET from AMIP_

LAI 2 AMIP_STD) rises with the change in LAI

(DLAI, defined as ›LAI/›t), defining an average sensi-

tivity of 1.0mmyr21 decade21 per 0.01m2m22 decade21

increase in LAI (R2
5 0.58, p , 0.01; Fig. S6a). The

patterns of DP are not identical to those of DLAI ev-

erywhere (cf. Figs. 1e,f and 1a,b). The DLAI can only

explain 14% of the spatial variation in DP (Fig. S6b),

which is about half of the fraction of DP explained by

DET (Fig. S6c). The results indicate that DLAI-induced

changes in the terrestrial water cycle are derived from,

and dominated by, an influence on ET. On the one hand,

DET changes the amount of atmospheric precipitable

water, causing DP, with the spatial distribution of DP

influenced by the atmospheric circulation (Spracklen

et al. 2012; Swann et al. 2012; Devaraju et al. 2015); on

the other hand, DET also changes land surface air tem-

perature and atmospheric circulation (Zeng et al. 2017),

which may change moisture convergence and regulate

both the magnitude and the spatial distribution of DP

(Findell et al. 2011).

We analyzed the effects of DLAI on global and con-

tinental water budgets (Fig. 5). Globally, increasing LAI

amplifies both land ET and land P (Figs. 5a and 6). The

FIG. 4. Sensitivities of land ET to LAI from the IPSLCMmodel

(black bar: AMIP_LAI2AMIP_STD; gray bar: AMIP_LAI), the

observations using simple regression (blue bars), and the obser-

vations using multiple regressions controlling P and surface air

temperature (green bars) for (a) global, (b) tropical, (c) north

temperate, (d) south temperate, and (e) boreal latitude bands.

 

Ensemble sensitivity is calculated with the average of the obser-

vations. The horizontal dashed line is the modeled sensitivity. Er-

ror bars show one standard error of the sensitivity. The significance

of sensitivity is shown with asterisks, where *** indicates signifi-

cance at the 99% confidence interval, ** indicates significance at

the 95% confidence interval, * indicates significance at the 90%

confidence interval, and n.s. means not significant.
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DET and DP are 4.0 6 0.8mmyr21 decade21 (mean 61

standard error, p , 0.01), and 4.0 6 0.9mmyr21 deca-

de21 (p , 0.01), respectively. Although an increase of

ET is likely to result in a reduction of local runoff R and

water yield (P2 E, defined as the difference between P

and ET; e.g., Jackson et al. 2005; Goulden and Bales

2014), our results indicate that the globalDR andDP2E

caused by DLAI are not significant (p . 0.05; Fig. 5a).

Because local DET also amplifies P downwind, the loss

of local runoff and P 2 E is partly offset by positive DP

in nearby regions; the degree to which this occurs will be

influenced by the atmospheric circulation (van der Ent

and Savenije 2011; Spracklen et al. 2012; Swann et al.

2012; Devaraju et al. 2015) and thus is scale-dependent

(Fig. S7). At the continental scale, the proportion of the

DLAI-induced ET that precipitates on the ocean (van

der Ent et al. 2010) may have been offset by an increase

of ocean–land water transport (Table 1), resulting from

changes in atmospheric circulation (Zeng et al. 2017).

Additionally, although DLAI-induced change in

global soil water content (SWC) is statistically signifi-

cant ( p , 0.01; Fig. 5a), its magnitude is only 20.5 6

0.1mm decade21, tentatively suggesting a weak impact

of Earth greening on soil moisture at a global scale.

Enhanced LAI significantly increases ET over nearly

all the continents ( p , 0.05; Figs. 5b–f), except for

FIG. 5. Effects of the increasing LAI on global and continental water budgets. The increasing LAI-induced trends in the terrestrial water

budget from AMIP_LAI 2 AMIP_STD on (a) global and (b)–(g) continental scales. Error bars show the standard error of the trends;

*** indicates significant trends at the 99% confidence interval, ** indicates significance at the 95% confidence interval, and n.s. means not

significant.
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Australia, where DET is not significant, despite a locally

positive change of LAI (p. 0.05; Fig. 5g). The impact of

DLAI on regional precipitation is more heterogeneous.

The DP is positive, although less than DET, over North

America, Asia, and Australia (Figs. 5b,f,g), and nearly

equal to DET over Europe (Fig. 5d). For South America

and Africa, both DP and DET are positive, but P in-

creases more than ET in response to DLAI (Figs. 5c,e).

As a result, continental runoff and P 2 E increase over

South America and Africa, but slightly decrease over

North America, Asia, and Australia (Figs. 5b–g). In

addition, the decrease of SWC caused by the greening of

Earth is also weak at the continental scale (Figs. 5b–g).

Thus, the terrestrial water cycle has been intensified by

recent Earth greening; on both global and continental

scales, enhanced LAI accelerates the turnover of soil

moisture through a coincident increase of ET and P and

does not meaningfully decrease runoff, P2E, and SWC

(Figs. 5b–g and Fig. S8). Additionally, the equilibrium

response of the terrestrial water cycle to the change in

LAI (Fig. 3 and Fig. S9) is similar to the transient re-

sponse (Figs. 1 and 2), with greater similarity in the ET

response than in the P response.

The effect ofDLAI on SWCover the globe is weak, since

positive soil moisture trends at some locales have been

largely canceled out by negative trends at others. There is

an intensive reduction of SWC in many dry regions, for

example, in the Sahel, west Asia, northern India, the

westernUnitedStates, and theMediterranean coast (Fig. 7a

and Fig. S10). In the western United States, the decrease in

SWC is likely caused by the decrease in localP (Fig. 1e); the

latter could be a result of the greening-induced circulation

change. In the Sahel, west Asia, and the Mediterranean

coast, as the greening significantly increased local P

(Fig. 1e), the cause for SWC change is not P but ET. In

these regions, because the correlation between DET and

DSWC has shifted from nonsignificant in the beginning

years to significant and negative in recent years (Fig. 8), the

reduction in soil moisture (SM) could further suppress ET

and cease the DLAI-induced increase of P. Soil moisture

becoming limited explains why the observed greening does

not increase ET in some dry regions (e.g., northern India,

Figs. 1c and 7a). The greening-induced intensification of the

terrestrial water cycle is therefore subject to a progressive

emergence of constraints by limited moisture supply in dry

regions (Fig. S11).

FIG. 6. Temporal variations of global averageLAI (green line) andLAI-induced variations in land

ET (red line) and land P (blue line). LAI-induced variations of ET and P are isolated fromAMIP_

LAI2 AMIP_STD. Inserted numbers show the trend of LAI-induced variation of ET and P.

TABLE 1. Trends of land precipitation PL, land evapotranspiration EL, and ocean–land water transport EO 2PO in the AMIP_STD,

AMIP_LAI ensemble simulations. Uncertainty is the standard error of the trend.

PL (mmyr21 decade21) EL (mmyr21 decade21) EO 2PO (km3 yr21 decade21)

AMIP_STD 9.9 6 4.3a 3.5 6 0.9b 962 6 504c

AMIP_LAI 14.0 6 4.5b 7.5 6 1.4b 969 6 516c

AMIP_LAI 2 AMIP_STD 4.0 6 0.9b 4.0 6 0.8b 7 6 51

a Significance at p , 0.05.
b Significance at p , 0.01.
c Significance at p , 0.1.
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c. Mechanisms of DLAI-induced terrestrial water

cycle change

The satellite-observed increase of LAI by 8% from

1982 to 2011 is modeled to result in a relative increase of

plant transpiration by 5%. In magnitude, ET from vege-

tation dominated by transpiration (Jasechko et al. 2013)

increases by 6.4 6 1.3mmyr21 decade21 (p , 0.01,

Fig. 9a). As the increase of transpiration consumes

more water and energy, soil evaporation decreases

FIG. 7. Response of SWC and runoff to increasing LAI. (a) Spatial pattern of the LAI-

induced trend in SWC. (b) Spatial pattern of the LAI-induced trend in runoff. (c) Schematic of

the different responses of the terrestrial water cycle to the enhanced LAI over wet/dry regions.

Dots indicate a significant trend for 1982–2011 ( p , 0.05).
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by22.36 0.5mmyr21 decade21 (p, 0.01, Fig. 9b). Such

an opposing response of transpiration and evapora-

tion to increasing LAI is independently corroborated

by results of offline diagnostic ET algorithms driven

by observations (Zhang et al. 2016). As a net effect, the

DLAI-induced increase in ET is 4.0 6 0.8mmyr21

decade21 (Figs. 1c, 5a, and 6).

As for the spatial pattern of soil moisture change, two

distinct situations can take place following the regional

wetness or dryness (Fig. 7a). The key lies in the spatial

distribution ofDP (Findell et al. 2011; Spracklen et al. 2012;

Swann et al. 2012; Devaraju et al. 2015). Over forest re-

gions, usually relatively wet and with greater moisture re-

cycling, because the forest acts as an efficient biotic water

pump of atmospheric moisture (Sheil and Murdiyarso

2009; Spracklen et al. 2012; Makarieva et al. 2013), the

enhanced atmospheric moisture caused by DET turns out

to increase regionalP. This is evident over forested regions

such as Amazonia, the Congo basin, boreal forest regions,

and Southeast Asia including southern China (Fig. 1e).

The increase of P is even larger than that of ET over these

regions, which resupplies soil moisture or increases runoff

(Fig. 3b and Fig. S7). Over most nonforest regions, usually

relatively dry, there is a significant reduction of SWC

(Fig. 7a) despite there being no significant changes in

runoff (Fig. 7b) and P 2 E (Fig. S7). Considering that

the LAI-induced disequilibrium between P and ET is re-

flected by an adjustment of runoff in wet regions/periods,

and of soil moisture in dry regions/periods (Fig. 7c), the

significant decrease of SWC in dry regions should be a

result of increasing ET because soil moisture integrates

cumulative ET changes over periods from weeks to

months (Figs. 7 and 8). However, we should also note that

the precipitation biases in themodel (Fig. S4c)might result

in biases in the modeled soil moisture response because

the response of soil moisture to LAI change is constrained

in different ways at thewettest and driest ends (Meng et al.

2014). In the dry regions where significant reduction of soil

moisture was modeled, there are dry biases in the Sahel

and northern India, and wet biases in west Asia, the

western United States, and the Mediterranean coast

(Table S2). Given that the modeled soil moisture is near

thewilting point in dry areas, the dry bias indicates that the

model has underestimated the moisture response in the

Sahel and northern India, while the wet bias indicates an

overestimation in west Asia, the western United States,

and the Mediterranean coast.

d. Importance of DLAI to changes in observed ET, P,

and SWC for the last 30 years

The constraint of satellite-observed LAI improves the

capacity of the model to reproduce the observed varia-

tions of land ET andP for the last 30 years. Themodeled

land ET in the standardAMIP simulation (AMIP_STD)

already reproduces some of the observed interannual

variations of land ET derived from several data products

FIG. 8. Correlation coefficient between LAI-induced changes in soil moisture and ET over

dry regions with aridity index . 2 (RDET,DSM ) against time; RDET,DSM is calculated with the

DLAI-induced changes in SM andET in eachmoving windowof 96months (8 years). The x axis

shows the beginning time of the moving window. Background colors indicate the significance

level of the correlation ( p , 0.01, indicates a significant correlation at the 99% confidence

interval; p, 0.05, at the 95% confidence interval; p, 0.1, at the 90% confidence interval; and

p . 0.1, no significance).
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(Table S1), for example, FLUXNET-MTE ET (R 5

0.39, p, 0.05), GRACE-MTE ET (R5 0.76, p, 0.01),

MPMET (R5 0.46, p, 0.01), P-LSHET (R5 0.62, p,

0.01), and PML ET (R 5 0.54, p , 0.01). Constrained

with the satellite-observed LAI in AMIP_LAI, the in-

terannual correlation between modeled ET and the

same data products increases by an average of 0.23 6

0.07 (Table S3). In terms of precipitation, the observed

interannual variation over land is well reproduced in

AMIP_STD (R 5 0.85 for GPCC P and R 5 0.77 for

CRU P, both with p , 0.01), and the skill is a little

stronger when the variation of LAI is included in

AMIP_LAI (Table S4).

In AMIP_STD, the observed change in SST for 1982–

2011 has significantly increased land ET by 3.5mmyr21

decade21 (p, 0.01) and the ocean–land water transport

by 962 km3 yr21 decade21 (p , 0.1), contributing to an

increase of land P by 9.9mm yr21 decade21 ( p, 0.01;

Table 1). Yet the magnitude is obviously lower than the

observed trend in land P for both CRU and GPCC

(black bar versus blue bars, Fig. 10). Compared to

AMIP_STD, because of the inclusion of a DLAI-induced

increase of P (4.0mmyr21 decade21, p, 0.01; Table 1),

the trend of land P in AMIP_LAI matches the observed

trend of land P from GPCC and CRU products (green

bar versus blue bars, Fig. 10).

To further evaluate the importance of DLAI-induced

changes in the terrestrial water cycle, we compare the

signal of enhancedLAI against the interannual variability

(IAV) and the trends of observed ET (Figs. 11a,b) and P

(Figs. 11c,d) during the past 30 years. The LAI-induced

IAV of ET (5.1mmyr21) is of the same magnitude as the

FIG. 9. Temporal variation of global average LAI (green line) and LAI-induced variation in

ET (blue line) from (a) vegetation and (b) soil. LAI-induced variations of ET from vegetation

and soil are isolated from AMIP_LAI 2 AMIP_STD. The black line is the least squares re-

gression of ET against time. Inserted numbers show the correlation R between ET and LAI,

and the trend of LAI-induced variation of ET.
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observed IAV of land ET over the past 30 years derived

from the above data products (Fig. 11a). The modeled

trend in land ET as a response to change in LAI alone

accounts for 23%–92% (average: 55% 6 25%) of the

observed trend in land ET during the past 30 years, de-

pending on the ET dataset used as a reference (Fig. 11b).

Our results suggest that DLAI, which includes the bio-

geochemical (CO2 fertilization) effect as well as the ef-

fects of land-use and land-cover change where it

happened over the last 30 years and climate-related

mechanisms responsible for LAI changes over time

(Piao et al. 2015; Mao et al. 2016; Zhu et al. 2016), has

been an important driver of land ET change during the

past 30 years.

The IAV of land precipitation (5.5mmyr21) in

response to the interannual variation of LAI alone

accounts for a fraction (21%) of the total IAV in ob-

served land P from GPCC and CRU products

(Fig. 11c), the rest being caused by other factors (e.g.,

SST, climate forcing of greenhouse gases, and aero-

sols). The DLAI-induced DP accounts for, on average,

28% 6 6% of the observed trend in land P during the

past 30 years estimated from GPCC (32%) and CRU

(23%). Although the change in precipitation over land

during the past 30 years was primarily caused by

other factors such as interannual to decadal modes of

climate variability, greenhouse gases, and aerosols, this

result suggests that the role of increasing LAI is not

negligible.

Last but not least, spatially, there is significant overlap

between the DLAI-induced ET trend (Fig. 1c) and the

observed ET trend (e.g., Fig. 3b in Zeng et al. 2012;

Fig. 6a in Zeng et al. 2014; Fig. 1b in Zhang et al. 2015;

Fig. 5a in Zhang et al. 2016). For example, DLAI sig-

nificantly increased ET over Europe, the boreal Asia,

eastern America, Amazonia, the Sahel, southern India,

eastern China, and northern Australia (Fig. 1c), where

almost all the ET products show positive ET trend

during the past 30 years (e.g., Zeng et al. 2012, 2014;

Zhang et al. 2015, 2016). The DLAI did not change and/

or even decreased ET in the western United States,

southern South America, central Africa, and western

Asia, where some ET products did show a negative ET

trend over these regions (e.g., Zeng et al. 2012, 2014;

Zhang et al. 2015, 2016). Thus, the spatial coherence

between the DLAI-induced ET trend and the observed

ET trend provides further evidence of the importance of

DLAI to the terrestrial water cycle change during the

last 30 years.

4. Discussion

a. A conceptual analysis on the DLAI-induced

relative change in transpiration

A condition to accurately simulate the impact of

greening on the terrestrial water cycle is to well simu-

late the response of ET to the LAI change (Zeng et al.

2016). Here we provide a conceptual analysis on the

DLAI-induced relative change in transpiration for a

comparison of model simulations. In general, plant

transpiration (Eveg) is an integral over the individual

leaf area in the canopy, as in

E
veg

5

ð
E

i
dL , (1)

where L is LAI and Ei is the transpiration from small

leaf element dL. It can be approximated as

E
veg

5aEL , (2)

where E is mean transpiration rate per leaf area, and

a is a function varying with L. Because 1) a declines

markedly with increasing L when L is low and 2) a is a

gradual saturating functional response linking low

L and high L (Schulze et al. 1994), we assume that

a can be expressed as a negative exponential func-

tion of L, that is, a5 k1 1 k2e
2L, where k1 and k2 are

parameters. Assuming that a equals 1 for low L (L5 0)

and that a is around 1/3 for high L (L5 10; Schulze

et al. 1994), we therefore estimate k1 5 1/3 and k2 5 2/3.

Furthermore, the DLAI-induced relative change in

FIG. 10. Trends in land P for 1982–2011 from the transient ex-

periment (AMIP_STD,AMIP_LAI) and the observations (GPCC,

CRU). Error bars show one standard error of the trends. The sig-

nificance of the trends is shown with asterisks, where *** indicates

significance at the 99% confidence interval, ** indicates signifi-

cance at the 95% confidence interval, * indicates significance at the

90% confidence interval, and n.s. means not significant. The hori-

zontal dashed line is the modeled trend of land P caused by the

change of SST and increasing LAI from 1982 to 2011, and the

shadow shows one standard error.
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transpiration can be decomposed into the changes in a,

E, and L, as in

dE
veg

E
veg

5
da

a
1

dE

E
1

dL

L
. (3)

The satellite-observed increase of L is around 8%

during the period 1982–2011 (Zhu et al. 2013)

(dL/L5 8%). When L increases by 8% from 1.51 to

1.63m2m22, a decreases from 0.48 to 0.46. Thus,

da/a523%. Because our goal is to quantify the LAI-

induced change in the water cycle, the CO2 scenario in

AMIP_LAI is the same as that in AMIP_STD. The term

dE/E should therefore be a constant (dE/E’ 0).

Therefore, the relative change in transpiration resulting

from the increasing LAI should be 5%. This is a sim-

plified, global average estimate, which differs from the

transpiration response of an individual tree to increasing

LAI. The latter is elastic, controlled by the ecological

behavior and climatological condition. In spite of this,

such an observation-based estimate provides criteria for

global model simulations.

Themodeled increase of plant transpiration caused by

the observed increase of L, globally, is also 5% in the

numerical experiments by IPSLCM GCM, which is

consistent with the conceptual analysis.

b. The effect of rising atmospheric CO2 on the climate

feedback of Earth greening

In this paper, we focus on the impacts of Earth

greening on the terrestrial water cycle over the past

three decades. Yet the impact may be buffered by the

enhancement of water-use efficiency resulting from in-

creasing atmospheric CO2 during this period. We used

four equilibrium simulations (CTL, TRN, TLI, and

REC) to investigate the effect of rising atmospheric CO2

on the LAI-induced change in the terrestrial water cycle.

The comparison between TLI and CTL represents the

model response to increasing LAI when CO2was held at

the same level as in 1982, and that between REC and

TRN shows the responsewhenCO2was held at the same

level as in 2011. We found the equilibrium response of

the terrestrial water cycle to increasing LAI and CO2

estimated from REC 2 CTL (Figs. S12 and S13) to be

similar to that when only LAI increases, that is, as esti-

mated fromREC2TRN (Figs. 3 and S9). This indicates

that rising CO2 does not change the impacts of global

LAI change on the terrestrial water cycle. In fact, rising

FIG. 11. Comparisons of LAI-induced changes of ET and P with IAV and trend of observed ET and P, re-

spectively. IAV from the observation-based estimates of (a) global land ET and (c) global land P. The trend from

the observation-based estimates of (b) global land ET and (d) global land P. The horizontal dashed lines in

(a)–(d) are the LAI-induced IAVof ET, trend of ET, IAVofP, and trend ofP, respectively. The shadow shows the

standard error of the trends. The numbers show the period for each observation-based estimate.
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CO2 not only decreases transpiration by increasing water-

use efficiency through the physiological effect, but also

increases evapotranspiration via the radiative effect over

land. A comparison of climate between REC2 TRN and

TLI 2 CTL reveals that the effects of rising CO2 do not

significantly change the sensitivity of ET to LAI during the

past 30 years (Fig. 12), and the nonsignificant difference

dominates over land pixels (t test, p . 0.05, n 5 50). The

results indicate that the reduction of ET caused by the

physiological effect of risingCO2 ismostly cancelled out by

the increase of ET resulting from the radiative effect of

rising CO2 over land, which is consistent with the findings

in previous studies (e.g., Betts et al. 1997; Bounoua et al.

1999; Cao et al. 2010). However, because the effects of

risingCO2 are nonlinear, studies extrapolating these effects

in the future should be cautious. Besides, the impact may

also be buffered by changing aerosols, which has not been

quantified in this study and is worthy of continuing efforts.

c. Implications for predicting the terrestrial water

cycle

The terrestrial water cycle has intensified in response

to global warming over the last 30 years (Huntington

2006; Jung et al. 2010; Vinukollu et al. 2011; Zeng et al.

2014). We find that the observed increase of LAI was a

significant contribution to the positive trend of global

land ET, which also feeds back on climate. Surprisingly,

most of the global ET observation-based products

indicate a decline of global ET trend after 1998 (Jung

et al. 2010; Vinukollu et al. 2011), mainly over semiarid

regions (Jung et al. 2010; Zeng et al. 2014). Jung et al.

(2010) suggested that the decline of global land ET trend

was a result of soil moisture limitation in semiarid regions.

Although soil moisture ismainly controlled by precipitation

in dry regions, our simulations indicate that the greening-

induced soil moisture reduction [the greening itself possibly

caused by precipitation aswell as other factors such as rising

CO2 and land-use change (Piao et al. 2015; Mao et al. 2016;

Zhu et al. 2016; Figs. 7a and 8)] is superimposed on the

interannual variability of precipitation and contributes to a

decreasing soil moisture trend in semiarid regions.

Because the dynamics of LAI play a pivotal role in

regulating the water cycle, it is important that this var-

iable is simulated correctly in land surface models. The

capacity of Earth system models (ESMs) to simulate

the spatiotemporal variation of LAI partly determines

the reliability of these models in predicting terrestrial

water cycle changes. We compared the observed global

land LAI (Zhu et al. 2013) with the simulated one for

1982–2005 from the coupled runs of 27 ESMs in CMIP5

(Table S5; Taylor et al. 2012). Their capacity to simulate

LAI dynamics spans a wide range (Figs. S14–S16). Most

ESMs overestimate the magnitude of LAI (Fig. S17),

and underestimate its IAV (Fig. S18) and trend (Fig. S19).

Furthermore, biases of the LAI trend in the ESMs give

rise to biases of their ET trends. So far, there are inherent

biases in the sensitivity of ET to LAI in the CMIP5 ESMs

(Zeng et al. 2016) that are necessary to be calibrated for a

better simulation of land–climate interaction. On the one

hand, we call for more studies to identify the factors

driving the sensitivity biases in differentmodels and/or the

same model but with different resolutions and physical

schemes. On the other hand, if the sensitivity has been

calibrated using the Earth’s sensitivity of land ET to land

LAI (Zeng et al. 2016), we estimate that biases of LAI in

the CMIP5 models can be translated into biases of ET

trend ranging from an underestimation of 3.7mmyr21

decade21 to an overestimation of 4.8mmyr21 decade21

(Fig. S20). Thus, a more accurate representation of LAI

dynamics and the ET sensitivity to LAI change in ESMs is

needed if we are to improve the simulation of the terres-

trial water cycle and hence the prediction of how water

resources will respond to climate change. Such improve-

ment is also indispensable if we are to develop effective

strategies for mitigation of climate change impact through

land-use changes. One way to ameliorate models is to

correct the initialization, distribution, and parameteriza-

tion of vegetation phenology in land surface models to

improve the LAI dynamics (Anav et al. 2013), with the

ultimate objective of reducing uncertainties on vegetation

feedbacks in climate projections.

5. Conclusions

To the best of our knowledge, this is the first quanti-

tative estimate of how the terrestrial water cycle has

FIG. 12. Response of land ET to increasing LAI in the simula-

tions of low atmospheric CO2 concentration (set in 1982; TLI 2

CTL) and the simulations of high atmospheric CO2 concentration

(set in 2011; REC2TRN). Error bars show one standard variation

of annual land ET within each 50-yr-long simulation. According to

a t test, there is no significant difference between TLI 2 CTL and

REC 2 TRN ( p . 0.05, n 5 50).

1 APRIL 2018 ZENG ET AL . 2647

Unauthenticated | Downloaded 08/27/22 04:00 AM UTC



been influenced by the satellite-observed widespread in-

crease of leaf area over the land surface. We found an

unexpected contribution of increasing LAI to the ob-

served hydrological intensification. Increasing LAI in-

tensifies moisture recycling through a coincident increase

of evapotranspiration and precipitation over wet regions,

but over dry regions, increasing LAI causes a significant

decrease of soil moisture. This implies that it is essential

to accurately represent LAI and its feedbacks in Earth

systemmodels for simulations and predictions of how the

terrestrial water cycle responds to climate change.

This study has increased our understanding of how

vegetation change produces change in the terrestrial

water cycle, but as with all studies, uncertainties remain.

First, the LAI product used to constrain the IPSLCM

GCM has uncertainties arising from the regression al-

gorithm, the saturation effect in NDVI, lack of onboard

calibration, and the orbital loss problem of AVHRR

sensors (Tucker et al. 2005; Zhu et al. 2013). Thus, sys-

tematic errors in the satellite LAI product can cause a

mismatch between modeled changes in terrestrial water

fluxes and the observations. Nevertheless, continuing

efforts are being made to produce more accurate and

consistent LAI time series and reduce systematic un-

certainties and their variation in time (Pinzon and

Tucker 2014; Zhu et al. 2016). Second, the LAI-induced

changes in the terrestrial water cycle may in turn impact

vegetation activity, particularly through drought events,

which again affects the terrestrial water cycle. This in-

direct effect was not considered in this study, as we have

aimed for the quantification of the direct feedback of

vegetation on climate. This comparative experiment was

performed to estimate the impact of the observed LAI

change on the terrestrial water cycle over the past three

decades. This estimate has excluded the uncertainty

caused by initial conditions by using a large IC-ensemble.

However, one caveat of the estimate is the uncertainty

resulting from the limitation in our knowledge of and

abilities to represent the Earth system, including param-

eterizations of cumulus convection, turbulence, radiation,

cloud microphysics, and land surface processes. Among

the most important caveats are the model precipitation

biases, as it is possible to induce biases of themodeled soil

moisture response. It is essential to improve the accuracy

of representing the Earth system, particularly the pre-

cipitation processes, in the models. Otherwise, to reduce

uncertainty, it is highly desirable to have multimodel

ensembles using ESMs with different parameterization

schemes.
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