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Abstract: As a new type of altimeter, interferometric radar altimeter (InRA) has significant potential
in marine gravity field recovery due to its high spatial resolution. However, errors in environmental
correction on gravity field recovery using InRA observations are unclear. In this study, four kinds of
these errors, including wet and dry troposphere, ionosphere, and sea state bias (SSB) correction errors,
are simulated. The impact of these errors on gravity field recovery are analyzed and discussed. The
results show that, among the four types of errors in environmental correction, the wet troposphere
and SSB have a more significant impact on the accuracy of sea surface height computing, and the wet
troposphere has the most significant impact on the accuracy of gravity field recovery. The maximum
error of gravity anomaly caused by the wet troposphere residual errors is nearly 2 mGal, and the
relative error of the recovered gravity anomaly is around 6.42%. We can also find that SSB has a little
more significant impact than dry troposphere and ionosphere, where dry troposphere and ionosphere
have an almost identical impact, on DV and GA inversion accuracy.

Keywords: interferometric radar altimeter; deflection of the vertical; gravity anomaly;
environmental error

1. Introduction

The conventional altimeter, i.e., nadir altimeter, has made great contributions to
Earth science, such as marine gravity field recovery. Several studies have shown that the
root mean square (RMS) of the difference between ship-borne and conventional altime-
try satellite inversions of the marine gravity anomaly (GA) is approximately 5 mGal or
even smaller [1–3]. However, conventional altimetry satellites have shortcomings [4]. For
example, although the gravity field products derived by conventional altimetry observa-
tions have a grid resolution of 2 km, the actual signal resolution (half-wavelength) is over
6 km [5]. Additionally, because of the insufficient spatial resolution, it is challenging to
derive gravity gradients with high accuracy and high spatial resolution. In addition, the
east-west component of deflection of the vertical (DV) from the conventional altimetry ob-
servations usually has poorer accuracy than the north-south one due to the polar orbit [6,7].
This also limits the accuracy of the final gravity field products, since GA is usually derived
from DV [8].

Recently, a new altimeter has been developed, i.e., an interferometric radar altimeter
(InRA) [9]. A related satellite mission has been designed, such as Surface Water and Ocean
Topography (SWOT) [10], which will be launched in the end of 2022. China once put this
new altimeter in Tiangong-2 [11–14] and obtained sea surface heights (SSHs) over some
local areas. The altimeter adopts interferometry with a small incident angle to realize the
rapid measurement of the sea surface elevation with ultra-high accuracy and resolution [10],
contributing to the development of marine gravity recovery.

Several investigators have noticed the significant potential of InRA in marine gravity
detection [15,16] and discussed several issues. For example, Yu et al. (2021) [15] evalu-
ated the performance of SWOT altimetry data in marine gravity recovery using different
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inversion algorithms; Jin et al. (2022) [16] discussed the possible accuracy of DV if we
have InRA altimeter observations. They found that InRA has higher accuracy than the
conventional one. Wan et al.(2020b) [13] investigated the impact of the InRA errors on
marine gravity field recovery, and concluded that phase error is the dominant factor af-
fecting the GA accuracy. However, all the above investigations only considered the errors
from the InRA instrument, and the impact from the environment, including the influence
from the ionosphere, dry and wet troposphere, and sea state bias (SSB), are not discussed.
Although the environmental impact will be corrected by related models [17–20], errors in
environmental correction still exist. Errors in environmental correction could also be called
delay error or residual error [15,16]. Indeed, all of these influences are considered and
processed in conventional altimeter data processing [21,22]. Different from conventional
altimeters based on nadir point observing, the oblique path measurement and the higher
resolution sampling of InRA require that environmental corrections should be different
from the traditional altimetry. To evaluate the possible performance of InRA on marine
gravity field inversion, it is of great importance to analyze the impact of different errors in
environmental correction on gravity field recovery.

In this study, we investigate the influence of errors in environmental correction on
marine gravity field recovery, including DV and GA, if we have InRA altimeter observations.
This is achieved by adding errors in environmental correction to the simulated sea surface
height (SSH) observations. Section 2 introduces the methods of gravity field recovery and
error simulation; Section 3 describes the data used in this study; Section 4 presents and
analyzes the results; and the discussion and conclusions are given in Sections 5 and 6,
respectively.

2. Method
2.1. Deflection of the Vertical and Gravity Anomaly Recovery

By removing the effect of mean dynamic topography, geoid, denoted as N, can be
obtained from InRA observations of SSH. Then, DV can be derived as follows,{

ξ = 1
R

∂N
∂ϕ

η = 1
R cos ϕ

∂N
∂λ

(1)

where ξ is the north-south component of DV and η is the east-west one; ϕ and λ denote
latitude and longitude, respectively.

The initial SSH observations are given on a line by the conventional altimetry satellite,
because it only observes SSH of the nadir point. This leads to calculations of DV are
usually conducted along the nadir point line. However, the SSHs provided by InRA can
be seen as an image [13,16]. Because of this, we can use more points to derive DV directly,
which should be investigated further. In this study, DV at point (i, j) is calculated using
Equation (2), and the point distribution is shown in Figure 1.{

ξ =
Ni,j+1−Ni,j−1

2∆l
η =

Ni+1,j−Ni−1,j
2∆l

(2)

where ∆l represents the distance between two adjacent points.
Then, the residual GA, denoted as δg, can be derived as Equation (3) [6].

δg = F−1[δg(K)] = F−1
[

i
|K|γ

{
kx∆ξ(K) + ky∆η(K)

}]
(3)
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In which, 
K = (kx, ky)

kx = 1
λx

ky = 1
λy

K =
√

k2
x + k2

y

(4)

kx, ky are the wave number in x and y direction; λx, λy denote the wavelength in x and
y direction; ∆ξ = ξ − ξ0; ∆η = η − η0; ξ0 and η0 are reference values of DV, which provide
a reference model; F and F−1 are Fast Fourier transform (FFT) and inverse FFT computing.
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2.2. Errors in Environmental Correction Simulation

During the simulation of errors in environmental correction, it is assumed that the
signal changes in all directions are the same; that is, they are isotropic. Therefore, the wave
number spectrum along the orbit can represent the change in its signal in all directions [23].
The two-dimensional spectrum is integrated into the cross-orbit frequency dimension to
obtain the one-dimensional spectrum. The two-dimensional spectrum can be expressed as
a function of the one-dimensional spectrum [23]:

E2d
(
kx, ky

)
=

1
2πk

E(k) (5)

where k is the one-dimensional wave number (or spatial frequency), k =
√

k2
x + k2

y; E(k) and

E2d
(
kx, ky

)
represent the one-dimensional spectrum and two-dimensional

spectrum, respectively.
Assume that the two-dimensional errors in environmental correction are the super-

position of multiple two-dimensional random Fourier sequences, the two-dimensional
isotropic error value can be obtained from the formula [23,24]:

H(x, y) =
π
(
k2

a − k2
b
)

N

N

∑
n=1

√
2E2d

(
kxn, kyn

)
cos
(
kxnx + kyny + ϕn

)
(6)

where (kxn, kxn) is the wave number corresponding to the nth component in direction
of x and y; ϕn is a random phase within the range [0, 2π]; H(x, y) is the error caused by
the errors in environmental corrections, constructed as the sum of N random 2D Fourier
components from the annulus in the 2D wave-number domain bounded by ka and kb [23].
Since the phase of each Fourier component is random, each simulation is random. N is set
to 2000 in this study.

In this study, the one-dimensional power spectrum of each residual environmental error
provided by the SWOT error budget document [25] is used, as shown in Equations (7)–(10).
Among them, the wet tropospheric residual error spectrum is derived from the corrected data
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using the two-beam radiometer [25]; the dry tropospheric residual error spectrum is derived
from the Chelton model [19,25]; the ionospheric residual error spectrum is derived using the
Ionex model [18]; the wave number spectrum of the SSB residual error is obtained using the
four-parameter BM4 parameter model [17].

Ewet tropo(k) =


0.205k−0.7911, k < 0.0049

0.0179k−1.2492, 0.0049 ≤ k < 0.0119
1.448 · 10−4k−2.33, k ≥ 0.0119

(7)

Edry(k) = 5 · 10−9 · k−3 (8)

Eiono(k) = 10−8 · k−2.1 (9)

ESSB(k) = 10−9k−3.8 (10)

where Ewet tropo(k), Edry(k), Eiono(k), ESSB(k) represent the one-dimensional power spec-
trum of errors in the wet troposphere, dry troposphere, ionosphere and sea state bias
correction, respectively. To show the magnitude of the errors showed by Equations (7)–(10),
Figure 2 presents the values of them in terms of wavelength.
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Based on Equations (7)–(10), we can derive the two-dimensional power spectrum
using Equation (5). The SSH errors generated by errors in environmental correction are
then obtained using Equation (6).

In the statistics, in addition to indices of mean, standard deviation (STD), max, min,
and RMS, the statistical indices mean absolute error (MAE) and relative error (RE) are also
used as follows,

MAE =
1
n

n

∑
i=1
|yi − ŷi| (11)

RE =

n
∑

i=1
|yi − ŷi|

n
∑

i=1
yi

(12)
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In which n is the number of the data; yi means the ith data; ŷ is the true value of the data.

2.3. Data Processing Flow

In the first step, we simulate the true values of gravity field elements using EGM2008 [26],
including geoid heights N, DV, and GA, as shown in Equations (13)–(15) [26]:

N = R
nmax

∑
n=2

n

∑
m=0

(
∆Cnm cos mλ + ∆Snm sin mλ

)
Pnm(cos θ) (13)


ξ = −

nmax
∑

n=2

n
∑

m=0

(
∆Cnm cos mλ + ∆Snm sin mλ

) ∂Pnm(cos θ)
∂θ

η =
nmax

∑
n=2

n
∑

m=0
m
(
∆Cnm sin mλ− ∆Snm cos mλ

) Pnm(cos θ)
sin θ

(14)

∆g =
GM
r2

nmax

∑
n=2

(n− 1)
( a

r

)n n

∑
m=0

(
∆Cnm cos mλ + ∆Snm sin mλ

)
Pnm(cos θ) (15)

In the above equations, GM is Earth gravitational constant; R is mean radius of the
Earth, while a is the semi-major axis of the Earth; n, m represent degree and order of the
gravity field model, respectively; nmax is the largest degree of EGM2008; ∆Cnm and ∆Snm
denote the difference values of spherical harmonic coefficients of EGM2008 and normal
gravity potential; Pnm(cos θ) is the fully normalized Legendre function value at degree n
and order m; (r, θ, λ) is the spherical coordinate of the computing point.

Then, errors in environmental correction are also simulated using Equations (7)–(10).
Regardless of the effect of mean dynamic topography, this study assumes that N is equal to
SSH. Then, errors in environmental correction are added to N to obtain the simulated SSHs.
Finally, we derive DV using the SSHs with or without errors in environmental correction,
and GA is also derived correspondingly. By comparing the true values of SSHs, DV, and
GA, the impact of errors in environmental correction on gravity field recovery is analyzed.
The whole processing flow is shown in Figure 3.
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3. Data and Study Area

In this study, EGM2008 [26] is used to provide gravity products as the true values,
including geoid height used as SSH observations directly, DV, and GA. In the gravity field
recovery using SSH, the remove-restore technique is usually used [7,22], and EGM96 is
used as the reference model in this study. The study area is located in the South China
Sea with longitudes of 111◦~112◦ E, latitudes of 10◦30′~12◦30′ N. The resolution of the
simulated data is 2 km × 2 km. Figure 4 shows the simulated SSH, DV, and GA.
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4. Results and Analysis
4.1. Gravity Field Recovery without Errors in Environmental Correction

To verify the effectiveness of the inversion method used in this study, we first con-
ducted the numerical tests without adding any errors in environmental correction to SSH.
The comparisons between the recovered gravity field products and the true values are
presented in Figures 5–7, and the related statistics are given in Table 1. According to these
figures, there are minor computing errors in deriving the two components of DV. According
to Table 1, the average absolute error of the north-south component of DV is only 0.007
arcsec, and the average absolute error of the east-west component is about 0.01 arcsec.
From the error diagram, the maximum error of the recovered gravity anomaly is about
0.5 mGal, and the average percentage error is 3.48%, which is poorer than that of DV. The
main reason is in the derivation of GA, the reference model is used, i.e., EGM96. If a higher
accurate model is used, the relative error would be reduced correspondingly. Even so, the
above results can verify the effectiveness of the computing method in this study.

Table 1. Statistics on the accuracy of the recovered DV and GA.

Term Mean STD Max Min MAE RMS RE

ξ (arcsec) 0.0059 0.0062 0.0313 −0.0133 0.0070 0.0086 0.13%
η (arcsec) 0.0096 0.0052 0.0274 −0.0147 0.0099 0.0110 0.12%
∆g (mGal) −0.2047 0.0922 0.4619 −0.0644 0.2049 0.2245 3.48%
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4.2. Impact of Errors in Environmental Correction on SSH

In actual marine gravity field inversion, more attention is paid to relative height [13].
To analyze the relative height error, the definition of the relative height given by Wan et al.
(2020b) [13] is used in this study, i.e., Equation (16). Please note the point distribution
has been shown in Figure 1. The reason for defining this relative height is to improve the
precision of this value, since this value is derived from mean values of four initial relative
heights, i.e., the relative height between the central point and each of the adjacent points
(see Equation (16) and Figure 1).{

hrel = h(i,j) −
h(i+1,j)+h(i−1,j)+h(i,j+1)+h(i,j−1)

4
σhrel

=
∣∣h′rel − hrel

∣∣ (16)

Relative height error σhrel
is the absolute value of the difference between the value of the

relative elevation hrel
′ by adding errors in environmental corrections and the true value hrel

is defined as the relative height errors. Absolute height error is defined as follows:

σhabs
= h′(i,j) − h(i,j) (17)

where h′(i,j) is the SSH by adding errors in environmental corrections and the true value
where h(i,j) is the assumed true SSH.

Figures 8 and 9 present the influence of different errors in environmental correction on
absolute height and relative height, and the related statistics are given in Table 2. According
to Figure 8, the error of absolute height generated by the wet troposphere is around
−1.28~0.87 cm, and the absolute error range of SSH caused by the residual error of SSB
is −0.05~0.64 cm. The magnitude of the absolute height error of SSH caused by the dry
troposphere and ionosphere is 0.01 cm. Therefore, the wet troposphere and the SSB are the
main factors affecting the accuracy of the SSH. Regarding relative height error, the impact
of the wet troposphere is 0.023 cm in terms of STD. In contrast, the impact of other errors in
environmental correction is smaller than 0.001 cm in terms of STD. This means the error of
the wet troposphere is the main factor affecting the relative height accuracy.
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Table 2. Statistics of the errors caused by residual environmental errors (unit:cm).

Type Mean STD Max Min MAE RMS

Absolute
height error

Wet −0.0152 0.3406 0.8685 −1.2763 0.2551 0.3410
Dry −0.0159 0.0263 0.0306 −0.0867 0.0225 0.0308
Iono −0.0088 0.0021 −0.0033 −0.0134 0.0088 0.0091
SSB 0.4120 0.1385 0.6393 −0.0468 0.4124 0.4347

Relative
height error

Wet 0.0310 0.0233 0.1588 1.2E-05 0.0310 0.0388
Dry 0.0003 0.0002 0.0018 2.8E-07 0.0003 0.0004
Iono 0.0002 0.0001 0.0009 2.6E-08 0.0002 0.0002
SSB 0.0008 0.0009 0.0129 2.9E-07 0.0008 0.0012

4.3. Impact of Errors in Environmental Correction on the Recovery of DV

Figures 10 and 11 present the errors of DV generated by errors in environmental
correction and Table 3 summarizes the related statistics. According to Table 3, the maximum
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absolute error value in the north-south component is about 0.26 arcsec, where it is 0.23 arcsec
in the east-west component. The MAE of the two components is smaller than 0.06 arcsec,
and the error RMS is smaller than 0.07 arcsec. The relative error is within 1%, which
indicates the minor impact on the accuracy of DV.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 18 
 

 

4.3. Impact of Errors in Environmental Correction on the Recovery of DV 
Figures 10 and 11 present the errors of DV generated by errors in environmental cor-

rection and Table 3 summarizes the related statistics. According to Table 3, the maximum 
absolute error value in the north-south component is about 0.26 arcsec, where it is 0.23 
arcsec in the east-west component. The MAE of the two components is smaller than 0.06 
arcsec, and the error RMS is smaller than 0.07 arcsec. The relative error is within 1%, which 
indicates the minor impact on the accuracy of DV. 

Compared to the wet troposphere, the other three types of errors in environmental 
correction have more negligible impact on the derivation of DV. For example, there is no 
apparent accuracy loss under these three cases of errors in environmental correction. RMS 
and MAE of ξ  errors do not exceed 0.015 arcsec; RMS and MAE of η  does not exceed 
0.016 arcsec. However, the index for the wet troposphere is at least two times larger than 
those of the other three types. 

The above results indicate that errors in environmental correction will not generate 
great errors in the derivations of DV. The possible reason is that DV is derived from the 
differences in computing the geoid heights, and thus the accuracy of DV is mainly deter-
mined by relative height accuracy. According to Table 2 (see the results on relative 
heights), the error magnitude of the relative height of SSH caused by residual errors of the 
dry troposphere, ionosphere, and SSB is 410−

 cm. In contrast, the relative height error of 
SSH caused by the residual environmental errors of the wet troposphere is 0.1 mm. The 
poorer accuracy of the relative SSH will certainly lead to poorer accuracy of the derived 
DV. In sum, among the four kinds of residual environmental errors, the wet troposphere 
has the most significant impact on the calculation of DV, followed by the SSB, and the 
residual errors in the dry troposphere and ionosphere have the most minor influence on 
the derivation of DV. 

 
Figure 10. Error of north-south component of DV caused by: (a) wet troposphere; (b) dry tropo-
sphere; (c) ionosphere; (d) SSB. Figure 10. Error of north-south component of DV caused by: (a) wet troposphere; (b) dry troposphere;

(c) ionosphere; (d) SSB.
Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 11. Error of east-west component of DV caused by: (a) wet troposphere; (b) dry troposphere; 
(c) ionosphere; (d) SSB. 

Table 3. The Influence of residual environmental errors on the recovery accuracy of DV (uint: 
arcsec). 

 Type STD Max Min MAE RMS RE(%) 

ξ  

Wet 0.0592 0.2166 −0.2626 0.0474 0.0592 0.90% 
Dry 0.0063 0.0136 −0.0294 0.0066 0.0082 0.12% 
Iono 0.0063  0.0315  −0.0133  0.0070  0.0086  0.13%  
SSB 0.0100  0.0439  −0.0181  0.0115  0.0141  0.22%  

η  

Wet 0.0610 0.2149 −0.2267 0.0506 0.0633 0.61% 
Dry 0.0054 0.0151 −0.0285 0.0105 0.0115 0.13% 
Iono 0.0052  0.0274  −0.0148  0.0098  0.0109  0.12% 
SSB 0.0089  0.0444  −0.0178  0.0136  0.0157  0.16%  

4.4. Influence of Residual Environmental Errors on GA Accuracy 
Figure 12 shows the effects of the wet troposphere, dry troposphere, ionosphere, and 

SSB residual errors on GA recovery. Table 4 gives the statistics on the errors of GA caused 
by residual environmental errors. Definitely, among the four kinds of residual environ-
mental errors, the wet troposphere residual errors have the most significant impact on the 
accuracy of GA recovery. For example, it can be seen from Figure 12 that the GA error 
caused by wet troposphere residual errors reached 2 mGal. From the variation range of 
error (see Table 4), the variation range of GA error caused by residual wet troposphere 
errors is about −1.29 mGal~1.99 mGal, and the relative percentage error is 6.42%. In con-
trast, the other residual environmental errors and calculation errors affect the accuracy of 
the gravity anomaly in the range of −0.34 mGal~0.50 mGal, and the relative error is about 
3.5%. 

Figure 11. Error of east-west component of DV caused by: (a) wet troposphere; (b) dry troposphere;
(c) ionosphere; (d) SSB.



Remote Sens. 2022, 14, 6299 11 of 17

Table 3. The Influence of residual environmental errors on the recovery accuracy of DV (uint: arcsec).

Type STD Max Min MAE RMS RE(%)

ξ

Wet 0.0592 0.2166 −0.2626 0.0474 0.0592 0.90%
Dry 0.0063 0.0136 −0.0294 0.0066 0.0082 0.12%
Iono 0.0063 0.0315 −0.0133 0.0070 0.0086 0.13%
SSB 0.0100 0.0439 −0.0181 0.0115 0.0141 0.22%

η

Wet 0.0610 0.2149 −0.2267 0.0506 0.0633 0.61%
Dry 0.0054 0.0151 −0.0285 0.0105 0.0115 0.13%
Iono 0.0052 0.0274 −0.0148 0.0098 0.0109 0.12%
SSB 0.0089 0.0444 −0.0178 0.0136 0.0157 0.16%

Compared to the wet troposphere, the other three types of errors in environmental
correction have more negligible impact on the derivation of DV. For example, there is
no apparent accuracy loss under these three cases of errors in environmental correction.
RMS and MAE of ξ errors do not exceed 0.015 arcsec; RMS and MAE of η does not exceed
0.016 arcsec. However, the index for the wet troposphere is at least two times larger than
those of the other three types.

The above results indicate that errors in environmental correction will not generate
great errors in the derivations of DV. The possible reason is that DV is derived from
the differences in computing the geoid heights, and thus the accuracy of DV is mainly
determined by relative height accuracy. According to Table 2 (see the results on relative
heights), the error magnitude of the relative height of SSH caused by residual errors of the
dry troposphere, ionosphere, and SSB is 10−4 cm. In contrast, the relative height error of
SSH caused by the residual environmental errors of the wet troposphere is 0.1 mm. The
poorer accuracy of the relative SSH will certainly lead to poorer accuracy of the derived
DV. In sum, among the four kinds of residual environmental errors, the wet troposphere
has the most significant impact on the calculation of DV, followed by the SSB, and the
residual errors in the dry troposphere and ionosphere have the most minor influence on
the derivation of DV.

4.4. Influence of Residual Environmental Errors on GA Accuracy

Figure 12 shows the effects of the wet troposphere, dry troposphere, ionosphere, and
SSB residual errors on GA recovery. Table 4 gives the statistics on the errors of GA caused by
residual environmental errors. Definitely, among the four kinds of residual environmental
errors, the wet troposphere residual errors have the most significant impact on the accuracy
of GA recovery. For example, it can be seen from Figure 12 that the GA error caused by
wet troposphere residual errors reached 2 mGal. From the variation range of error (see
Table 4), the variation range of GA error caused by residual wet troposphere errors is
about −1.29 mGal~1.99 mGal, and the relative percentage error is 6.42%. In contrast, the
other residual environmental errors and calculation errors affect the accuracy of the gravity
anomaly in the range of −0.34 mGal~0.50 mGal, and the relative error is about 3.5%.

Table 4. Statistics of GA errors caused by different residual environmental errors (unit: mGal).

Term Std Max Min MAE RMS RE(%)

Calculation error 0.0922 0.4619 −0.0644 0.2049 0.2245 3.48%
Ionosphere 0.0894 0.4555 −0.0595 0.2046 0.2232 3.50%

Dry troposphere 0.0899 0.4554 −0.0528 0.2056 0.2243 3.52%
Wet troposphere 0.4219 1.9947 −1.2941 0.3750 0.4730 6.42%

SSB 0.1193 0.5044 −0.3402 0.1392 0.1654 2.38%
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4.5. Comparison in the Spectral Domain

To present the characteristics in the spectral domain, the power spectral density (PSD)
of the errors of SSH, DV and GA generated by residual environmental errors are derived, as
shown in Figures 13–15. In these figures, wet, dry, iono and ssb denote impacts from the wet
troposphere, dry troposphere, ionosphere, and residual SSB errors, respectively. According
to Figure 13, the wet troposphere has the most significant impact on the SSH accuracy,
and is followed by residual SSB errors. It is easy to find that the wet troposphere has the
most significant influence on the inversion accuracy of DV and GA, in all the wavelengths
shown in Figures 13 and 14. We can also find that SSB has a little more significant influence
than dry troposphere and ionosphere, where dry troposphere and ionosphere have almost
identical impact on DV and GA inversion accuracy.
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5. Discussion

Error in environmental corrections is only one of the factors influencing the gravity
field recovery accuracy. To evaluate the influence from other factors, this section carried out
a simulation using swot_simulator by considering some of the other errors, including KaRIn
error, phase error, roll error, baseline dilation error and timing error (Ubelmann et al., 2014).
Since the impact of wet troposphere has the greatest impact on the accuracy of the recovered
gravity field products among the aforementioned environmental corrections, this type of
error is also considered in the simulation.

We used sea level anomaly (SLA) as the input data to generate SLA observation data
on the strip along the ground track. Please note that in this process, the above-mentioned
errors are added. In the noise simulation, the significant wave height (SWH) is set as 2 m.
The SWOT track uses the scientific track file (ephemeris_science_sept2015_ell.txt) with a
revisit cycle of 21 days, downloaded from AVISO (https://www.aviso.altimetry.fr/en/
missions/future-missions/swot/orbit.html (accessed on 15 October 2022)). The orbital
inclination is 77.68◦, and the orbital height is 891 km; the total cutting width is set as 120 km

https://www.aviso.altimetry.fr/en/missions/future-missions/swot/orbit.html
https://www.aviso.altimetry.fr/en/missions/future-missions/swot/orbit.html
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(half_swath = 60.0); the interference baseline length of Ka band (35.75 GHz) is 10 m. These
parameters are the same as those of SWOT. The simulation was conducted in the region
with longitudes of 110◦–113◦ E and latitudes of 10◦–13◦ N for 1 year at a resolution of 2 km.

The differences between the input SLA data and the output SLA data are seen as the
influences from the added errors. Statistics in the region which is introduced in Section 3
(i.e., the region with longitudes of 111◦–112◦ E, and latitudes of 10.5◦–12.5◦ N) are obtained
in different time lengths. The variations in the mean, standard deviation (STD) values of
the differences are presented in Figure 16.
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It can be seen from Figure 16 that with the growth of the time span and the accumula-
tion of observation data, the statistical values of the residual errors gradually decrease. The
error change amplitude in the first five months is large. For example, when the observa-
tion data accumulated to 1 month, the error is close to 0.1 m due to the small number of
observations. As the data accumulated to 3 months, the STD decreased to about 0.05 m;
When the data accumulated to 5 months, the STD decreased to about 0.03 m. It can be
seen from the STD curve that as the observation data accumulate from 1 month to more
than 5 months, the STD value decreases rapidly, indicating that as the observation time
increases (i.e., the amount of data increases) and the random errors can be reduced largely.
When the observation data accumulated from 5 months to 12 months, while the STD value
still decreased, the rate decreased gradually, and finally converged to around 0.02 m. It
indicates that the increase in the amount of observation data can reduce the random error,
but it cannot completely overcome the random error, and residual errors still exist.

It needs to be noted that the mean dynamic topography (MDT) and the time-varying
ocean signals would influence the gravity recovery accuracy significantly. Although the
issue of dynamic topography has been processed well in conventional altimetry processing,
such as the usage of the existing MDT model [22,27–29], whether the spatial resolution and
accuracy are enough should be analyzed further. As for the time-varying ocean signals,
such as eddies, front, and even wind waves, long time observations can be used to reduce
their effects, such as the errors reduced shown in Figure 16.

6. Conclusions

In this study, four kinds of residual environmental errors, including the wet tropo-
sphere, dry troposphere, ionosphere and SSB, are simulated, and then DV and GA are
derived using the SSH data by adding the simulated residual environmental errors. The
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results show that the residual errors of the wet troposphere and SSB have a more significant
impact on the absolute error of sea level height; the impact of the wet troposphere residual
error on the relative height accuracy is a millimeter, and the corresponding influence of
other residual environmental errors is very small. The residual errors of dry troposphere,
ionosphere and SSB have little impact on the DV and GA recovery accuracy. In general,
among the four kinds of residual environmental errors, the wet troposphere is the main
factor affecting the accuracy of DV calculation and GA recovery. The RMS of GA error
caused by the wet troposphere is about 0.47 mGal in this study.

It needs to be noted that the wave-number spectrum simulation method in this study
depends on some assumptions, such as no correlation between error components. However,
it may be not true in actual cases. For example, it is estimated that the residual error of
SSB may have a correlation with SSH [30]. Therefore, the correlations between these errors
should be investigated in future research. Even so, the results of this study can give an
initial evaluation of the residual environmental error on gravity field recovery, at least the
magnitudes of the errors caused by them.

On the other hand, since the main advantage of the InRA is the ultra-high spatial
resolution, we can mainly use InRA observations to improve the short-wavelength of
marine gravity field products. However, according to Figure 15, the error in the long-
wavelength part such as the wavelength greater than 50 or 100 km has a larger magnitude
compared to the short-wavelength part. Indeed, the long-wavelength of marine gravity
field can be provided by a highly accurate background model, i.e., using the remove-restore
method [22,28,29]. Additionally, it can be recovered by observations of gravity satellites,
such as Gravity field and steady-state Ocean circulation mission (GOCE) [31,32], Gravity
Recovery and Climate Experiment (GRACE) [33] and GRACE Follow On. Hence, we can
adopt a high-pass filter to remove the long-wavelength errors caused by the environment,
although the long-wavelength signals are also removed. This should also be investigated
in future research.

Besides the residual environmental errors discussed in this study, there are many other
factors affecting the derivation of gravity field products using InRA altimeter observations,
such as instrument errors of InRA altimeter [34], which can be caused by phase error, base-
line error, rolling angle error, etc. Compared to InRA instrument errors, environmental error
is not the limiting factor for highly accurate gravity field recovery. Instead, InRA altimeter
system error would be the limitation [13,16], which puts forward high requirements to the
related space technology. In addition, how to remove or reduce the observation errors [24]
and propose a highly accurate new algorithm for gravity field products are valuable points
of study in this field.
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