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ABSTRACT

We discuss the relevance of fairness as a design objective for
congestion control mechanisms in the Internet. Specifically,
we consider a backbone network shared by a dynamic num-
ber of short-lived flows, and study the impact of bandwidth
sharing on network performance. In particular, we prove
that for a broad class of fair bandwidth allocations, the to-
tal number of flows in progress remains finite if the load
of every link is less than one. We also show that provided
the bandwidth allocation is “sufficiently” fair, performance
is optimal in the sense that the throughput of the flows is
mainly determined by their access rate. Neither property
is guaranteed with unfair bandwidth allocations, when pri-
ority is given to one class of flow with respect to another.
This suggests current proposals for a differentiated services
Internet may lead to suboptimal utilization of network re-
sources.

1. INTRODUCTION

Until recently, a major design objective of congestion con-
trols mechanisms in the Internet has been the fairness of
the resulting bandwidth shares made available to the users.
Roughly speaking, fairness means that no user is penalized
compared to others that share the same bottleneck links.
This objective is approximately achieved in the current In-
ternet as it is known that, with FIFO packet scheduling at
the network links, TCP shares bottleneck bandwidth in in-
verse proportion to the round trip time between the source
and destination. In contrast, recent proposals for the provi-
sion of differentiated services [3] no longer aim at fairness,
and suggest to discriminate between traffic from different
classes by introducing per-class scheduling policies at the
network links.

Fairness is most frequently considered in a static regime
where a fixed set of source-destination pairs share network
resources for the transfer of infinite sized documents [11, 13,
14, 16, 17]. In reality, the number of flows in progress is
highly dynamic, increasing at the instants of some arrival
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process and decreasing as the transfer of finite sized docu-
ments is completed. There is a very strong interaction be-
tween the stochastic process describing the numbers of flows
in progress on different network routes and the way in which
these flows share bandwidth. Very little is still known about,
the way fairness affects the performance perceived by users.
Notable exceptions are the results derived by De Veciana et
al. [7] and by Massoulié and Roberts [15]. In this paper we
generalize these results and deduce some key characteristics
from the analysis of a number of toy network topologies.

Earlier work [11, 13, 14, 16, 17] has analysed which equilib-
rium bandwidth allocations result from a number of schedul-
ing and congestion control mechanisms, assuming a fixed
population of long-lived transfers. Based on these results,
we consider a dynamic population of short-lived transfers,
assuming the underlying packet level mechanisms realize
certain bandwidth sharing objectives perfectly. Specifically,
each transfer, which in practice consists of a succession of
erratically spaced packets following a certain route, is assim-
ilated here to a fluid flow whose rate adjusts instantaneously
as the number of other flows interfering directly or indirectly
changes. This modelling approach relies on a “time scale
separation” assumption: the time scale of the flow level dy-
namics we are interested in (that is, the duration of a flow) is
assumed to be much longer than the time scale of the packet
level dynamics considered in [11, 13, 14, 16, 17] (that is, the
time of convergence to equilibrium assuming a fixed pop-
ulation of long-lived flows). We thus expect the approach
to better capture the performance of so-called “elephants”
rather than “mice”.

We consider the performance of different fairness notions
as measured by the average response time of transfers. Of
particular interest are the stability conditions under which
the response times remain finite. These conditions criti-
cally depend on the load offered to each link, defined as the
ratio between the traffic intensity (flow arrival rate x av-
erage flow document size) and the link capacity. We show
that, for arbitrary network topologies and a broad class of
fair bandwidth allocations, stability holds if and only if the
load offered to each link is less than one. We also show on
simple examples that, for unfair allocations resulting from
class-based scheduling, the number of flows in progress (and
the associate response times) can grow unbounded while the
load offered to each link is strictly less than one.

We then turn to the evaluation of average response times



when these remain finite. An equivalent performance mea-
sure is the flow throughput, defined as the average document
size divided by the average time required to transfer a doc-
ument. We show by analysis and simulation of a number of
toy network topologies that for a broad range of fair band-
width allocations and offered load “not too close” to one,
performance is optimal in the sense that the flow through-
put is mainly determined by fixed constraints (due to mo-
dem speed or maximum size of TCP window, for instance)
and not by the capacity of the backbone links. In constrast,
unfair bandwidth allocations can result in arbitrarily bad
response times for the penalized flows, at loads considerably
less than one.

The paper is organized as follows. In Section 2, we review
various fairness notions and illustrate these on several ex-
amples. Section 3 is devoted to stability issues. The main
result there is Theorem 1, which gives the stability condi-
tions for arbitrary network topologies and a broad class of
fair bandwidth allocations. Throughput performance under
stable conditions is analysed in Section 4. Section 5 con-
cludes the paper.

2. BANDWIDTH SHARING

In this section, we give a formal definition of the notion
of Pareto-efficiency and introduce the bandwidth allocation
strategies to be considered in the sequel. In order to compare
different allocations we introduce the following orders. We
denote by < the natural (partial) order on RV ie. z <y
if and only if (iff) z; < y; for all 4. We denote by <;, the
lexicographical (total) order, i.e. x <j4 y iff = y or there
exists some ¢ such that z; < y; and z; = y; forall 1 < j < i.
Finally, we note z < y if o(z) <;y o(y) where o(z) and o(y)
are the ordered versions of z and y, i.e., o(x); and o(y); are
the i-th smallest elements of x and y, respectively.

2.1 Pareto-efficiency

Consider a backbone network as a set of links £ where each
link I € £ has a capacity C; > 0. A number of flows compete
for access to these links, each flow being associated with a
route consisting of a subset of £. We write I € r when
route r goes through link {. Let R denote the set of routes
and let z, denote the number of flows on route r € R. In
this section, we assume that x, is fixed, that is there are no
flow arrivals and each flow consists of the transfer of a file
of unlimited size. Without loss of generality, each flow on
route r is assumed to have the same bandwidth allocation.
This allocation is denoted by A..

DEFINITION 1. A bandwidth allocation X = {Ar}rer is
called feasible if it satisfies the capacity constraints:

d @A <C, VieL (1)

1l

The set of feasible bandwidth allocations is a convex set of
|R|-dimensional positive vectors. In the rest of the paper,
we implicitly consider feasible bandwidth allocations only.

DEFINITION 2 (PARETO-EFFICIENCY). A bandwidth al-
location X is said to be Pareto-efficient if for any bandwidth
allocation p such that p > X, it then holds that A = p.

This condition ensures that no bandwidth is “wasted”: for

each route r, there exists some link I € r where the ca-
pacity constraint is attained. Equivalently, the bandwidth
allocated to a given flow cannot be increased without de-
creasing the bandwidth allocated to some other flow.

2.2 Max-min fairness
A classical notion of fairness in data networks is maz-min

fairness [2]. This gives absolute priority to flows of lower

throughput. More formally, max-min fairness is the fairest
bandwidth allocation according to the following definition.

DEFINITION 3. A bandwidth allocation X is said to be fairer
than another bandwidth allocation p if and only if X > p.

It is worth noting that max-min fairness is the only Pareto-
efficient allocation such that no route is “penalised”: for
each route r, there exists some link I € r where the ca-
pacity constraint is reached and A, is the maximum band-
width allocated to the flows that go through link {. Equiv-
alently, the bandwidth allocated to a given flow cannot be
increased without decreasing the bandwidth allocated to a
flow of equal or lower throughput.

2.3 Mean throughput criteria

An intuitively appealing bandwidth allocation optimization
criterion is to maximize the mean throughput of the flows. Tt
turns out that familiar allocations correspond to this objec-
tive when the mean is arithmetic, geometric and harmonic,
respectively:

e Arithmetic mean. Maximizing > z. A/ >, %, is
equivalent to maximizing the overall throughput of the
flows. This strategy does not lead to a unique band-
width allocation.

e Geometric mean. Maximizing [[], )\fr}l/ T
equivalent to maximizing > x.log(\;). This strat-
egy leads to a unique bandwidth allocation known as
proportional fairness [11].

e Harmonic mean. Maximizing Y z./> (z./A;) is
equivalent to minimizing >, /A,. This strategy leads
to a unique bandwidth allocation satisfying the mins-
mal potential delay criterion [14].

All three bandwidth allocations are Pareto-efficient.

24 A general criterion

A more general bandwidth sharing criterion was introduced
by Mo and Walrand [16]. For a given positive constant a #
1, consider the optimization problem:

1—
A

1—a

Maximize g T,

T

(2)

subject to capacity constraints (1). Due to the strict concav-
ity of the function to be maximized, this defines a unique
allocation referred to as a-bandwidth allocation. This al-
location corresponds to the mazimum throughput criterion



when o — 0, to proportional fairness when a — 1, to the po-
tential delay criterion when a — 2, and to maz-min fairness
when a — oo [16].

A weight w, > 0 can be introduced for each route r leading
to a more general criterion that can be written:

Maximize ZwT ”( rz) (3)

1—a

subject to capacity constraints (1). Again, this defines a
unique allocation referred to as weighted a-bandwidth allo-
cation. It turns out that the bandwidth allocation achieved
by the congestion avoidance algorithm of TCP is well ap-
proximated by (3) with @ = 2 and w, equal to the reciprocal
of the squared round-trip time on route r [1, 13, 17].

We now illustrate the possible allocation strategies on simple
network topologies where closed form expressions can be
derived.

Example 1 (Linear network).

Consider the linear network depicted in Figure 1. In this
and other figures of this section, the squares represent the
links and the lines represent the routes. The linear network
consists of I, unit capacity links with x¢ > 0 flows on route
0, which crosses every link, and x; flows on route I, which
uses link [ alone, for 1 <1 < .. The weighted a-bandwidth
allocation is such that xzoAg + ;A = 1 for all I such that
x; > 0, and:

(wox§)"/™

1/a’
(womg )/ > + (Z{;l wimf‘)

.’I,‘o)\[] =

Proof. Since the allocation is Pareto-efficient, all links [ such
that z; > 0 are saturated. The proof follows then from the
fact that the rate Ao allocated to long flows is the maximum
over [0, 1] of the function:

11—«

Lo
P

Figure 1: Linear network

20Xo) T 1— modo)' ™
Wg% + 3wy L Z0A) 7
=1

Example 2 (Cyclic network).

We consider the cyclic network depicted in Figure 2. The
network consists of 2L unit capacity links with 2L routes
of length .. Route I crosses links I +1,...,1 4+ L (we let
2L +1 =1 by convention). Assume z; > 0 for all I. The
weighted a-bandwidth allocation is such that all links are
saturated and:

1
(wixf +wrxf ) /o

TN =
L 1/a’?
Zl:] (wlmf‘ + wLHm%H)

1<1<2L.

Proof. Tt can be easily verified that x;\; = zr 11 Ap+ for all I,
and that all links are saturated. The weighted a-bandwidth
allocation is then the unique solution of the optimization
problem:

L

A
Maximize g (wizy +wL+;mLH)(T117),
1—a

=1

subject to the capacity constraint ZL] 1Ay = 1. The cor-
responding Lagrangian is given by:

L

T
Z(wiﬂﬁz +wL+i$r+z)( : ]) +M<1—Z$i>\i>7

=1

where 4 > 0 is the Lagrange multiplier. Taking the deriva-
tive of this expression with respect to Ai,..., Az yields:

(wzl +wrnzig)(zh) “=p, forl=1,... L

The proof then follows from the fact that Z{’:] p =1 0

Figure 2: Cyclic network

Example 3 (Grid network).

A natural generalization of the linear network considered
above is the grid depicted in Figure 3. The network consists
of K x I unit capacity links with K horizontal routes and
L vertical routes. Horizontal route k crosses links (k,1),
1 <1 < L and vertical route [ crosses links (k,1), 1 <k < K.
Let w;, denote the weight of horizontal route k and v; that of
vertical route I. Let zx be the number of flows on horizontal
route k and y the number of flows on vertical route I. For
any horizontal route k& such that z; > 0, the weighted -
bandwidth allocation satisfies:

- 1/
(Z:Z] wkm',z)
1/ 1/a”
(Zkal wkﬂ”?) + (ZlLfl Uiyl”)

The proof is similar to that of the linear network.

TeAp =

[] [1] [
L] L] L]

1] ] 1]
L] L] L]

Figure 3: Grid network



REMARK 1. The network looks like a “grid” when the
nodes of the associated graph represent the links. This does
not imply that the underlying network is a “grid”. Figure 4
gives an example of the well-known “fish” network that cor-
responds to a “grid” network with two horizontal routes AB,
CA, and three vertical routes DE, ED, CB.

Figure 4: A fish network with five routes

In the rest of the paper, we consider a dynamical system
with flow arrivals and departures. Specifically, we assume
that new flows are established on route r at the instants of
a stationary point process of intensity v,. The document
size to be transferred by each flow on route r is drawn in-
dependently from a general distribution of mean 1/p,. We
denote by pr = vy /i, the traffic intensity offered to route
r. Clearly, the departure times of the flows depend on the
bandwidth allocation considered (the “service discipline”,
using queuing theory terminology). Fach bandwidth alloca-
tion described in this section leads to a different dynamical
system.

3. STABILITY CONDITIONS

In this section, we consider the stability of the stochastic
process © = (zr)rer (for notational convenience, we do not
make explicit the dependency of z on time #). That is, we
derive conditions on the traffic intensities p, for which, start-
ing from any initial state, the number of flows in progress on
each route converges to a finite stationary regime. Clearly,
the following conditions are necessary:

ZPT < Cia

r3l

forall I € L. (4)

One might also expect these conditions to be sufficient pro-
vided the bandwidth allocation is Pareto-efficient (which can
be thought of as the network analogue of a work conserving
service discipline in queuing theory). This is not the case in
general as we shall see now.

3.1 Unfairness and instability

We present several examples of Pareto-efficient bandwidth
allocations for which the process x is only stable under traf-
fic conditions more strict than (4). These bandwidth alloca-
tions are deliberately unfair in the sense that some types of
flow have preferential allocations compared to others. This
may result in network resources being under-utilized in the
sense that the total number of flows in progress grow to in-
finity whereas the offered load at each link is less than one.

Example 1 (Maximum throughput).

One might expect the maximum throughput allocation in-
troduced in Section 2 to ensure a complete utilization of
network resources, since the overall throughput of the flows
at any instant is maximized. This is not the case in general.
Consider for instance the linear network of Figure 1. For
this specific network topology, the overall throughput of the
flows is maximized when a preemptive priority is given to

the flows on routes 1, ..., I over flows on route 0. Since flows
on route 0 are “frozen out” as soon as there is at least one
active flow on any route 1, ..., I., assuming arrival processes

on distinct routes are mutually independent, the network
stability condition is given by p; < 1 for I =1,..., L, and:

po < H(l - p).

=1

For instance, a linear network of I. = 3 links with the same
traffic intensity p on each route is unstable when p = 1/3,
although the total traffic load on each link is equal to 2/3.

Example 2 (Class-based queuing).

Instability under normal traffic conditions may also occur
when some milder form of priority is given to some flows.
In the linear network considered above, assume that when
flows on routes 0 and [ are in progress at some link [, a
fraction ¢ of the link capacity is reserved for the flows on
route I, so that when zg > 0:

doxo=1—p+ oz 0. 2z, -0}

This may be realized using class-based queuing, see e.g. [9].
It is not suggested that in practice one would wish to al-
locate bandwidth as such. This example simply shows that
instability may occur under traffic conditions (4) though the
discrimination between flows is not based on strict priority.

Provided p; < ¢ for I = 1,..., L, assuming arrival processes
on distinct routes are mutually independent, it can be shown
that the network stability condition is given by:

I
po<1f<p+<pH( 7&)_
1=1 ¥
For instance, if py = 1/2 for all [ = 1,...,L and p = 3/4,
this condition reads:

1 1
p0<z 1‘*'3,‘—71 .

This condition is more restrictive than the traffic conditions
(4) as soon as L > 1. In the limiting case where L tends to
infinity, the network is unstable whenever the total offered
load at each link is larger than 3/4.

Example 3 (Priority queuing).
A more realistic example is the “tree” network depicted in
Figure 5. The network consists of one backbone link of

unit capacity, and I access links of capacity ¢1,...,cr, with
> ¢ < 1. Route 0 crosses the backbone link only whereas,
forl =1,..., L, route ! crosses the backbone link and access

link I. Flows on route 0 might represent corporate traffic
without any access constraint, for instance, whereas flows
on routes ! represent residential traffic typically limited by
an access link.



Assume that flows on route 0 have preemptive priority over
flows on routes 1 to L. This may be realized using head-of-
line priority queuing for corporate traffic, for instance. The
network stability condition is then given by:

pm<a(l—po), forl=1,... L.

In the particular case where po = 1/2 and ¢; = ...
1/2L for instance, only half of the access link capacity can
be used, whereas the total offered load at the backbone link
does not exceed 3/4.

=cr =

residential
traffic

corporate
traffic

Figure 5: Tree network

REMARK 2. In a real network, instability would not nec-
essarily manifest itself inside the network. One would rather
ezpect congestion control mechanisms such as TCP to hold
the congestion at the network edge, which would eventually
be reflected there by timeouts, and then disconnections.

These simple examples show that the Pareto-efficiency of a
bandwidth allocation is not sufficient to guarantee a com-
plete utilization of network resources since the network may
be unstable under usual traffic conditions (4). Both Pareto-
efficiency and fairness are needed as shown by the following
key result of the paper.

3.2 Fairness and stability

Consider (weighted) a-bandwidth sharing as defined by (3)
for a fixed @ > 0. For the sake of simplicity, we assume
that © = (z,)rer is a Markov process, i.e. the arrival pro-
cess of the flows on each route is Poisson and the size of
the document to be transferred is exponentially distributed.
Note that this assumption is not essential for stability, and
the following result can easily be extended to renewal ar-
rival processes and generally distributed document sizes by
including the residual interarrival and service times in the
Markov process [6]. The transition rates of = are given by:

rr, = xr +1 at rate v,
xr =z, —1 at rate g,z Ar,

where the rates {\;},ex are uniquely defined by (3). The
following result generalizes the known result for weighted
max-min fairness [7].

THEOREM 1. The Markov process x is ergodic if and only
if traffic conditions (4) are satisfied.

Proof. The proof consists in studying the “fluid system” ob-
tained when the initial number of flows grows to infinity.
More precisely, we consider the set of “fluid limits” defined
by:

X(t) = lim =&

w— 00 w

with Z z,(0) = w.

TER
Note that if the limit exists, we have > X, (0) = 1. Given
an initial distribution of the fluid X (0), it follows from the
strong law of large number that the evolution of the fluid
system X (¢) is uniquely defined by the differential equations:

iXT =v, — urAr(t), for all r ¢ such that X,(¢) > 0,

dt
(5)
where A;(t) is the overall bandwidth allocated to the flows
on route r at time ¢. In view of (3), the vector A = (A;)rex
is the unique solution of the optimization problem:

-

A
Ma,xumzeg we X —"—
r

l-«o
subject to the capacity constraints

ZATSCZ, vieL. (6)

T

In the following, we show that provided traffic conditions
(4) are satisfied, the fluid system empties in finite time, i.e.
there exists a constant 7' > 0 independent of the considered
fluid limit such that X(¢) = 0 for all £ > 7. This will
complete the proof in view of the general results of [6].

Consider the following function defined on the set of |R|-
dimensional positive vectors:

a—+1
a Uy

a+1

Fw) = Y wei o

T

We get from (5):

d

X = > wep X7 (pr — M) (7

T

Consider now the function

Glu) =) w. X}

[23

ulf
1—-a

The vector A attains the maximum of this function over
the domain specified by the capacity constraints (6). Thus
for any vector u in this convex domain, the gradient of G
satisfies G'(A).(u — A) < 0. By concavity of G, we conclude
that:

G'(u).(u—A) <0.

Under the stability conditions (4), there exists € > 0 such
that the vector u = (p-(1 + €))rer satisfies the capacity
constraints. Applying the previous inequality, we get:

> wepr "X (pr(14€) — Ar) < 0.

Equivalently, in view of (7), this reads

% (X) < fFZpr;”HX:’.

r



Using straightforward bounds, we conclude that there exists

a positive constant 8 such that:
%F(X) < —BF(X)HT.

This implies that if #(X(1")) = 0 for some T > 0, F(X(t)) =
0 for all ¢ > 7. In addition, integrating this equation yields
for all ¢ > 0 such that F(X(¢)) > 0,

1 o1
rixa) < (Foxop= - L)

Recalling that ) X, (0) = 1, this implies that F(X(t)) and
thus X (¢) are identically equal to zero for all ¢ > T, with

1
a+1 1 1o
T = .
3 (a+1 T By Py )

Assume now that the bandwidth allocated to any flow on
route r is limited to a fixed constant a, corresponding to the
access rate of the flow. That is, the bandwidth allocation
is now determined by the optimization problem (3) under
the capacity constraints (1) as well as the additional access
constraints A, < a, for all r € R. We have the following
result.

COROLLARY 1. Theorem 1 still holds under additional ac-
cess constraints.

Proof. The proof is completely similar to that of Theorem
1 since the access constraints disappear in the fluid limits. O

4. THROUGHPUT PERFORMANCE

In this section, we consider the impact of fairness on the
average transfer time of a document. We consider the broad
class of weighted a-bandwidth sharing. Under the traffic
conditions (4), we know from Theorem 1 that the network
is stable.

Define the flow throughput on route r as the average doc-
ument size 1/p, divided by the average time required to
transfer a document on route r. By Little’s law, the flow
throughput on route r is given by:

Pr
We also define the average flow throughput as the average
document size divided by the average time required to trans-
fer this document, where averages are taken over all trans-
fers, irrespective of their routes. Again, it follows from Lit-
tle’s law that the average flow throughput is given by:

Y= 2o Pr D Pr )
Zr E[$T} Z'r pr/’)/r '

It is worth noting that in practice, performance strongly de-
pends on fixed throughput constraints due to modem speed
or maximum size of TCP window, for instance. We know

from Corollary 1 that the network remains stable in this
case. For the sake of simplicity, we will assume that the
bandwidth allocated to a given flow can never exceed a fixed
threshold a referred to as the access rate. We show in the
following that provided bandwidth sharing is “sufficiently”
fair and traffic intensity is “not too close” to capacity, flow
throughput on each route is mainly determined by this ac-
cess rate and not by the capacity of the backbone links.

4.1 Single bottleneck

Consider first the impact of fairness on performance in the
case of a single bottleneck link of unit capacity.

Fair sharing.

For a-bandwidth sharing, the associated model is a proces-
sor sharing queue, independently of the value of &. In the
absence of throughput limitation at the access, the number
of flows in progress is then geometrically distributed with
parameter p, provided the flow arrival process is Poisson
[12]. We conclude that the flow throughput is given by:

It is worth noting that this result is insensitive to the doc-
ument size distribution (see e.g. [10]).

Explicit expressions of the flow throughput can also be de-
rived in the presence of an access rate a < 1. For the sake
of simplicity, we assume that 1/a is an integer. Denoting by
f(, p) the Erlang-C formula [12], we obtain from [4]:

- 1-p
~ 1—p+ f(1/a,p)

The result is still insensitive to the document size distribu-
tion. Figure 6 gives the flow throughput as a fraction of
the link capacity with and without an access rate a = 0.1.
We verify that for small access rates a, the flow through-
put is practically insensitive to the offered load, for a wide
range of load values p < 1. In other words, the link is virtu-
ally transparent to the users, whose perceived QoS depends
much more on their access rate.
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Figure 6: Flow throughput against offered load in
case of fair sharing



Unequal sharing.

Now consider weighted a-bandwidth sharing. The associ-
ated model is the discriminatory processor sharing queue,
with weights w,. This discrimination may be desired and
implemented by per-flow weighted fair queuing say, or un-
wanted when due to the impact of different round-trip times
on TCP throughput, for instance. The flow throughput now
depends on the document size distribution. Consider the
simple case of two types of flow, with wi + w2 = 1 and
w1 > wa. That is, when flows of type 1 and 2 are in progress,
flows of type 1 receive wi /w2 times more bandwidth than
flows of type 2. Assuming both types of flow have the same
exponential document size distribution for simplicity, the
flow throughput of type 1 and 2 is respectively given by [8]:

1 —wipr —wapo
n=—7—— (1-p)
—wip
and
1 —wip1 —waps
py = LWL T W22 gy

1—w2p

Note that in view of (9), the average flow throughput v is
still given by 1 — p, independently of the weights w; and
wa. We have verified by simulation that these results are
approximately insensitive to the document size distribution
provided the ratio wi /w2 is not too high (say, wi/ws <
100). Tt is worth noting that 1 /72 is always much smaller
than w /wa, except when the total offered load p is close
to one. This is illustrated in Figure 7 where wi /ws = 10,
1 = p2 = p/2, with and without an access rate a = 0.1 (in
this and subsequent figures, results with an access rate were
obtained by simulation).

1 T .

Without access rate ——
With access rate -
0.8 r |
5
&
S 0.6 |
>
<
=
2 04 r |
o
(TR
0.2 |
0 . . ‘ ‘
0 0.2 0.4 0.6 0.8 1

Offered load

Figure 7: Flow throughput against offered load
when flows of type 1 (top) receive 10 times more
bandwidth than flows of type 2 (bottom)

Unfair sharing.

Finally, we consider an “unfair” bandwidth allocation where
flows of type 1 have preemptive priority over flows of type 2.
The duration of flows of type 2 is then extremely sensitive to
the document size distribution of flows of type 1. In partic-
ular, we shall see that the flow throughput of type 2 may be
equal to zero in the practically interesting case where this
distribution is heavy-tailed, which again shows the potential
suboptimality of “unfair” bandwidth allocations. Let Fi(u)

denote the complementary cumulative distribution function
of the document size for flows of type 1. We have:

/ Fi(u)du = i

Jo M1

At the arrival of a flow of type 2, the number of flows of type
1 in progress is larger than 1/a with a positive probability.
For each of the flows of type 1 in progress, the probability
that the document size remaining to be transferred is larger
than u is given by [10]:

11 / Fi(v)dv.

The probability that the bandwidth allocated to the consid-
ered flow of type 2 is zero during a time larger than wu is
greater than the probability that the duration of 1/a flows
of type 1 in progress is larger than u, namely

o 1/a
(ﬂl / Fl(v)dv) .

We conclude that the average duration of flows of type 2 is
infinite as soon as

/OOO (m /w Fl(v)dv> Y = oo, (10)

Consider the case of the Pareto distribution that is observed
in practice [5]:

Yu>e¢, Fi(u)= (g)b,

where b > 1 is a fixed parameter, and ¢ = b/u:1(b — 1)
represents the minimum document size. The distribution is
heavy-tailed when the associated variance is infinite, that is
when b < 2. It can be easily verified that condition (10)
simply reads:

b—1

a

<1

If b = 1.1 for instance, the flow throughput for flows of type
2 is equal to zero whenever the access rate is larger than 0.1.

4.2 Multiple bottlenecks

We now consider the case where the throughput of some
flows is limited by multiple bottlenecks. We are primarily
interested in the (worst) case where these bottlenecks have
similar capacity and offered load. This might be seen as
one extreme situation, the other extreme being when bot-
tlenecks have widely differing characteristics. In the latter
case one would expect the performance to be driven solely
by the bottleneck which imposes the tightest capacity con-
straint, and if so the results of the previous section can be
applied by ignoring the less stringent bottlenecks. We limit
the analysis to a-bandwidth sharing, and evaluate the im-
pact of the parameter a on performance.

Consider the grid network introduced in Section 2 with unit
link capacities. Let pi be the traffic load on horizontal route
k, 1 < k < K, and g; the traffic load on vertical route I,
1 <1 < L. Assume that the arrival process of flows at
each route is Poisson, and the size of the document to be
transferred is exponentially distributed.



From Theorem 1, the number of active flows on each route
(z,y) = (zr, )k, is an ergodic Markov process, provided
pr + o < 1for all k1. It turns out that when bandwidth
sharing is proportional fairness; the equilibrium distribution
of (z,y) can be evaluated explicitely. The following result
generalizes the analysis of the linear network done in [15].

THEOREM 2. For o =1, the Markov process (x,y) is re-
versible with equilibrium, distribution

K L K [
w(z,y) = c! ( 21w +Zl b ) Hpik Hg?l’

K
Zl Lk k=1 =1

where C' denotes the normalization constant.

Proof. Let vi be the arrival rate of flows on horizontal route
k, 1/us their average document size. From §2.4, the transi-
tions rates of the Markov process (z,y) are given by:

($,y) — ($ + ekay) at rate Vi,
Z§:1 Tk

(z,y) = (x —er,y) at rate pg X TS S T

where ej, denotes the kth unit vector of R¥ . The distribution
w defined above satisfies for any z > ej:

< fol Tk
22:1 Tk + Z{:] Y

This implies that (z,y) is reversible, and that 7 is the equi-
librium distribution of (z, y), satisfying the usual global bal-
ance equations [10]. O

v (@ — ex,y) = e w(z,y).

A property worth mentioning is that due to the reversibil-
ity of the process (x,y), the equilibrium distribution of the
number of flows on each route is insensitive to the docu-
ment size distribution, as in the case of a single bottleneck.
An explicit expression of the normalization constant C as a
function of p1,...,pKk,01,...,0r is given in the Appendix.
The following result can then be used to evaluate the aver-
age number of flows in progress on each route, thus the flow
throughput on each route in view of (8).

COROLLARY 2 (GENERATING FUNCTION). The generat-
ing function v defined by:

K L
(u,v) = ZTI’(.’IJ, y) H ug® H ot

T,y k=1 =1
is related to the normalization constant C by the ezpression:

Clpu,. ..

sPKUK, 0101, ..., QLUL)
U(u,v) = :
C(pla"'apKuglu"'agL)
Proof. The proof follows directly from the expression of the
equilibrium distribution . a

We now give explicit expressions of the flow throughput on
each route for the simple network topologies introduced in
§2.4. These expressions are obtained from Corollary 2 and
calculation of the corresponding normalization constants,
based on the formulas in the Appendix; these derivations
are not reported here due to lack of space.

Example I (Linear network).
The linear network is a particular example of a grid network.
The flow throughput on each route is given by:

y=1—po—pm, foralll=1... L,

and

_ 1= po

= 1+ZL, - .
1=1 T=pg—p;

1—po—pi

o

Note that the flow throughput on short routes is that one
would obtain if the corresponding link were in isolation, that
is if the long route crossed this link only (refer to §4.1). For
the long route, the flow throughput decreases as the inverse
of the number of links crossed. Figure 8 illustrates this result
when the traffic intensity is the same on each route. Note
that in the presence of an access rate, the flow throughput
becomes largely independent of the number of links crossed.
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Figure 8: Flow throughput on the long route against
offered load for the linear network with . = 1,35
links (from top to bottom)

An analytical evaluation of the impact of the allocation pa-
rameter @ on flow throughput appears very difficult since
models are not tractable whenever c # 1. However, the sim-
ulations we present next suggest that performance is roughly
insensitive to a, as long as « is not too close to the critical
value o = 0. Figures 9 and 10 compare the analytical results
obtained with proportional fairness to simulation results ob-
tained with the maximum throughput criterion and with
max-min fairness, respectively, for a linear network with
I, = 3 links and the same traffic intensity offered to each
route. While performance is significantly worse with the
maximum throughput criterion, the results obtained with
proportional fairness and with max-min fairness are practi-
cally equivalent.

Example 2 (Cyclic network).
The cyclic network with L. = 4 links considered in §2.4 is
also a particular case of a grid network. We have:

_ ( 1 n 1
EAR PP A ——
(1 — p2)(1 — p3)(1 — pa) + p2pspa )71.
(1—p1)( —p2)(1 — p3)(1 — pa) — prp2pspa
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Figure 9: Flow throughput on the long route against
offered load for the linear network with proportional
fairness (top) and the maximum throughput crite-
rion (bottom)
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Figure 10: Flow throughput on the long route
against offered load for the linear network with max-
min fairness (top) and proportional fairness (bot-
tom)

It can be easily verified that v, is an increasing function of
p3. In particular, v is minimum when p3 is equal to zero.
We conclude that for each route of the cyclic network, the
flow throughput is better than that one would obtain if the
links on this route were in isolation, which corresponds to
the linear network considered above. As for the linear net-
work, we have verified by simulation that the flow through-
put is largely independent of «, provided « is not too close
to zero.

Example 3 (Grid network).

Finally, we consider the grid network with the same load p
(resp. @) on each horizontal (resp. vertical) route. Then, in
heavy traffic, that is when p = 1 — g, the flow throughput
on each horizontal route k is given by:

~(1—p— S
= (1-—p Q)XK—i—L—l

When K grows from 1 to infinity, the flow throughput on
each horizontal route grows from the flow throughput on the
long route in a linear network of L links to that obtained
with a single link in isolation. As for the cyclic network con-
sidered above, the linear network constitutes a worst case.
Again, this suggests that for realistic values of the access
rate, the flow throughput is largely independent, of the num-
ber of links crossed (refer to Figure 8) and of the sharing
parameter « as long as « is greater than the critical value
a = 0 (refer to Figures 9-10).

5. CONCLUSION

In this paper we have discussed the relevance of fairness as
a bandwidth sharing objective. We have stressed the im-
portance in this context of taking into account the dynamic
nature of Internet traffic. To evaluate the expected flow
throughput we have proposed fluid models where the impact
of packet level dynamics is taken into account in an idealized
way via the assumed bandwidth sharing objective. Flows ar-
rive according to an assumed stochastic arrival process and
persist for as long as it takes to transfer a randomly sized
document. This modeling approach allows a clearer formal-
ization of different notions of fairness and provides insight
into their impact on realized performance.

Analytical results establish that a broad class of fair band-
width allocations, including that achieved by the conges-
tion avoidance algorithm of TCP, guarantees full utilization
of network resources in the sense that the total number of
competing flows in the network remains finite as long as de-
mand is less than capacity on every link. This is in contrast
to a number of examples we cite where deliberately biased
sharing, favoring one traffic class over another, leads to in-
stability at loads considerably less than one. This is a some-
what counter intuitive result which suggests current propos-
als for service differentiation should be critically examined
with respect to their performance in realistic dynamic traffic
conditions.

We have introduced a number of network architectures where
it is possible to derive exact performance results under stable
traffic conditions when the sharing objective is proportional
fairness. Comparison with simulation results with max-min
fairness suggests that performance is not highly dependent
on the realized allocation, provided this is reasonably fair.
This observation is particulary true when considering shar-
ing in a backbone network where all flows have a relatively
small upper limit on throughput, due to a modem or the
maximum size of the TCP window, for example. In this
case, the network is virtually transparent with respect to
realized throughput performance as long as link loads are
not too close to or greater than one.

While many of the analytical results derived in this paper are
necessarily for toy network configurations, they considerably
advance our understanding of the importance of fairness as
a design objective of congestion control mechanisms in the
Internet. They clearly demonstrate how throughput perfor-
mance is extremely robust as long as bandwidth sharing is
reasonably fair. They explain why “best effort” continues
to provide excellent service in any adequately provisioned
network.



6. APPENDIX

In this Appendix, we evaluate the normalization constant of
the equilibrium distribution 7 given in Theorem 2.

We first consider the particular case where pi # pg for all
k# k' and g, # oy for all [ #1'. We then have:

n+K—]

Z . an' k(ﬂk_Pk’).

z1+...tTg=n

and
Z Z ’m+L 1
y1+..+yL=m Hl'ﬂ(@’ - o)
Thus,
K L ntK—1 m+L—1

_ n+m P 9
©= Z ( ) ;; Hk’;ﬁk(pk_pk’) Hz!;&l(gl —or)

n>0,m>0
Using the negative binomial formula
n+m n __ o y—m-—1
Z ( n > 2" =(1-2) ,
n>0

we obtain

K-1 L—-1

P IPIOI; o gi

m>0 k=1 =1
< ralf)
1—px \1—pi

K-1,L—1
1

Pr &
C= X
Z Z Hk:;&k(Pk - pk’) Hl:;él(gl - Qi’)

k=11=1

We conclude that

l—pr—or

In the general case with K < K different values of Pk L<L
different values of g;, denote by 4x + 1 the number of routes
with traffic load px, i + 1 the number of routes with traffic
load g;. Noting that

1 T 77+m71 k3
Yoot = " P

z1+..Fzm=n
we have in this case:

c= Y 3 (nyﬂﬁkﬁTZf#z)
PO

T1,T g Yl Y g

K L .
Tr + ik 1+ 0

H( )pikn(yw])ggﬂ'

k=1 =1 o
Let C denote the normalization constant of the grid network
with K x L links and different traffic loads on each hori-
zontal (resp. vertical) route for which we have an explicit
expression. In view of previous equality, the normalization
constant C' is given by:

ail 87 8“ . .a.?',j
8p1 . .8/)&6@1 . .6gi

C =

7', 7,}2 .
p Proal QL x C(p1
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