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Impact of finger biophysical 
properties on touch gestures and 
tactile perception: Aging and 
gender effects
A. Abdouni  , R. Vargiolu & H. Zahouani

The human finger plays an extremely important role in tactile perception, but little is known about the 
role of its biophysical properties (mechanical properties, contact properties and surface topography) in 
tactile perception. In addition, the touch gestures used to perceive an object’s properties differ among 
people. We combined studies on the biophysical properties and the vibrations measured from the 
human finger to understand the age and gender effects on the tactile perception and the difference 
between the touch gestures. In addition, a new algorithm, Mel-frequency cepstral coefficients (MFCCs), 
was used to analyze the vibratory signal obtained from the physical contact of the finger, and a surface 
is proposed and validated. The values obtained regarding the correlation between the tribohaptic 
system results and the biophysical properties show that the Young’s modulus and the surface 
topography are the most important. An inverse correlation was observed between the MFCC and the 
tactile perception. This last observation explained the results of better tactile perception with left to 
right touch gestures. It also demonstrated a better tactile perception for women.

People can perceive the properties, contact, shape, hardness and roughness of an object within a few seconds of 
physical contact. �ey use their experience of objects and knowledge of similar aspects to describe what they 
perceive. �e nature of how people explore and come into contact with objects is essential to their perceptions of 
the object. To determine di�erent object properties, people use speci�c gestures called ‘exploratory procedures’1. 
To perceive texture, hardness, temperature, weight, global shape, volume and exact shape, people typically choose 
what they think is the most e�ective exploratory procedure. For example, to perceive the roughness of an object’s 
surface, people spontaneously rub the object. Di�erent directions can be chosen to rub the object, such as lateral, 
longitudinal, and circular directions. In this study, we focused on the surface perception of objects and the ges-
tures used by the participants as a function of age and gender.

Human touch involves physical contact between the �ngers and objects, so it is dependent on tactile skin 
and its biophysical properties. When a �nger slides across an object, vibrations are generated that propagate 
through the skin, thus activating mechanoreceptors embedded at various depths2–6. Four types of mechanore-
ceptors, Meissner’s corpuscles (RA), Pacinian corpuscles (PC), Merkel’s disks (SA I) and Ru�ni’s corpuscles (SA 
II)7,8, are responsible for touch sensation, pressure, vibrations and cutaneous tension that result from mechanical 
deformations due to contact between the �nger and the object touched. �is deformation is converted into dif-
ferent speci�c electrical signals9,10. Surface texture is composed of three main parameters: roughness, compliance 
and viscoelasticity11,12. When a �nger moves over the surface of an object, it perceives surface texture properties 
through vibrations generated in the skin13–16. It has been observed that Ru�ni’s corpuscles are very sensitive to 
stretching17, whereas Merkel’s disks detect small pressure18. �e roughness and vibration sensing relation has been 
investigated19, and Pacinian corpuscles and Meissner’s corpuscles are presumed to detect high and low frequency 
vibrations, respectively. However, Ru�ni’s corpuscles and Merkel’s disks could not be excluded from roughness 
measurements17. In the literature, certain studies have addressed the weakening of human touch with age and 
di�erences due to gender. As we get older, our sense of touch diminishes for many reasons. First, a reduction 
in central nervous system activation has been investigated20,21. Second, a signi�cant decrease in the density of 
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Meissner’s corpuscles has been illustrated22,23. �ird, the vibrotactile detection threshold (VDT), which is the 
minimum detectable level of vibration, increases as a function of age24.

Many techniques have been proposed to study the e�ect of surface texture on tactile perception. In the litera-
ture, many researchers have addressed the dynamic friction coe�cient, µ, by measuring the normal and tangen-
tial forces between a �nger and an object25–28. Other studies have used very sensitive sensors to investigate the 
vibration signals generated from a �nger during the touch process27,29. �e vibratory level, La, and the dynamic 
friction coe�cient, µ, are the parameters most commonly used to study surface texture by analyzing the vibratory 
signals and force signals, respectively.

In our previous study, we investigated aging and gender in�uences on the biophysical properties of the human 
�nger30. �e results obtained showed signi�cant di�erences in �nger mechanical properties, contact properties 
and surface topography. In addition, the results demonstrated a clear anisotropy of mechanical properties. In this 
study, we used a haptic tribometer system to address the role of the anisotropy of �nger mechanical properties on 
tactile perception. In addition, the e�ects of age and gender on tactile perception are studied using the biophysi-
cal properties of the human �nger. Finally, a new algorithm for analyzing the vibratory signal obtained from the 
contact between a �nger and a surface is proposed and validated.

Materials and Methods
A panel of forty French volunteers (20 women and 20 men) participated in the experiments. All the subjects were 
white-collar workers, and all the measurements were performed in vivo and were noninvasive. For e�cient analy-
sis, we used the same dataset of participants as a previous study30, which means that we already had the biophysics 
properties of their �ngers. �e database was divided into four age groups (26 ± 3, 35 ± 3, 45 ± 2, and 58 ± 6 years 
old) of �ve persons each. All volunteers were trained to control the normal force applied and the speed at which 
they slid their �nger on a surface. �ey were adequately informed of the aims, methods used and potential risks 
of the study, and they gave their written informed consent to the protocol.

A haptic tribometer system developed, patented and published previously by our team was used to character-
ize the vibrations transmitted by the �nger during a tactile perception test29,31–33. In this study, two accelerometers 
were glued each time to the volunteer’s �nger, and the range of vibrational frequencies was highly consistent 
with the mechanoreceptor frequency band (1–500 Hz) (see Fig. 1). To avoid causing minimal disturbance of 
the measurements, the accelerometer is preferably bonded to the friction �nger, including for example, using a 
cyanoacrylate glue. �is glue has the advantage of little or no mitigating or disturbing e�ects on the measurement 
of vibrations and is harmless to human skin. �e accelerometer used to sense the vibratory signal at the �nger 
pad was attached to a side of the �nger opposite to the direction of movement of the �nger on the surface. Such 
a position of the accelerometer has the advantage of capturing the tangential vibrations of the whole volume at 
the outlet of the pulp during the translation thereof. �e proposed system ensured physical contact between the 
human �nger and two accelerometers during the friction test. �e accelerometers had the following characteris-
tics: a mass of 0.14 g, diameter of 3.58 mm, gain sensor of 1 V/m/s² and vibration sensor sensitivity of 0.5 pC/m/
s2. Each accelerometer had a single axis and was parallel to the contact plane during the test. Two accelerometers 
were used to perform lateral and longitudinal axis measurements. For each touch gesture, only one accelerometer 

Figure 1. Touch gesture with haptic device. �e accelerometer detecting the vibrations was glued each time to 
the volunteer’s �nger. �e accelerometer had a single axis, and it was parallel to the contact plane during the test. 
Normal and tangential forces were measured by two stress gauge sensors placed just below the support of the 
surface to be tested. (A) Le� to right touch gesture (the red accelerometer). (B) Top to bottom touch gesture (the 
green accelerometer). (1) Accelerometer for top to bottom touch gesture and (2) accelerometer for le� to right 
touch gesture.
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was activated (see Fig. 1). �is equipment included two stress gauge sensors that allowed simultaneous measure-
ments of the normal and the tangential forces. �e maximum e�ort was 0.8 N with a resolution of 1 mN.

In the literature, the friction coe�cient, power spectral density (PSD) and average vibratory level (La(dB)) 
are the quantitative parameters most o�en used29,32–35. PSD is a parameter related to the spatial resolution of the 
human �nger, which is identi�ed as the characteristic wavelength corresponding to the maximum power spectral 
density. For a constant normal force, the vibratory level, La, allowed us to compare the vibration received by the 
�nger as a function of the nature of the surface touched. �e average friction coe�cient µ obtained from 10 cycles 
was calculated using the ratio between the friction force, Fx, and the normal force, FN, as follows:

µ = .
F

F
x

N

In addition, in order to provide a quantitative value to the vibrations, the average acoustic vibratory level was 
de�ned as follows:
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where La is the acoustic vibratory level, ARMS is the root mean square value of the acceleration in m/s², and Aref 
is the smallest acceleration that can be detected by the sensor, which is 10−6 m/s².

La and µ were calculated in this study. �e PSD results were very similar to those for La. Consequently, we 
decided to keep only La to analyze the vibratory signal. In addition, a new algorithm was proposed that uses 
Mel-frequency cepstral coe�cients (MFCCs) to analyze the vibratory signal. �e MFCC algorithm is the most 
commonly used feature extraction method in automatic speech recognition36. In addition, MFCCs have been 
used in other domains, such as palm print, music modeling and music instrument identi�cation37–40. When using 
MFCCs in speech analysis, it has been determined that 8–14 coe�cients are su�cient, and very o�en, 12 are 
chosen41. In the method proposed here, we tried to determine how many of these coe�cients were necessary 
and useful for surface characterization. �e accelerometer signal obtained during the touch process was a vibra-
tory signal that resembles a sound signal. �e MFCCs analyzed the vibratory signal according to the following 
steps42–44 (see Fig. 2A).

A vibratory signal changes constantly, so for the sake of simpli�cation, this signal was assumed to be statis-
tically stationary over short time scales, which is why we framed the signal into 20–40 ms frames. �e frame 

Figure 2. Mel Frequency Cepstral Coe�cients (MFCCs) algorithm. (A) Block diagram of the MFCC 
algorithm. Four phases can be identi�ed. 1- Read the vibratory signal sample. 2- Split the audio signal into 
distinct “frames”. 3-Compute the Mel-spaced �lterbank; this is a triangular �lter (illustration in Figure B) 
that we apply to the periodogram power spectral estimate from step 2. 4-Take the Discrete Cosine Transform 
(DCT) of the log �lter bank energies to give cepstral coe�cients (illustration in Figure C). (B) A Mel-�lterbank 
adapted to correspond to the mechanoreceptors frequencies. (C) Cepstral coe�cients of a vibratory signal. �e 
highlighted coe�cient is the sum of how much energy exists in the range of (0 to 500 Hz) and is indicated in the 
so�ness coe�cient.
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duration was chosen to provide enough samples to obtain a reliable spectral estimation. �e power spectrum of 
each frame was calculated using a periodogram. �e latter played the role of the human cochlea (an organ in the 
ear), which vibrates at di�erent points depending on the frequency of incoming sounds. �e presence of di�erent 
frequencies was identi�ed by the location in the cochlea that vibrated. �e cochlea has one limitation: it cannot 
discern the di�erence between two closely spaced frequencies. �is e�ect becomes more pronounced as fre-
quency increases. �erefore, the sum of all clumps of periodogram bins was taken. �is sum indicated how much 
energy existed in various frequency regions. �is summation in various frequency regions was performed by 
the Mel �lterbank (see Fig. 2B). �e �rst �lter was very narrow and provided an indication of how much energy 
existed at low frequencies (0–500 Hz). As frequencies became higher, our �lters widened since we became less 
concerned with variations. Once we obtained the �lterbank energies, we derived their logarithm, which allowed 
us to use cepstral mean subtraction, a channel normalization technique (incorporating this scale made our fea-
tures match more closely with human hearing), which uses the following equation:

M f f( ) 1125 ln(1 /700)= + .

�e �nal step was to compute the discrete cosine transform (DCT) of the log �lterbank energies. �is step 
was performed because the �lterbanks all overlapped, and the �lterbank energies were notably correlated with 
each other. �e DCT decorrelates the energies so that diagonal covariance matrices can be used to model the 
features. In this study, we focused on approximately how much energy occurred in small frequencies and at 
each point. �e �rst coe�cient is kept in this study, which is di�erent than what is recommended in speech 
recognition (8–14 coe�cients are su�cient)43 (see Fig. 2C). Finally, the �rst coe�cient, the sum of all energies 
at low frequencies (0 to 500 Hz), showed the best correlation with the so�ness results, such as La. �is range of 
frequencies corresponded to the �ring band of all mechanoreceptors, which means that the information obtained 
with MFCCs could be correlated to all types of stimuli. In this study, all the results presented with MFCCs used 
the �rst coe�cient.

MatLab so�ware was used for statistical data analysis. Analysis of variance (ANOVA) is a statistical model 
used to analyze the di�erences between and among groups and to determine whether the di�erences between the 
means are statistically signi�cant. �e data are considered statistically signi�cant if p is less than the signi�cance 
level de�ned (0.05 in our case). In our study, we used ANOVA to determine whether we had statistically signi�-
cant di�erences as a function of age and gender, and signi�cant di�erences are denoted with a ‘*’.

In statistics, the Pearson correlation coe�cient (r) is a measure of the linear dependence (correlation) between 
variables. �e Pearson correlation coe�cient is used to determine the strength of a relationship between varia-
bles. �e correlation is considered strong for an r value higher than 0.8. In this study, we used the r coe�cient to 
determine whether we had a statistically linear correlation between age groups45. A correlation coe�cient higher 
than 0.8 indicates a strong positive correlation (+), whereas a correlation lower than −0.8 is considered a strong 
negative correlation (−). ‘0’ indicates no linear correlation between the data (−0.8 < r < 0.8).

Results and Discussion
Validation of MFCC algorithm (handfeel panel/human finger). Tissues and plastic samples were 
used to validate the MFCC algorithm. For both samples, we compared the results obtained with MFCCs and 
La with handfeel. �en, we used statistical analysis to evaluate and compare the performance of each algorithm.

Tissue samples. For validation of the MFCC algorithm, we used the handfeel sensory panel (trained panel) and 
acoustic level results from a previous study by our team (see Fig. 3)33. �e new part in this article is that we used 
the MFCC algorithm to analyze the data collected previously (see Fig. 3A), and we compared these results to 
those obtained in the previous article with the vibratory level (see Fig. 3B).

In the previous study33, the handfeel panel volunteers were asked to rank the ten tissue samples as a function of 
their so�ness. To evaluate the so�ness of the bathroom tissues, the panel volunteers had to assign a score for the 
ten tissues samples. To rank the ten tissue samples, the handfeel panel had at their disposal four reference fabric 
samples. Each reference sample corresponded to a score: 0, 1, 2, or 2.5, where 0 corresponded to the least so� 
tissue and 2.5 corresponded to the so�est tissue33.

�e evolution of the acoustic vibratory levels of the ten paper samples as a function of their so�ness evaluated 
by the handfeel panel is reported in Fig. 3B. �e results indicate that so�ness was highly negatively correlated with 
the acoustic vibratory level with a con�dence level of 95% (R = −0.96, p < 0.05). For a so�ness feeling estimated by 
the handfeel panel from 0 to 2.6, the acoustic vibratory level values measured decreased from 113.2 dB to 109.2 dB. 
�e results are in good agreement with those of Zahouani et al., who showed that the sound level of the skin during 
friction was a good criterion for assessing skin so�ness46. Figure 3C shows the new results obtained with MFCCs, 
which are perfectly negatively correlated with the handfeel panel with a con�dence level of 95% (R ≈ −1, p < 0.05). 
�e MFCCs decreased from 134 to 125. �ese results showed the high performance of MFCCs in describing so�ness 
as it presented better correlation and a larger di�erence between the minimum and the maximum values of MFCC. 
�is last result means that MFCC o�ers better classi�cation than the vibratory level. Indeed, we can conclude that 
the so�est sample corresponds to the minimum vibratory parameter (MFCCs and La).

Plastic samples. We also validated the MFCC algorithm on plastic samples. All volunteers (described previously 
in section 2) were monitored under the same experimental procedure for approximately 40 min. �is procedure 
was organized chronologically as follows. First, the subject had to stay undisturbed for 15 min in a room at a 
temperature of 23 ± 1 °C with 55% relative humidity (RH) before cleaning his/her right fore�nger with a piece of 
tissue. �en, the touch experiments were conducted in the same room. �e experimental conditions used with the 
human �nger are summarized as follows: 10 uniform forward translations in the lateral direction and then in the 
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longitudinal direction, normal force: 0.3–0.4 N, sliding speed: 20–30 mm.s−1, and friction length: 20 mm. �ese 
conditions are frequently observed in the literature and correspond to classical human handling conditions47,48. 
�ese healthy volunteers were asked to evaluate the tactile properties of the tissues based on a so�ness descriptive 
criterion. In this study, we focused on the so�ness feeling of plastic surfaces. So�ness is one of the most impor-
tant parameters for judging sensory quality. �e so�ness was de�ned on �ve levels of a haptic scale according 
to so�ness. �ese levels were quanti�ed by scores 1, 2, 3, 4 and 5 in order of so�est to least so�. �e �ve plastic 
surfaces had the same sti�ness but di�erent textures with di�erent tactile properties (see Fig. 4). �e plastics were 
made by Digitex technology from Eschmann Textures. �e support material was Polyvinyl chloride (PVC), and 
the printed material was UV light ink. �e digital printer was the Mímaki brand with a resolution of 1,200 bpi. 
�e samples were placed in random order. �e tests were performed with eyes blindfolded. �e panel graded the 
samples in two de�ned directions (le� to right (LR) and top to bottom (TB)) as a function of their so�ness. �e 
results are presented in Table 1. Plastic surfaces were used due to the possibility of having a very large variety of 
characteristics (hardness, topography, and surface energy). In addition, plastics are usually used to coat di�erent 
products, which is why the most commonly touched surfaces in daily life are made of plastics, and comprehension 
of the evaluation of plastic quality is a pronounced task.

For a softness feeling estimated by the handfeel panel from 1 to 5 (from the softest to the least soft, see 
Materials and Methods section), the measured acoustic vibratory level values increased from 106 dB to 124 dB, 
and the measured MFCCs values increased from 122 to 148. �e results are in agreement with the previous 
section, where the so�est sample corresponded to the minimum vibratory parameter. As in part (a), a higher 
correlation between MFCCs and the so�ness feeling was obtained compared to the correlation between La and 
the so�ness panel scores, as shown in Table 1.

�e acoustic level La is known as a parameter capable of describing the so�ness of a surface by analyzing the 
vibratory signal obtained for a human �nger. �e MFCC algorithm is proposed to address the same problem as 
La. �e statistical analysis showed the performance of La and MFCCs as a function of the handfeel panel. �e 
results given in Table 1 and Fig. 3 show perfect correlations between MFCCs and the panel results (|r| > 0.8, 
p < 0.05) for tissue and plastic samples. �ese �ndings con�rm the high performance of the MFCC algorithm 
compared to La in obtaining representative values of so�ness from vibratory signals. �erefore, for the rest of this 
study, we kept MFCCs and µ but gave priority to MFCCs due to their better performance.

Vibratory parameters vs touch gestures (LR and TB) and the biophysical properties of the human  
finger: Age and gender effects. Pronounced di�erences in the human �nger’s biophysical properties 
between men and women were encountered in the previous study30. All the results in this paragraph have been 

Figure 3. Comparison between the results obtained from the handfeel panel and those measured with the 
arti�cial �nger: (A) �e results of the handfeel panel relating to the surface so�ness and texture of ten bathroom 
tissues. For the surface texture, F stands for a �u�y tissue and S for a smooth one. As the volunteers had only 
two choices, they all agreed on the velvetiness (�u�ness) or the smoothness of each sample surface. �e values 
of the so�ness estimated for each tissue sample corresponded to the mean ± standard deviation values obtained 
for each volunteer. (B) Acoustic vibratory level as a function of so�ness. (C) MFCCs as a function of so�ness. 
Figures (A) and (B) are taken from another study33. �e results in Figure (C) are calculated based on the data of 
Figure (B). Figure (C) shows new results with MFCC. ANOVA and Pearson’s statistical analyses: (+for r > 0.8, - 
for r < −0.8) highly correlated, (0) for no correlation, *p < 0.05 for statistically signi�cant. �e statistics analysis 
shows better results for MFCC (r ≈ −1, p < 0.05) than the Vibratory level (r = −0.96, p < 0.05).
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obtained in our previous article30. �e mechanical properties (elastic modulus), contact properties (adhesive 
force) and arithmetic mean of the surface topography (multiscale arithmetic mean of roughness amplitude 
(SMa)) measured in 40 volunteers were investigated. All results showed signi�cant di�erences between men and 
women and as a function of age. Regarding the results of contact characteristics (i.e., adhesive force), the values 
obtained were signi�cantly higher for women than for men. For the mechanical properties (i.e., Young’s modulus 
E), a signi�cant and positive correlation with age was observed and found to be higher for women than men. In 
addition, the evolution of Young’s modulus with age was anisotropic as a function of the direction measured (see 
Fig. 5). �e results demonstrate a higher Young’s modulus for the exterior part of the �nger skin. For topography 
analysis, a di�erent age e�ect was presented in the comparison between men and women. In this study, the gender 
e�ect on tactile perception was investigated on the basis of the di�erences in these biophysical properties.

Figure 4. Confocal scans of �ve plastic sample topographies. �e �ve plastic surfaces had the same sti�ness but 
di�erent textures with di�erent tactile properties. �e support material was PVC, and the printed material was 
UV light ink. �e digital printer was the Mímaki brand with a resolution of 1,200 bpi.
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To explain the results obtained, we reviewed the literature. Concerning the vibratory parameters (MFCCs and 
La) and Young’s modulus relationship, a positive correlation was demonstrated between La and Young’s modulus. 
In 2010, Ben-abdelounis49 demonstrated that the acoustic level is directly proportional to Young’s modulus.

In 1973, Takahashi50 showed that the relation between sound pressure, Lp(dB), and surface roughness, Ra, is a 
linear and increasing function according to a logarithmic law of the form: ≈Lp Ra20 log n

10
 for a cylinder/plane 

contact. �is result shows that sound pressure is directly proportional to surface roughness, i.e., La Ra∝ .

Touch gesture Gender Age groups

Sample so�ness (the mean ± SD) Statistics (r, p)

A B C D E

La MFCCs

r p r p

Top to bottom touch

Men

G1 1.6 ± 0.3 1.3 ± 0.3 2.9 ± 0.3 4.1 ± 0.2 5.0 ± 0.0 0 * + *

G2 2.1 ± 0.5 1.2 ± 0.2 2.4 ± 0.2 3.8 ± 0.3 5.0 ± 0.0 + * + *

G3 2.2 ± 0.3 1.5 ± 0.3 3.1 ± 0.4 3.9 ± 0.3 5.0 ± 0.0 0 * + *

G4 1.2 ± 0.2 2.2 ± 0.3 4.2 ± 0.3 4.1 ± 0.2 5.0 ± 0.0 0 * + *

Women

G1 1.6 ± 0.3 1.3 ± 0.3 3.6 ± 0.6 2.3 ± 0.3 5.0 ± 0.0 + * + *

G2 1.2 ± 0.2 2.5 ± 0.3 4.2 ± 0.3 3.1 ± 0.1 5.0 ± 0.0 + * + *

G3 1.8 ± 0.3 1.3 ± 0.3 3.5 ± 0.1 3.2 ± 0.2 5.0 ± 0.0 0 * + *

G4 1.4 ± 0.3 2.1 ± 0.3 3.2 ± 0.2 4.1 ± 0.3 5.0 ± 0.0 0 * + *

Le� to right touch

Men

G1 1.1 ± 0.1 2.0 ± 0.5 3.8 ± 0.3 3.1 ± 0.1 5.0 ± 0.0 + * + *

G2 1.2 ± 0.2 2.2 ± 0.2 3.9 ± 0.3 3.2 ± 0.2 5.0 ± 0.0 + * + *

G3 1.3 ± 0.3 2.1 ± 0.1 4.1 ± 0.3 3.0 ± 0.3 5.0 ± 0.0 0 * + *

G4 1.2 ± 0.2 1.8 ± 0.3 3.9 ± 0.3 2.9 ± 0.2 5.0 ± 0.0 0 * + *

Women

G1 1.0 ± 0.0 2.2 ± 0.3 4.2 ± 0.3 3.1 ± 0.4 5.0 ± 0.0 + * + *

G2 1.2 ± 0.2 2.3 ± 0.3 3.6 ± 0.6 2.9 ± 0.3 5.0 ± 0.0 0 * + *

G3 1.3 ± 0.3 2.2 ± 0.2 3.5 ± 0.1 2.8 ± 0.2 5.0 ± 0.0 + * + *

G4 1.2 ± 0.2 1.9 ± 0.2 4.1 ± 0.2 3.2 ± 0.2 5.0 ± 0.0 0 * + *

Table 1. Results of the panel related to surface so�ness classi�cation of di�erent plastic surfaces for two 
di�erent touch gestures. �e samples’ so�ness scores were quanti�ed by 1, 2, 3, 4 and 5 in order of so�est to 
least so�. �ose scores correspond to the mean value for each age group ± the standard deviation. ANOVA and 
Pearson’s statistical analyses: (+for r > 0.8, – for r < −0.8) highly correlated, (0) for no correlation, *p < 0.05 
for statistically signi�cant. �e four age groups (G1, G2, G3, and G4) correspond to (26 ± 3, 35 ± 3, 45 ± 2, and 
58 ± 6 years old), respectively.

Figure 5. Illustration of the anisotropy of the �nger’s mechanical properties for both men and women of the 
youngest and the older groups30. �e two age groups (G1, G4) correspond to (26 ± 3 and 58 ± 6 years old), 
respectively, for men and women (this illustration is taken from our previous study30). �e evolution of Young’s 
modulus with age is anisotropic as a function of the direction measured. �e results demonstrate a higher E for 
the exterior part of the �nger skin (0°, 270°). �e exterior part of the �nger is more exposed to the environment 
and to repeated friction in daily life (i.e., writing); therefore, increasing anisotropy of mechanical properties 
with age can be observed30.
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�e results are described in the following sections, which successively address the e�ect of biophysical prop-
erties (contact properties, mechanical properties and topographic characterization) on the tactile perception for 
each touch gesture as a function of age and gender. In this part, one plastic surface is used (sample D in Fig. 4).

Le� to right touch gesture vs biophysical properties: Age and gender e�ects. As the previous results show clear 
anisotropy of the mechanical properties of the human �nger30, we have quanti�ed a representative Young’s mod-
ulus for each touch gesture. For the le� to right touch gesture, the representative Young’s modulus, ELR, (in the 
directions 90° and 270°, see Fig. 1A), E E E( )/2LR 270 90=

°
+

°
30. In Fig. 6A, MFCCs are signi�cantly and positively 

correlated to Young’s modulus (ELR) with age independently of the gender e�ect. �e Pearson correlation coe�-
cient shows values higher than 0.8, thus providing evidence of a linear correlation (MFCCs ∝ E). �e results 
obtained on sample D are consistent with previous �ndings.

�e Young’s modulus of the human �nger and the roughness of its surface topography are predominant 
parameters of the vibratory signal obtained. �e Young’s modulus of the �nger, E, is signi�cantly and positively 
correlated to age for men and women30. However, the maximum amplitude SMa decreased for women and 
increased for men with age30. �e positive correlation between MFCCs with the �nger’s mechanical and top-
ographic properties for men can be explained by the fact that they increase with age. �e results obtained for 
women indicated that the e�ect of Young’s modulus of the �nger is higher than the surface topography on the 
vibratory signal obtained in the le� to right touch gesture. �is phenomenon can be explained by the large incre-
ment between the �nger’s mechanical properties of the youngest and oldest age groups30 (≈60 kPa) (see Fig. 5). 
In this touch gesture, the Young’s modulus of the �nger was identi�ed as the most important biophysical property 
for women. �e results obtained were consistent with the previous �ndings49. Indeed, no correlation could be 
found between the MFCCs and adhesion force (R < 0.8) (see Fig. 6A).

According to the results obtained on sample D in the le� to right touch gesture, we conclude that Young’s 
modulus is the most important biophysical property for the vibratory signal obtained. �us, Young’s modulus 
should be taken into consideration to understand age and gender e�ects in order to mimic the human �nger.

Top to bottom touch gesture vs biophysical properties: Age and gender e�ects. For the top to bottom touch gesture, the 
representative Young’s modulus, EUD, (in 0° direction, see Fig. 1B) is =

°
E ETB 0

30. In Fig. 6B, MFCCs are signi�cantly 
and negatively correlated with the �nger’s Young’s modulus (ETB) with age in women. In addition, a positive correlation 
between MFCCs and the �nger’s topographical properties can be seen in Fig. 6B. �is phenomenon can be explained 
by the small di�erence between the mechanical properties of the youngest and oldest age groups30 (≈20 kPa) (see 
Fig. 5). In conclusion, �ngerprint roughness was identi�ed as the most important biophysical property for the top to 
bottom touch gesture for women. �e positive correlation between MFCCs with mechanical and topographical prop-
erties for men can be explained by the increase in both of these biophysical properties of the �nger with age. Indeed, no 
correlation could be found between the MFCCs and adhesion force (R < 0.8) (see Fig. 6B).

In conclusion, the interpretation of the results obtained on sample D is simple for men as Young’s modulus and 
SMa increase with age30, and they positively correlate well with the vibratory parameter (MFCCs). For women, 
Young’s modulus is positively correlated with age, and the SMa is inversely correlated with age30. �erefore, the 
evolution of vibratory parameters as a function of age allowed us to identify the biophysical property with the 
greatest in�uence in each touch gesture.

We studied the correlation between the friction coe�cient and the three biophysical parameters, and we did 
not detect any correlation. �is remark is in accordance to the literature, where there exists only a correlation 
between the friction coe�cient and the adhesion force as we reported in the article. In the literature, the friction 
coe�cient is correlated to the adhesive force in the case of friction between two materials. �is correlation can be 
represented with the equation

µ µ
F

F
1 ,ad

N
0=




+







where µ0 is the static coe�cient of friction, Fad is the adhesive force and FN is the applied force51–53. �us, we 
presented the correlation between the friction coe�cient and adhesive force for both men and women and for 
di�erent touch gestures (see Fig. 7). No correlation could be found between the friction coe�cient and adhesion 
force (R < 0.8). �e friction coe�cient was a�ected by all �nger biophysical properties; therefore, it is very di�-
cult to use it to understand tactile perception as a function of age. Touch parameters can be described better with 
La and MFCCs than with µ.

Touch gestures vs tactile perception: Age and gender influences. To understand tactile percep-
tion, vibratory signals and �nger biophysical properties as a function of age and gender were investigated. In the 
literature, tactile perception declines with age for both men and women. On the other hand, the �nger’s Young’s 
modulus increases with age independently of gender30. As the �nger’s Young’s modulus increases, the ability of 
the �nger’s skin to deform reduces so that E is inversely proportional to tactile perception (smaller contact area)30. 
Moreover, the results show a positive correlation between Young’s modulus and the vibratory parameters La and 
MFCCs. �erefore, we propose two main hypotheses, which we subsequently verify later:

 1. �e vibratory parameters (La and MFCCs) are inversely proportional to tactile perception.
 2. Tactile perception anisotropy can be explained by the biophysical properties that have a greater e�ect on 

each touch gesture.
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For men, the �nger’s Young’s modulus was identi�ed as the main parameter a�ecting the vibratory level and 
MFCCs parameter. As a function of age, the values of the vibratory parameters increased in both touch gestures. 
In Fig. 6, higher MFCCs can be observed in the top to bottom touch gesture, leading us to conclude that tactile 

Figure 6. Correlation results between haptic touch parameter (MFCCs) and biophysical properties (adhesion 
force, Young’s modulus and topographic characterization SMa) for the human �nger as a function of age are 
illustrated. �e results are obtained with sample D. �e adhesive force, Fad, is the force required to break the 
contact between the surface and the �nger. �e Young’s modulus re�ects the intrinsic property of the material. 
�e arithmetic mean of the surface topography at each scale (SMa)) describes the surface topography of human 
�ngers. �e biophysics properties are measured in our previous research for the four age groups and for men 
and women30. �e four age groups (G1, G2, G3, and G4) correspond to (26 ± 3, 35 ± 3, 45 ± 2, and 58 ± 6 years 
old), respectively, for men and women30. Two di�erent touch gestures are analyzed (A) Le� to right. (B) Top to 
bottom. Pearson’s statistical analyses: (+for r > 0.8, − for r < −0.8) highly correlated, (0) for no correlation, R 
indicates the correlation results. For both touch gestures, no linear correlation exists between MFCC and Fad. 
However, good correlations exist between MFCC and biophysical properties (Young’s modulus and topographic 
characterization SMa).
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perception is lower with this touch gesture. For women, our �rst hypothesis was always correct for the le� to right 
touch gesture as the �nger’s Young’s modulus was the predominant parameter in the results obtained (La and 
MFCCs). According to the literature, the tactile perception is higher for young women than for young men54,55. 
However, the results obtained for the vibratory parameters were higher for men, and according to our hypothesis, 
this �nding means higher tactile perception for women. �is �nding is in accordance with the previous explana-
tion about the e�ect of gender on tactile perception.

For the top to bottom touch gesture, the results demonstrated that �ngerprint roughness was the most impor-
tant factor a�ecting the vibratory parameters. �e amplitude of �ngerprint relief is positively proportional to 
tactile perception, as it generates more deformation and vibrations for the cutaneous receptors. In the literature, 
the gender e�ect has been demonstrated on SMa for the youngest age groups; the results also showed higher 
SMa values for women than for men30. �is result is in line with the fact that young women have better tactile 
perception than young men54,55. For women, the �nger’s Young’s modulus increases and the amplitude �ngerprint 
roughness decreases with age, and both parameters are signi�cantly and positively correlated to vibratory param-
eters30. However, tactile perception is signi�cantly and negatively correlated with the �nger’s Young’s modulus and 
positively correlated with SMa. �erefore, to understand tactile perception as a function of vibratory parameters, 
we should identify the main parameter a�ecting the vibratory signal.

Figure 8 con�rms the previous hypothesis and conclusions in the previous section about the tactile perception 
and touch gestures relationship. In Fig. 8A, we demonstrated that the vibratory parameters (La and MFCCs) are 
positively correlated with age on two di�erent surfaces. �ese results suggest that tactile perception is inversely 
proportional to vibratory parameters, which means higher tactile perception corresponds to lower MFCCs and La 

Figure 7. Correlation results between haptic touch parameter (µ) and adhesive force of the human �nger for 
men and women and as a function of age are illustrated. �e results are obtained with sample D. �e adhesive 
force, Fad, is the force required to break the contact between the surface and the �nger. �is force is measured in 
our previous research for the four age groups and for men and women30. �e four age groups (G1, G2, G3, and 
G4) correspond to (26 ± 3, 35 ± 3, 45 ± 2, and 58 ± 6 years old), respectively. Two di�erent touch gestures are 
analyzed (A) Le� to right. (B) Top to bottom. Pearson’s statistical analyses: (+for r > 0.8, - for r < −0.8) highly 
correlated, (0) for no correlation. For both touch gestures, no linear correlation exists between µ and Fad.
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values. �is conclusion is in accordance with the previous hypothesis and conclusions based on the comparison 
between the biophysical properties and vibratory parameters, where a better tactile perception was observed in 
the le� to right touch gesture than in the top to bottom gesture (see Fig. 8B).

In conclusion, the le� to right touch gesture provided better tactile perception than the top to bottom touch 
gesture according to our hypothesis and results. �e panel classi�cation in Table 1 proves our hypothesis as we 
observed the same classi�cation of samples for all age groups as a function of their so�ness. In contrast, the results 
obtained with the top to bottom touch gesture varied as a function of age group. �is can be explained by the 
tactile perception of the volunteers; it was better in the le� to right touch gesture, which permitted assigning the 
right classi�cation. �ese results are consistent with human nature56. Indeed, people use the le� to right touch 
gesture with small roughness surfaces that need better perception and the top to bottom touch gesture with rough 
surfaces that do not require keen perception to be felt.

Conclusion
�e objective of this study was to understand the e�ects of age, gender and touch gestures on tactile perception 
via the biophysical properties of the human �nger. �is goal could not be achieved without the tribohaptic system 
used and the algorithms that objectify touch. �e vibratory signal transmitted by the �nger during the touch pro-
cess was captured by a tribohaptic system and analyzed by di�erent algorithms (La, MFCCs and µ), one of which 
is new (MFCCs). Tissues and plastic samples were used to validate and prove the e�ciency of the MFCC algo-
rithm. �e results of this algorithm allowed us to quantify the vibratory signal with a single value. �is value is an 
image of the quality of the surface (so�ness). A correlation between the vibratory parameters and the biophysical 
properties of the �nger allowed us to understand the impact of each on tactile perception. �e results obtained 
showed the high performance of MFCCs for qualifying surface quality via a vibratory signal. In addition, it can be 
a good indicator of tactile perception, where the vibratory parameters (La and MFCCs) are inversely proportional 
to tactile perception.

Figure 8. Touch gestures, tactile perception and vibratory parameter relationship (MFCCs). (A) �e vibratory 
signal obtained for young and old subjects on two di�erent surfaces with the tribohaptic system is shown. 
MFCC and La demonstrate the so�ness parameter, and it explains the relationship with the tactile perception. 
�e tactile perception is inversely correlated to the MFCC. (B) �e MFCC and La of �ve di�erent plastic 
samples touched by G2 women (35 ± 3 years old) for two di�erent touch gestures (le� to right and top to 
bottom). �e le� to right touch gestures show better tactile perception with both La and MFCC.
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Due to the anisotropy of the mechanical properties of the �nger, two di�erent touch gestures (le� to right and 
top to bottom) were examined to understand the e�ect of touch direction on tactile perception. �e touch gesture 
that allowed better tactile perception can be used in future developments to obtain better perception. �e le� to 
right touch presented the best tactile perception as it corresponds to lower MFCCs and La. �e di�erent e�ects 
of the biophysical properties of the �nger were identi�ed for each touch gesture. In the le� to right touch gesture, 
Young’s modulus was the parameter that had the greatest e�ect on tactile perception in men and women, mean-
ing that Young’s modulus should be favored when considering age and gender e�ects in any development of an 
arti�cial tool to mimic the human �nger.
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