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ABSTRACT Dementia diseases are increasing rapidly, according to the World Health Organi-
zation (WHO), becoming an alarming problem for the health sector. The electroencephalogram
(EEG) is a non-invasive study that records brain electrical activity and has a wide field of
applications in the medical area, one of which is the detection of neurodegenerative diseases. The
objective of this work is to present the results of a thorough review of the use of EEG systems for
the detection of dementia diseases. Around 82 published papers between 2009 and 2020 were
reviewed, and compared among them obtaining data such as sampling time, the number of
electrodes, the most popular processing, classification, and validation techniques, as well as an
analysis of the reported results. The relationship of the selected parameters with the efficiency
obtained is shown, some more common combinations in the reviewed articles that demonstrated
to have reliability levels greater than 90% and details to be considered at each stage of the process.
An overview of the most commonly used classification tools and processing techniques is also
described.

INDEX TERMS EEG systems, detection reliability, neurodegenerative diseases, automatic/semi-
automatic detection, biomedical applications.

I. INTRODUCTION

According to studies conducted by the World Health
Organization (WHO), it is estimated that there are more
than 46.8 million cases of dementia, which will double
by 2030 and triple by 2050. Dementia is one of the main
causes of dependency and disability among the elderly.
It is a syndrome that involves intellect, the deterioration
of memory, the ability, and behavior to perform activi-
ties of daily living. It is a growing challenge for health
systems [1]–[4].

Alzheimer’s disease (AD) is the most common form
of dementia, accounting for between 70% and 80% of
cases. It is one of the irreversible neurodegenerative
diseases characterized by a decrease in memory, think-
ing, orientation, understanding, calculation, learning
capacity, language, and judgment. The importance of

early detection lies in allowing soon and optimal treat-
ment. Early cognitive stimulation contributes to slow
down the decline of higher functions and the appear-
ance of conduct disorders. It improves the quality of
life not only of the person who suffers from it but also
of their relatives. The EEG information can be used to
obtain clinically relevant information for the identifica-
tion, monitoring, and even prediction of diseases such
as dementia diseases, brain tumors, sleep disorders,
non-epileptic pathologies, encephalopathies, infections
of the central nervous system, among others [5]–[12].

The EEG is the recording of voltage oscillations
caused by intra and extraneuronal ionic currents of a
neuron population with a certain spatial distribution.
Neurons are responsible for transmitting and receiving
information through an electrochemical process called
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a synapse, the EEG records post-synaptic events and
this information allows to understand the dynamics
and functioning of the brain [13]–[16]. The identifica-
tion of pathologies using EEG data is carried out by
searching for anomalies during the recording that are
represented by paroxysms, they are waveforms that do
not correspond to the nature of the signals [17]–[34].

The EEG is a non-invasive, cheap, fast study that has
shown high levels of reliability compared to techniques
such as magnetoencephalography, the study of cere-
brospinal fluid, or neuropsychological tests that require
waiting for people to have data on cognitive deteriora-
tion and are subject to clinical bias. As show in Figure
1, in the last decade, according to PubMed® (National
Library of Medicine, National Institutes of Health) re-
search related to EEG has increased by more than 50%
due to the wide field of applications and its contribu-
tions to solving social problems. The combination of
processing techniques such as Wavelet Transform (WT)
or Fast Fourier Transform (FFT) and deep learning tech-
niques for classification have achieved precision levels
greater than 92%, robust systems and with high levels
of efficiency [1], [35]–[51].

This work focuses on the applications for automatic
and semi-automatic detection of dementia diseases us-
ing EEG information as the main tool. The paper is
organized as follows: Methods II contains the descrip-
tion various processing and classification techniques
for clinical applications of EEG. Results III includes
the analysis of information and discussions. Finally, in
Conclusions IV shows the contributions of the article
and future work on EEG systems for the automatic
detection of dementia diseases.
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FIGURE 1. Articles published in the last 10 years related to EEG applications.

II. MATERIALS AND METHODS
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FIGURE 2. A diagram of the selected items, n is the number of articles.

A. SELECTION OF ARTICLES

For this review, a survey on English journal articles
published between January 2009 and February 2020
was made. The database consulted was Scopus; using
the following keywords in AND and OR combinations:

• EEG
• diagnosis
• dementia disorders
• biomarkers
• automatic/semi-automatic detection

Around 918 articles were identified, of which 198
were removed because they were duplicates and 638
were excluded in the three filters. The first filter was by
title, this should refer to research focused on the quan-
titative analysis of the EEG and mention dementia dis-
eases, some specific or symptoms thereof. The second
filter was abstract, where the exclusion criterion was
to remove the articles that did not mention the quan-
tifiable results of the application performance. The last
filter was by full-text which discarded all the articles
that did not mention the processing and classification
techniques used, leaving a total of 82 articles, Figure 2.
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FIGURE 3. Data extracted from each paper divided by process stages.

B. FEATURE EXTRACTION

Parameters of all stages of the process were extracted:
acquisition, processing, classification and performance
evaluation. Figure 3 illustrates the parameters extracted
in each stage. The elements marked with “*" are those
that were repeated the most in the articles reviewed and
are described in a general way in the following section.
The relationship of the extracted parameters and the
results of efficiency, advantages and associated cost is
also identified, an analysis is described in the section
III.

Table 1 displays a compilation of parameters and
results of investigations focused on the detection of
diseases by EEG. The last column of Table 1 illustrates
the limitations separated into four categories: Database
(1), Acquisition (2), Feature extraction (3), Results(4).
Table 2 describes the limitations in each category. The
information shown in Tables 1 and 2 contains the com-
binations whose parameters showed greater repeatabil-
ity in the reviewed articles, and they are also ordered by
the efficiency value obtained. In the next section, each
column is discussed in detail, starting with the sample
size.

III. RESULTS AND DISCUSSION
A. EEG SIGNAL ACQUISITION

The acquisition stage is crucial for the system because
the information it retrieves will be used for the iden-
tification of EEG patterns, also called biomarkers. By
having erroneous measurements, the results are altered
and the reliability, quality and repeatability of the in-
formation is lost, which would lead to identifying erro-
neous patterns or not being able to identify any pattern.
Due to the above, it is essential to have bases in the
metrology area to be able to apply it in the project or
review the reliability of the database used [59]–[73].
The Figures 4, 5, 6, 7 show the results of the extraction
of characteristics for the acquisition stage, comparing
the number of articles published with respect to the
sampling frequencies, the number of electrodes, regis-
tration time, and size of the database used, respectively.

The sampling frequency reported in each article

varies from 128 Hz to 1024 Hz, the highest repeata-
bility was in the range of 128-256 Hz, Figure 4 (a).
The Nyquist theorem is one of the key elements to
determine which frequency is suitable for the appli-
cation, this theorem is also known as the sampling
theorem and shows that mathematically it is possible
to reconstruct a continuous periodic baseband signal
from its samples if the signal is band limited and the
sampling rate is more than twice its bandwidth [74].
The normal EEG in humans displays activity in a range
of frequencies, between 1 Hz to 100 Hz, considering
the upper limit of the frequency range in combination
with the Nyquist theorem corresponds to 256 Hz being
among the most used frequencies.

On the other hand, the number of electrodes reported
in each article varies from 2 to 128 pieces, the value that
was repeated the most was 19 using the positioning of
System 10-20, Figure 5. Determining how many elec-
trodes are recommended for the application depends
on the budget for the project of the type of application
since the electrodes are metallic discs that are com-
monly made of gold and that greatly increases their
cost [75]. The type of application is important because
reviewing the literature and the reported evidence, can
guide the researcher in defining the key areas to record,
such as the frontal, parietal, occipital, or other areas. It
is also important to consider that the more elements
recorded, the greater the treatment and handling of
information is required.

S. Jianga et al. applied two tests to detect dementia
disorders. The first is a test to assess attention, memory,
language, and spatial orientation. Study number two
is the EEG; the recording was done while watching a
movie and only those studies where the patient an-
swered the questions about the movie correctly were
considered. They applied the EEG with 32 electrodes,
to evaluate the performance of the proposed method,
used analysis of variance techniques, and found a sig-
nificant difference between patients and control cases
in the frontal-central zone [54]. Results such as those
obtained by ref help the reader to define the areas to be
covered during the registration.
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TABLE 1. Elements extracted from articles focused on the detection of neurodegenerative diseases using EEG. Column six contains the stages in which the

limitations are concentrated: Database (1), Acquisition stage (2), Feature extraction (3), Results (4).

Year
Classification
pathology

Processing technique Efficiency
Subjects
sample

Limitations

2016
Parkinson’s
disease

Test/frecuency-bands
Reliability
levels

45 [52] 3, 4

2018
Parkinson’s
disease

Event-related
potentials/Analysis
of variance (ANOVA)

— 36 [53] 3

2019
Mild Cognitive Im-
pairment (MCI)

Multimodal physiologi-
cal signals

81.51% 336 [54] 4

2018
Huntington’s
disease

Fast Fourier Transform
(FFT)

83.00% 51 [48] 2, 4

2019
MCI and
Alzheimer’s
disease (AD)

— 89.23% 23 [17] 2, 3

2018

AD and Demen-
tia with Lewy bod-
ies and Parkinson’s
disease

FFT 89.85% 52 [21] 3, 4

2016 AD Sum-adjacent amplitudes 90.76% 52 [41] 2, 4

2018 AD and MCI
FFT, Wavelet Transform
(WT)

79-92% 86 [55] 2, 4

2017
Vascular dementia
disease and Stroke-
related with MCI

Independent component
analysis (ICA)-WT

91.48% 35 [43] 2, 4

2013 MCI ICA 91.76% — [56] 2, 3
2017 AD Hilbert Transform 88-92% 40 [57] 2, 3, 4

2017
Parkinson’s
disease

Discrete Wavelet Trans-
form (DWT)

92.86% 42 [45] 2, 4

2018 AD Automatic discrimination 93.13% 169 [40] 2, 4

2019 AD
Finite Impulse Response
(FIR) filters

88-96% 24 [23] 2, 3

2020 MCI

Piecewise aggregate
approximation,
Permutation entropy
(PE) and auto-regressive

98% 27 [58] 2, 3
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FIGURE 4. Most common characteristics in the reviewed articles: sample

rates for the acquisition of EEG signals.
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FIGURE 5. Most common characteristics in the reviewed articles: electrode

parts used for EEG recording for dementia disease detection application.
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TABLE 2. Description of the limitations classified into four groups: database, acquisition, feature extraction and result.

Category Limitations

Database (1)

Number of subjects in the study lower than the reporting average in the
reviewed articles.
Merged databases are different due to local implementations.
Missing information (age, gender and/or education).
The database includes subjects taking dementia medications.
Complete diagnoses of the patients are not available and/or diagnoses are not
reliable.
Heterogeneous samples.

Acquisition stage
(2)

Differences in data due to manual handling of artifacts.
Low number of electrodes for connectivity analysis.
Wrong sample rate for logging protocol.
Wrong decoding of data.
Loss of information in the acquisition.
There is no serious dementia disease that difficult to perform an EEG record-
ing.
Presence of dominant alpha activity during EC condition.

Feature extraction
(3)

The techniques and configuration of the processing techniques used are not
mentioned.
Classification tools include semiautomatic methods combined with specialist
interpretation.
Application of processing techniques without the minimum requirements,
window size, samples used in training and validation.

Results (4)

Low levels of efficiency (less than 90%).
Incomplete reporting of parameters in the performance evaluation (mostly
they only mention precision).
Incomplete information on the tools used in the algorithm.
Lack of longitudinal approach for populations.
Classification of limited dementia types.

The registration time reported in each article varied
greatly, from 5 to more than 30 minutes, Figure 6.
In the acquisition stage, the registration time is one
of the parameters that can change the most between
one application and another, since the minimum reg-
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<30min

>30min

0 5 10 15 20 25

Number of ar�cles

FIGURE 6. Most common characteristics in the reviewed articles: EEG

recording time for the detection of dementia diseases.

istration time is determined depending on the type
of study planned. According to the articles reviewed,
some recorded while doing a questionnaire, solving
some mental task, generating stimuli, among other ac-
tivities.

Finally, the size of the sample varied enormously,
from 20 subjects to more than 89 as illustrated in Fig-
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FIGURE 7. Sizes of the most common databases in the articles reviewed.
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FIGURE 8. Box and whisker plots summarizing the sample characteristics.

ure 7. Most of the articles use databases that are not
freely accessible, which makes it difficult to compare
the results achieved. Also, another important data is
that usually, the articles reported for automatic/semi-
automatic detection for dementia diseases focus the in-
vestigation only on the application or on the acquisition
of data, this due to the amount of effort, knowledge,
and equipment that each requires exercise. In Figure 8,
the results of Figures 4, 5, 6, 7 are shown in box-and-
whisker plot format summarizing characteristics such
as mean, range, and out-of-range points.

In addition to the data mentioned above, it is impor-
tant to take care of the type of analog and digital filter,
as well as the Analog to Digital Covert (ADC) converter
and the protection and preparation status of the pa-
tient from inferences of metallic elements, involuntary
movements and the patient history as they can alter
the results. Once the acquisition stage is concluded, the
data is processed, classified and validated, which are
discussed in the following sections.

B. SIGNAL PROCESSING AND PARAMETER

EVALUATION

The EEG patterns/biomarkers are used to classify data
between control cases and cases with pathology. Dur-
ing the data processing, the aim is to highlight the
patterns associated with dementia diseases. Figure 9
illustrates the incidence of the most commonly used
techniques in EEG signal processing that allow the
evaluation of parameters associated with dementia dis-
eases. More than 25% of the papers reported suggest
the use of more than one tool to achieve higher levels of

reliability, such as more than one processing technique,
sometimes questionnaires or studies such as magne-
toencephalography. The following subsections describe
the tools mentioned in Figure 9 in a way.

D. Reddy et al. were working to detect Creutzfeldt-
Jakob disease, where one of the main symptoms is
memory loss and personality changes. The detection
is carried out with the application of several studies,
EEG, magnetic resonance imaging, and studies of the
cerebrospinal fluid. The results indicate that the EEG
shows abnormal periodic slow and sharp waves that
can only be observed in the first 8-12 weeks after the
onset of symptoms; using the EEG alone, a sensitivity
of 66% and a specificity of 74.5% were achieved. Ac-
companying the EEG of other methods, the sensitivity
achieved rose to 97% with 100% specificity [6]. This re-
search project illustrates an example of improvements
of up to 20% that can be achieved with a combination
of detection methods.

G. Fiscon et al. were able to distinguish patients
affected by mild cognitive impairment from control
cases with an efficiency close to 92%. They applied
a monopolar montage EEG with 19 channels and a
sampling frequency of 256 Hz. The FFT and the WT
were applied, considering five levels of decomposition.
The mother wavelets used were the Daubechies and
the Symlets [55]. They combined FFT and WT, two pro-
cessing techniques to analyze signals in the frequency
domain, achieving efficiency levels higher than 90%.

The following describes an overview of the param-
eters used in the processing stage that showed greater
repeatability in the reviewed articles:

6 VOLUME 4, 2018



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3083519, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

WT

FFT/SFT

Entropia

Fractal

Several techniques

Others

0 5 10 15 20

Number of ar�cles

FIGURE 9. Tools for processing EEG signals that allow evaluating parameters

associated with dementia diseases.

• FFT: The Fast Fourier Transform (FFT), which is
also widely used in EEG signal processing to an-
alyze signals in the frequency domain, using this
tool, efficiency levels greater than 90% have been
achieved in the detection dementia diseases [21].
The Discrete Fourier Transform (DFT), a variant
of the FFT, requires O(n2) computational proce-
dure, but when using the FFT only O(nlog2n) are
required. The computational procedure is an ad-
vantage for FFT, it achieves a lower computational
demand, fast and efficient results that are very
similar to those obtained with the DFT.
Once the FFT or the DFT is applied, the results
of the frequency domain analysis are compared in
search of patterns/biomarks corresponding to the
cases of dementia diseases and using this informa-
tion to classify them from the control cases. EEG
patterns are characterized by the frequency and
amplitude of electrical activity. An example could
be that the group of records belonging to people
with the disease presented 30% higher activity in
theta band frequencies according to the analysis of
the frequency spectrum.

• STFT: The Short-Time Fourier Transform (STFT) is
another variant of the FT, the STFT complements
the limitations of the FFT, divides the signal into
small segments, and calculates the FT of each of
the segments separately in order to be able to
represent the data in time-frequency. By having the
information in its time-frequency representation,
the temporal location can be obtained. In Eq. 1 the
definition of the STFT is shown. Figure 10 visually
shows the stages of applying the STFT, it has the
time-domain signal (amplitude-time), the length
of the window is identified, Eq. 1 is applied and
finally, the signals in time-frequency.

STFT{x(t)} = X(τ, ω)

=
∫ ∞

∞
x(t)ω(t − τ)e−iωt dτ

(1)

Where ω: frequency parameter, τ: time parameter,
x(t): signal to be analyzed, ω(t − τ): windowing
function, e(−iωt): FT kernel (basic function).
The STFT as well as the WT are some of the most
used techniques for non-stationary signals in the
time-frequency domain. One of the limitations of
the STFT is the limitation of the window width,
which establishes that it is impossible to know
an exact time-frequency representation of a signal,
that is, it is not possible to determine what fre-
quency value exists at a given instant of time. It is
only possible to know what frequency components
exist within the time interval determined by the
Heisenberg uncertainty principle. The principle
states that a signal cannot be located with high
precision in both frequency and time [76], [77]. The
STFT, like FFT or DFT, helps in the identification of
EEG patterns, with the difference that it is possible
to have identified the frequency value associated
with the time in which it occurs, which in cases
such as the application of stimuli could be relevant
information.

• WT: The Wavelet Transform (WT) consists of de-
composing the signal into scaled and displaced
versions of the mother Wavelet, it was developed
in the mid-’80s and an important advantage is
that it does not have problems with non-stationary
and fast-transient signals. The Mother Wavelets are
families of functions that are defined and are used
as analysis functions, examining the signal of in-
terest in the time-frequency plane. The Continuous
Wavelet Transform (CWT) is defined in Eq. 2 and
the Discrete Wavelet Transform (DWT) is defined
by passing the signal through a series of high and
low pass filters in Eq. 3 and Eq. 4 respectively [78],
[79].

Ws(a, b) =
1

√

|a|

∫

s(t)ψ∗(
t − b

a
) dτ (2)

Where b: translation parameter, a: scale parameter,
s(t): signal to be analyzed, 1√

|a|
: normalization

constant, ψ∗( t−b
a ): mother wavelet, Ws(a, b): coef-

ficients representing concentrated time-frequency.

yhigh(n) = ∑ s[k]h[2n − k] (3)

ylow(n) = ∑ s[k]g[2n − k] (4)

Where yhigh(n): detail coefficients, h: high-pass
filter, ylow(n): approximation coefficients, g: low-
pass filter, s[k]: signal to be analyzed.
According to 3, the WT is generated by the di-
lation and translation through the temporal axis
of the mother Wavelet, Figure 11 illustrates the
previously described behavior. Among the main
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mother Wavelets are Meyer, Daubechies, Coiflets,
Symlets, Biortoganales, Morlet, and Mexican Hat.
The use of WTs has increased in recent years due
to its advantages for working with non-stationary
signals, one of the main applications is in clinical
EEG, but they are also found in the analysis of
structures or robotics [80]–[89].

• SST: Synchrosqueezing Transform (SST) is a vari-
ant of Time Frequency Representation (TFR), in-
vertible, and adaptive transform that improves
quality. It is resistant to noise and allows to analyze
signals in the frequency spectrum. SST concen-
trates the energy content in a spectral band and is
suitable for the localization of FT. In the literature,
high levels of reliability and efficiency are reported
in the processing of EEG signals using this tool,
[47], [90] the detailed steps for its implementation
are described.

• FD: In general terms, the Fractal Dimension (FD)
is used to quantify the degree of irregularity and
fragmentation of a geometric set or natural object.
Adapting the concept to EEG signal processing
allows measuring the complexity of the neuronal
cell profiles. FD is associated with a healthier or
adaptive system [47].
The calculation of the FD index is widely used in
combination with techniques for analyzing signals

in the frequency domain (FT or WT), thanks to
this combination, higher levels of efficiency have
been reported than those obtained separately. The
higher the FD value, the greater the irregularity of
the series. The FD can take values greater than 1
and less than 2 (1 < DF < 2), for this reason,
that the FD for a time series is greater than the
Euclidean dimension of a straight line, and less
than that of a surface.
Let the time series be: X = x[1], x[2],. . . , x[N]. Form
k new time series.

Xm
k = {x[m], x[m + k], x[m + 2k], ...,

x[m + int

(

N − m

k

)

× k]} (5)

Where the new series are described in Eq. 6 and
m = 1, 2, . . . , k; k = 1, 2, . . . , kmax:

L(m, k) =
1
k





int N−m
k

∑
i=1

|x[k + ik]− x[m + (i − 1)× k]|



×
[

N − 1
int N−m

k × k

]

(6)
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The mean length L(k) is given by:

L(k) =
1
k

(

k

∑
m=1

L(m, k)

)

(7)

FD is the slope of ln[L(k)] over ln( 1
k ). The selection

of the appropriate ht value for kmax is done by
plotting the FD values against the range of kmax.
The point where the FD plateaus observed is taken
as the saturation point, and the value is selected as
kmax. [91], [92] the steps of the process to calculate
the index in FD are described in detail.

• ApEn: The Approximate Entropy (ApEn) is a mea-
sure of regularity and complexity of a system,
it reflects the “order" of the signal and is use-
ful in biomedical applications in the detection of
events associated with cerebral rhythms ranging
from dementia diseases, sleep disorders, epilepsy
among others. A lower ApEn is the quantification
of predictability, while a higher ApEn indicates
the unpredictability of a time series. For the EEG
signals, an adaptation of the entropy calculation
has been made, making it dependent on time. [45],
[93]–[96] considering the algorithm proposed by
Picus, let N point time series x(1), x(2),. . . , x(N)
with embedding space Rm, ApEn is defined as:

ApEn(m, r, N) =
1

N − m + 1

N−m+1

∑
i=1

logCm
i (r)−

1
N − m

N−m

∑
i=1

logCm+1
i (r)

(8)

Where Cm
i (r) = 1

N−m+1 ∑
N−m+1
i=1 logCm

i (r) −
1

N−m ∑
N−m
i=1 logCm+1

i (r), N is the time series length,
m is the comparing length of the sequences and r
is the tolerance level.

C. CLASSIFICATION

The classification of data is the penultimate stage of the
process in the detection of dementia diseases, the tool
used plays an important role in the levels of efficiency
and reliability achieved. According to Figure 13, one
of the main classification techniques is Support Vector
Machine (SVM) followed by Neural Networks (NN).

• SVM: It is a classification-regression method, de-
veloped in the 90’s. SVM has become very popular
in multiple application and regression problems
due to its results, according to Figure 13 it is one
of the main classification techniques in EEG signal
applications. SVM is one of the most elegant solu-
tions in machine learning, based on the hyperplane
concept, which in turn is related to the “Maxi-
mal Margin Classifier”. A hyperplane is a flat and
affine subspace of dimensions p− 1. Considering a

p− dimensional space. During the training, the aim
is to create a classifier based on a hyperplane that,
although it does not perfectly separate the classes,
is robust and has a high predictive capacity [97].
One of the best-known tools for working with a
difficult-to-classify data set is the use of kernels
to aid in the optimization of predictions. A ker-
nel is a function that returns the product point
result between two vectors realizing in a new di-
mensional space different from the original one in
which the vectors are found. By substituting the
dot product for a kernel, the support vectors are
obtained directly. Some examples of kernels are
: linear, polynomial, and RBF. Currently, there is
a wide variety of libraries that simplify the use
of SVM in different programming languages that
help users without extensive knowledge of SVM
to use it to solve their classification problems [97].

• NN: Another popular method for classifying EEG
data are NN, it is a model inspired by the human
being. The NN is made up of a set of nodes known
as artificial neurons that are connected and trans-
mit signals to each other. Figure 12 displays an
example of the basic parts for the architecture of
a neural network, the architecture is the topology,
structure, or connection pattern of the neural net-
work. In the input layer, the neurons receive the
data or signals; in the hidden layer it has no direct
connection with the environment, it is responsible
for providing degrees of freedom to the neural
network in order to model the characteristics of the
environment; finally, the output layer is made up
of neurons that provide the response of the neu-
ral network. Some examples of NN architectures
are unidirectional networks or recurring networks
[98].

.

.

.

Input layer
Hidden layer

Output 

layer

X1

X2

X3

X4

FIGURE 12. Basic elements of the NN architecture: Input layer, hidden layer

and output layer.
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The internal structure or model of the NN is com-
posed of a set of inputs xj; synaptic weights wij,
with j = 1, ..., n; a propagation rule hi defined from
the set of inputs and weights; an activation func-
tion, which simultaneously represents the neuron
output and its activation state. As in SVM, there
are currently libraries in different programming
languages that make it possible for people with-
out deep knowledge of NN to easily use them in
troubleshooting [99]–[101].
Two examples of very common neural networks in
EEG applications are described in a general way
below:

1) Adaptive Neuronal Network (ANN): It is a type
of neural network applied in dynamic environ-
ments [102]. It is characterized by one-line learn-
ing. The adaptation of the neural network can
be presented by modifying the weight, neural
property and / or structure of the network. [103]
describes an example in the application of ANN
in the classification of EEG signals.

2) Convolutional Neural Network (CNN): it is a
neural network with supervised learning. CNN
is a variation on the multilayer perceptron, uses
two-dimensional matrices and is very effective
in classification, computer vision and image seg-
mentation applications. [104], [105] an example
of the application of CNN in EEG signals is
described.

• k-nearest neighbors (KNN):This is a supervised,
non-parametric machine learning algorithm. It
technique has stood out for its simplicity of appli-
cation and the results obtained in classification effi-
ciency. KNN assumes that something similar exists
in the vicinity and depends on this assumption
being true enough to make the algorithm useful.
[106], [107] described the method.

• Decision tree: It is widely used in classification for
its speed and competitive efficiency levels. A key
element in this method is the attribute selection
problem due to the spatial feature selection. In gen-
eral, the process to apply this method is divided
into building the tree to reduce the characteristics
and pruning of the tree to avoid excessive adjust-
ment.
This is a non-parametric method, which has a high
capacity to handle missing values, a very common
problem in biomedical data. A disadvantage of
the method is that it does not consider univariate
statistics [108], [109].

• Logistic regression (LR): It is a tool for classifica-
tion that consists of a specific case of a generalized
linear regression model. In general, LR consists
of quantifying the relationship between a variable
with binary response and one/more dichotomous

SVM

NN

Decision tree

Logis�c regression

0 5 10 15 20

Number of ar�cles

FIGURE 13. Tools for processing EEG signals that allow classification

parameters associated with dementia diseases.

or continuous predictors. A linear relationship be-
tween the predictors and the result is obtained by
transforming the probability of being correct into
the logarithm of the probabilities that the primary
answer is correct to incorrect. LR is classified as a
type of regression with categorical results, which
are expressed as multinomial or binomial [110]–
[112].

During the selection of classification technique, it is
suggested that the researcher review the size of the
database first, since often when there are few informa-
tion vectors it can lead to overfitting and bias in the
classification. It is also important to review how and
with whom the work is required to be compared to
have a real comparison of the research.

D. PERFORMANCE EVALUATION

The validation stage is the last phase of the process and
serves to evaluate the performance of the application.
In the field of pathology detection using EEG, preci-
sion, sensitivity, specificity, among others, are usually
reported. According to Figure 14, the main validation
method is Cross-Validation.

Cross Valida�ons

Three-way decision

ANOVA

Others

0 2 4 6 8 10 12 14 16

Number of ar�cles

FIGURE 14. Tools for processing EEG signals that allow evaluating

parameters associated with dementia diseases.
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FIGURE 15. Cross validation considering 10 rounds.

• Cross-validation, k-fold, consists of taking the data
set and creating two separate groups from it: a
training set and a validation set. Later, the training
set is divided into n subsets and, at the time of
training, each subset is taken as a test set of the
model, while the rest of the data is considered
a training data. The process is repeated n times,
and at each iteration, a different test set is se-
lected, while the remaining data will be used as the
training data. During each iteration, the aforemen-
tioned metrics are calculated [113]. Figure 15 illus-
trates an example of cross-validation considering
10 rounds.

• ANOVA: It is a technique for analysis of variance
that can be used in the study of one or more factors.
The statistical test consists of comparing the means
of the groups, the null hypothesis from which the
different types of ANOVA start is that the mean of
the variable is the same in the groups and the alter-
native hypothesis that at least two means differ in
a way significant [114].
In most of the reviewed works where ANOVA is
used, the information is presented with a value for
p-value, this is the probability that quantifies the
evidence against the null hypothesis. The smaller
the p-value, the stronger the evidence against the
null hypothesis and indicates that there is sig-

nificant evidence to affirm that the means of the
groups are statistically different [115].

• Three-way decisions: It is based on the notions
of acceptance, rejection and non-commitment; an
extension of the binary decision model with an
option added. The applications of this method
are concentrated in areas of computing where the
objective is to divide into three regions: positive,
borderline and negative. The challenge in this tool
is to be able to calculate the thresholds, where in
most of the reported cases it is solved from the
loss functions determined in the experience of the
experts [45]

E. STRATEGIES TO INCREASE EFFICIENCY AND

SUGGESTIONS TO SOLVE THE LIMITATIONS

In addition to the elements discussed in the previous
sections, another tool that has been shown to achieve
improvements in efficiency levels is the combination of
EEG with other acquisition techniques [116], [117].

• Common spatial patterns (CSP): They are algo-
rithms used for the extraction of characteristics in
Brain-Computer Interfaces (BCI). The objective of
this technique is to find spatial filters that can max-
imize the projected variance relationship between
the covariance matrices of the EEG signals corre-
sponding to mental tasks. This technique has been
shown to increase efficiency levels in the detection
of EEG patterns/biomarks [118].

• Near-infrared spectroscopy (NIRS) or the func-
tional near-infrared spectroscopy (FNIRS): These
are non-invasive brain imaging techniques that
use the near-infrared (NIR) light spectrum (wave-
length 600-1000 nm) to measure the hemodynamic
response, and high robustness to noise. Hermody-
namic variations due to brain activity are used to
relate them to specific patterns. These techniques
help in the disadvantage of EEG in poor spatial res-
olution for precise localization. The combination
of EEG with NIRS or FNIRS has been shown to
increase efficiency levels in the detection of move-
ment patterns. Which suggests that this combina-
tion could increase efficiency levels in the detection
of dementia diseases [116], [117].

• Finally, in Table 3 lists a set of recommendations
for resolving limitations in the following cate-
gories: database, acquisition, feature extraction,
and results. Removing the limitations contributes
to achieve more solid, robust, and reliable devel-
opments.

IV. CONCLUSIONS
The information provided by the EEG has become a key
element in the health sector, due to the wide field of
applications and the results in terms of efficiency and
reliability. From the reviewed works, it was found that
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TABLE 3. Recommendation to resolve limitations in future EEG-base dementia studies.

Category Limitations

Database (1)

Provide detailed characteristics of the population.
Describe how the diagnosis of dementia disease was made.
Do not use heterogeneous samples.
Detail the description of the EEG experiment in duration and phases.
Use guidelines for the positioning of EEG electrodes.
Provide information on the positioning of the channels.
Verify the reliability of the patient’s diagnosis and exclude patients who are
taking medications.

Acquisition stage
(2)

Describe artifact management strategies.
Train the personnel who will apply the EEG.
Periodically verify and calibrate the EEG acquisition system.
Perform a reliability analysis of the acquisition system.

Feature extraction
(3)

Define EEG feature extraction and processing in more detail.
Train the person in charge of this stage with the basic knowledge in the
identification of biomarks/EEG patterns.
Use more than one parameter/processing techniques for classification.
Check the data used for the configuration and application of the processing
techniques agree with the data of the sampling time, the size of the recorded
segments and the EEG record number.
Use deep learning techniques to achieve automatic classification with higher
levels of efficiency.

Results (4)

Extracting more than one feature in combination with deep learning tech-
niques (NN, SVM) reported high levels of efficiency.
Describe in detail the results obtained considering precision, sensitivity and
specificity.
Verify that the methodologies with which they will be compared have similar
conditions.

EEG data in combination with processing techniques
(FT, FFT, STFT, WT) and machine learning tools such as
SVM and NN have been shown to achieve applications
with a efficiency greater than 90%, a competitive tool
for solving problems in this field of study, Table 1.

The measurements help to accurately indicate the
degree of difference between two bodies, which in our
case study will be two signals or electrode channels of
the electroencephalogram, although there is no deep
description of the acquisition stage, it is an indispens-
able element and that requires the attention of the
project since it will be the raw material of the following
stages.

According to the extraction of characteristics for the
signal acquisition stage, Figure 4, it is observed that
the most used frequency range is between 128-256
Hz. Considering the mathematical foundation as the
Nyquist theorem, as well as the nature of the EEG
signals meets at least the minimum requirements and
also the electronic requirements imply a lower cost
compared to higher frequencies.

In the case of the number of electrodes, the highest
repeatability fell to 19 electrodes. The 10-20 system

allows the 19 electrodes to be distributed evenly around
the scalp, allowing a high-approximation panorama in
all areas. According to the literature reviewed, it is
shown that using this number of electrodes, efficiency
levels have been achieved in the classification higher
than 90%. In addition, the number of electrodes is in
a medium-range for details such as cost, application
time, and processing time.

Time, one of the parameters with the greatest vari-
ability, according to the articles reviewed. An average
value was 20 min, however, the key element is the type
of stimulus or state of the patient to be recorded, which
in general terms is in accordance with the application
and signal processing. In the sample size, according
to Table 1 is associated with efficiency and reliability,
in Figure 6, the range with more repeatability was
between 40-56 subjects. It is essential to consider that
the smaller the sample, it could be reflected in a bias
and low levels of efficiency, so it is important to take
into account statistical principles that offer criteria to
estimate the size of the sample in order to obtain infor-
mation on various characteristics of interest that can be
generalized from the sample to the population.

12 VOLUME 4, 2018



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3083519, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The parameters or measurements that are possible to
extract during the processing of the EEG signals, vary
from obtaining the frequency spectra, time-frequency,
values such as entropy, fractal average or combination
of more than one parameter. According to Figure 9,
more than 25% of the articles reviewed use more than
one technique and thanks to them they achieve bet-
ter levels of reliability; some of the combinations are
WT/Entropy, FFT/Entropy, WT or FFT in combination
with patient questionnaires. The objective of the pro-
cessing stage is to extract relevant information that al-
lows the identification of EEG patterns/biomarks that,
during the classification stage, contribute to achieving
higher levels of efficiency.

The following stages, which are the classification
strategy and validation, are closely related because,
according to the selected classification strategy, they are
the options that can be used for validation. In the case
of using deep learning tools for classification, one of
the most used validation techniques is Cross-Validation
according to Figure 14.

Collecting the results of the stage to define parame-
ters in signal acquisition, processing and classification,
an example of combination that resulted with high
levels of efficiency, low cost and low computation time
is: 19 electrodes, 20 min of acquisition, with a sample
of 40-56 subjects, more than one processing parameter
(WT/Entropia, FFT/Fractals) and using SVM as classi-
fication.

In recent years, it has not only been found that the use
of EEG information helps in the arrest of pathologies
but also in their prediction, which is why the study
of this area of research is suggested. The prediction of
pathologies, solve the limitations of Table 2, and tools
such as CSP or NIRS-EEG are part of the challenges and
future applications of EEG in the detection of dementia
diseases.

The aforementioned data serve to guide the reader
who begins a study in the development of an applica-
tion using the EEG, to suggest some options that have
shown outstanding results and also others that can
become limitations. Several methods to achieve auto-
matic or semi-automatic detection of dementia diseases
have been presented in this review. Each proposal has
its merits and disadvantages, and the most suitable
medium must be selected based on the specific appli-
cation in mind.
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and F. Whittaker, “A new framework for automatic detection of
patients with mild cognitive impairment using resting-state eeg
signals,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 28, no. 9, pp. 1966–1976, 2020.

[59] N. Sharma, M. Kolekar, K. Jha, and Y. Kumar, “Eeg and cognitive
biomarkers based mild cognitive impairment diagnosis,” IRBM,
vol. 40, no. 2, pp. 113–121, 2019.

[60] P. Rossini, R. Di, F. Vecchio, M. Anfossi, C. Babiloni, M. Boz-
zali, A. Bruni, S. Cappa, J. Escudero, F. Fraga, P. Giannakopou-
los, B. Guntekin, G. Logroscino, C. Marra, F. Miraglia, F. Panza,
F. Tecchio, A. Pascual-Leone, and B. Dubois, “Early diagnosis of
alzheimer’s disease: the role of biomarkers including advanced
eeg signal analysis. report from the ifcn-sponsored panel of ex-
perts,” Clinical Neurophysiology, vol. 131, no. 6, pp. 1287–1310,
2020.

[61] M. Hata, H. Kazui, T. Tanaka, R. Ishii, L. Canuet, R. D. Pascual-
Marqui, Y. Aoki, S. Ikeda, H. Kanemoto, K. Yoshiyama, M. Iwase,
and M. Takeda, “Functional connectivity assessed by resting state
eeg correlates with cognitive decline of alzheimer’s disease – an
eloreta study,” Clinical Neurophysiology, vol. 127, no. 2, pp. 1269
– 1278, 2016.

[62] L. V. Kalia, “Biomarkers for cognitive dysfunction in parkinson’s
disease,” Parkinsonism and Related Disorders, vol. 46, pp. S19–
S23, 2018.

[63] F. Caso, M. Cursi, G. Fanelli, M. Falautano, L. Leocani, G. Comi,
G. Magnani, and F. Minicucci, “S8.3 eeg spectral analysis and low-
resolution brain electromagnetic tomography (loreta) in diagnosis
of frontotemporal dementia and differences with alzheimer’s dis-
ease and healthy subjects,” Clinical Neurophysiology, vol. 122, pp.
S20 – S21, 2011.

[64] S. Asadzadeh, T. Rezaii, S. Beheshti, A. Delpak, and S. Meshgini,
“A systematic review of eeg source localization techniques and
their applications on diagnosis of brain abnormalities,” Journal of
Neuroscience Methods, vol. 339, p. 108740, 2020.
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