
Progress In Electromagnetics Research B, Vol. 55, 1–21, 2013

IMPACT OF FINITE GROUND PLANE EDGE DIFFRA-
CTIONS ON RADIATION PATTERNS OF APERTURE
ANTENNAS

Nafati A. Aboserwal, Constantine A. Balanis*,
and Craig R. Birtcher

School of Electrical, Computer and Energy Engineering, Arizona State
University, Tempe, AZ 85287-5706, USA

Abstract—In this study, the impact of finite ground plane edge
diffractions on the amplitude patterns of aperture antennas is
examined. The Uniform Theory of Diffraction (UTD) and the
Geometrical Optics (GO) methods are utilized to calculate the
amplitude patterns of a conical horn, and rectangular and circular
waveguide apertures mounted on square and circular finite ground
planes. The electric field distribution over the antenna aperture is
obtained by a modal method, and then it is employed to calculate the
geometrical optics field using the aperture integration method. The
UTD is then applied to evaluate the diffraction from the ground planes’
edges. Far-zone amplitude patterns in the E and H planes are finally
obtained by the vectorial summation of the GO and UTD fields. In
this paper, to accurately predict the H-plane amplitude patterns of
circular and rectangular apertures mounted on square ground planes,
the E-plane edge diffractions need to be included because the E-plane
edge diffractions are much more intense than those of the H-plane edge
regular and slope diffractions. Validity of the analysis is established
by satisfactory agreement between the predicted and measured data
and those simulated by Ansoft’s High Frequency Structure Simulator
(HFSS). Good agreement is observed for all cases considered.

Received 27 August 2013, Accepted 18 September 2013, Scheduled 23 September 2013
* Corresponding author: Constantine A. Balanis (balanis@asu.edu).

Invited paper dedicated to the memory of Robert E. Collin.



2 Aboserwal, Balanis, and Birtcher

1. INTRODUCTION

Aperture antennas are most commonly used at microwave frequencies.
They are very practical for space applications, where they can be
conveniently integrated on the surface of the spacecraft or aircraft
without affecting its aerodynamic profile. They are also used as
a feed element for large radio astronomy, satellite tracking, and
communication dishes. Their openings are usually covered with a
dielectric material to protect them from environmental conditions [1, 2].
Because of the aforementioned reasons, aperture antennas have become
one of the important microwave antennas. An investigation of the
impact of finite ground planes on aperture antenna performance will
aid in understanding when the antenna is placed in more complex
structures.

In this paper, the UTD method is utilized to calculate the far-
zone amplitude patterns in the E and H planes, and to examine the
impact of the square and circular ground plane edges on the amplitude
patterns of a conical horn, and rectangular and circular waveguide
antennas. A modal technique is used to calculate the electric field
distribution over the antenna aperture. After the field distribution over
the antenna aperture is obtained, the GO field can be easily calculated,
and the UTD is employed to account for the diffracted fields from the
edges of the ground plane. The main contributions of this paper are:

• Predict accurately the H-plane amplitude pattern of rectangular
and circular apertures mounted on a ground plane with straight
edges over a dynamic range of 0–60 dB. Previously the H-plane
pattern has been computed using slope diffraction as the regular
first-order diffraction in this plane is zero, but only over a dynamic
range of 0–40 dB. However, slope diffraction is not sufficient for 0–
60 dB dynamic range prediction and, as shown and contributed in
this paper, diffractions from the edges of the E plane (which are
parallel to the H plane) must be included for the H-plane pattern
to compare favorably with measurements and simulations using
HFSS.

• Compare the amplitude patterns of rectangular and circular
apertures when mounted on square and circular ground planes. It
is shown that along the symmetry axis in the back region (near and
at θ = 180◦) the patterns of the apertures, when they are mounted
on a circular ground plane are, 10–13 dB more intense than the
patterns of the same apertures, mounted on a square ground plane.
The diameter of the circular ground plane is equal to the length of
one side of the square ground plane. This difference is attributed
to the formation of a “ring radiator” by the circular ground plane.
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The analytical results are validated by comparing them with
measurements and data simulated using Ansoft’s HFSS [3]. Good
agreement is observed for all the cases considered. Edge diffractions
have a significant impact on the far side and back lobes but do not
affect significantly the forward main lobe.

The organization of this paper is as follows. The geometrical
optics method is briefly reviewed in Section 2, followed by a detailed
description of the Uniform Theory of Diffraction in Section 3. In
Section 4, radiation patterns calculated by the method of this paper
are compared with measurements and numerical simulations. Finally,
Section 5 concludes the paper. Throughout this paper, the time
convention exp(jωt) is used, and it is suppressed.

2. GEOMETRICAL OPTICS

One of the most versatile and useful ray-based, high-frequency,
techniques is the Geometrical Optics (GO). The Geometrical Optics
ray field consists of direct, refracted, and reflected rays. It is
well known that electromagnetic waves are physically continuous, in
magnitude and phase, in the time and space domains. However,
the geometrical optics has limitations in which the GO yields fields
that are discontinuous across the shadow boundaries created by the
geometry of the problem. GO is insufficient to describe completely
the scattered field in practical applications due to the inaccuracies
inherent to GO near the shadow boundaries and in the shadow zone.
The radiated fields from aperture antennas are determined from a
knowledge of the fields over the aperture of the antenna. The aperture
fields become the sources of the radiated fields. This is a variation
of the Huygens’s principle which states that points on each wavefront
become the sources of secondary spherical waves propagating outwards
and whose superposition generates the next wavefront.

To find far-zone radiation characteristics of aperture antennas,
the equivalence principle, in terms of equivalent current densities Js

and Ms, can be utilized to represent the fields at the aperture of the
antenna. When the antenna is not mounted on an infinite ground
plane, an approximate equivalent is utilized in terms of both Js and/or
Ms [1]. When the antenna is mounted on an infinite ground plane, an
exact equivalent is formed, utilizing only Ms expressed in terms of the
tangential electric fields at the aperture [1].

Aperture antennas are usually excited by waveguides. For
rectangular and circular aperture antennas, rectangular and circular
waveguides are, respectively, used as feeds. An analytical study of the
radiation characteristics of an aperture antenna, mounted on a ground
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plane, requires accurate amplitude and phase expressions for the fields
over the aperture. For the conical horn, a spherical phase term,
representing the spherical phase variations over the aperture, is added
to the waveguide-derived fields as if the aperture fields have emanated
from a virtual source located at the vertex inside the waveguide [1].

The total fields in space are a combination of the components
of GO and UTD. Depending on the geometry of the problem, UTD
can provide other diffraction mechanisms (slope diffraction, equivalent
current contribution) to increase the prediction accuracy. The total
field in space at a give observation point can be represented by

ETotal = EDirect + EReflected + EDiffracted

ETotal = EGO + EUTD

where GO represents the direct and reflected fields and UTD represents
the diffracted fields. By summing vectorially the GO and UTD fields,
the total field is computed at a given observation point.

Since the UTD is an extension of Geometrical Optics used
to describe diffraction phenomena, we will first briefly review the
Geometrical Optics fields of a conical horn mounted on an infinite
ground plane. In addition, the Geometrical Optics fields radiated by
rectangular and circular waveguides, mounted on an infinite ground
plane, will be illustrated.

2.1. Infinite Ground Plane Solution of Conical Horn
Antenna

As shown in Figure 1(a), a circular aperture of radius a of a conical
horn antenna is mounted on a perfectly electric conducting (PEC)
ground plane. The fields over the aperture of the horn are those of
a TE11 mode for a circular waveguide. The only difference is the
inclusion of a complex exponential term which represents the spherical
phase distribution over the aperture. Throughout this the paper, the
spherical coordinate system, shown in Figure 1(c), is used to represent
the radiated field from the antenna.

To find the radiation characteristics of a conical horn, the
equivalence principle, in terms of an equivalent magnetic current
density Ms, can be utilized to represent the fields at the aperture of
the horn. Because the horn aperture is mounted on an infinite ground
plane, only the equivalent magnetic current density is nonzero over the
aperture [1, 4]. By using the aperture integration method, the far-zone
fields for the conical horn antenna on an infinite ground plane are given
by

Eθ = j
k

2πr
e−jkrsinφLθ (1)
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(a) (b)

(c)

Figure 1. Geometry of a conical horn antenna, (a) mounted on an
infinite ground plane, (b) in free space, and (c) the spherical coordinate
system.

Eφ = j
k

2πr
e−jkrcos θcosφ Lφ (2)

where

Lθ =
∫ a

0

[
ρ′J0

(
kρρ

′)J0

(
kρ′ sin θ

)−ρ′J2

(
kρρ

′)J2

(
kρ′sin θ

)]
e−jkδ(ρ′)dρ′(3)

Lφ=
∫ a

0

[
ρ′J0

(
kρρ

′)J0

(
kρ′ sin θ

)
+ρ′J2

(
kρρ

′)J2

(
kρ′sin θ

)]
e−jkδ(ρ′)dρ′(4)

and δ(ρ′) is the spherical path length term [5, 6]. k = 2π/λ, λ is the
free-space wavelength, kρ = 1.8412/a, Jm(x) is the Bessel function
of first kind of order m, (r, θ, φ) are the spherical polar coordinates,
and the ρ′ indicates the radial cylindrical coordinate of the equivalent
excitation source over the antenna aperture as shown in Figure 1(b).
These components, (1)–(4), represent the fields radiated in the forward
region (0 ≤ θ ≤ π/2).



6 Aboserwal, Balanis, and Birtcher

2.2. Infinite Ground Plane Solution of Rectangular and
Circular Waveguide Antennas

The geometry of a rectangular waveguide of dimensions a and b, and
a circular waveguide of radius a, mounted on an infinite ground plane,
are shown in Figure 2. The coordinate system is located at the center
of the aperture. The fields over the aperture are assumed to be the
TE10-mode fields for the rectangular waveguide and the TE11-mode
fields for the circular waveguide.

(a) (b)

Figure 2. Geometry of (a) rectangular and (b) circular waveguides
mounted on an infinite ground plane.

These fields are assumed to be known and are produced by the
waveguide which feeds the aperture antenna mounted on the infinite
ground plane. The fields radiated from the aperture can be computed
by using the field equivalence principle [1], which states that the
aperture fields may be replaced by equivalent electric and magnetic
surface currents whose radiated fields can then be calculated using the
techniques of Section 12.2 of [1].

The far-zone fields radiated by waveguides mounted on an infinite
ground plane can be written as [1]

Eθ =
−jkabE0e

−jkr

4r
sinφ

cosX

X2 − (
π
2

)2

sinY

Y
(5)

Eφ =
−jkabE0e

−jkr

4r
cos θ cosφ

cosX

X2 − (
π
2

)2

sinY

Y
(6)

for the rectangular waveguide, and

Eθ =
jkaE0e

−jkr

r
sinφJ1(χ′11)

J1(ka sin θ)
ka sin θ

(7)

Eφ =
jkaE0e

−jkr

r
cos θ cosφJ1(χ′11)

J ′1(ka sin θ)

1−
(

ka sin θ
χ′11

)2 (8)
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for the circular waveguide, where X = ka
2 sin θ cosφ, Y = kb

2 sin θ sinφ,
χ′11 = 1.8412, Jm(x) is the Bessel function of first kind of order m,
J ′m(x) is the derivative of Jm(x) with respect to the entire argument
x, and E0 is the normalized amplitude of the incident electric field.

3. GEOMETRICAL THEORY OF DIFFRACTION FOR
AN EDGE ON A PERFECTLY CONDUCTING SURFACE

As is well known, the Geometrical Optics has some limitations because
it does not predict the fields in the shadow region. Also, GO
is inaccurate in the vicinity of the shadow boundaries. The GO
predicts zero diffracted fields everywhere and zero direct and reflected
fields in the shadow region. Therefore, the Geometrical Theory of
Diffraction (GTD) is required to overcome these deficiencies. The GTD
supplements and enhances Geometrical Optics by adding contributions
due to edge diffraction at perfectly conducting edges. The introduction
of the Geometrical Theory of Diffraction by Keller [7] and its modified
version, the Uniform Theory of Diffraction (UTD), introduced by
Kouyoumjian and Pathak [8], have proved to be very valuable in
solving antenna problems that otherwise may be intractable. The UTD
corrects for the singularities of the diffracted field along the incident
and reflection shadow boundaries. The application of this theory on a
λ/4 monopole mounted on infinitely thin, perfectly conducting, finite
square and circular ground planes has been examined in [4]. However,
the edges may have significant thickness in terms of wavelengths at
higher microwaves frequencies. The impact of the thick finite ground
plane on the radiation patterns of a λ/4 monopole has been studied
by Ibrahim and Stephenson in [9]. The uniform theory of diffraction
was used in [10] to calculate the edge diffracted fields from the finite
ground plane of a microstrip antenna. These techniques have also
been applied to horn antennas in free space [11–19]. In addition, the
radiation patterns of an infinitesimal monopole mounted on the tip of a
perfectly conducting, finite length cone was calculated using diffraction
techniques [20].

In this paper, the UTD analysis of the far-zone E-plane and
H-plane amplitude patterns of a conical horn, and rectangular and
circular waveguide antennas mounted on finite square and circular
ground planes is presented. The study enables one to predict
accurately the far-zone E- and H-plane amplitude patterns over the
main beam, near and far sidelobes, and backlobes. The fields radiated
by these antennas when mounted on infinite ground planes, which are
well known, are supplemented by the fields diffracted at the edges of
the finite ground planes. The UTD is utilized to calculate the diffracted
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field components. The circular edge of the circular ground plane has
a caustic along its axis, and the UTD predicts an infinite field there,
which physically does not exist. This deficiency can be overcome by
the use of equivalent edge currents [21]. These currents flow along the
edge, and their integration around the circular rim produces a finite
field value in the caustic region.

3.1. Diffracted Field Solution

The total field can be calculated by summing the GO field and
diffracted fields from the edges of the ground plane. According to the
Uniform Theory of Diffraction [4], the diffracted field can be expressed
as

Ēd = Ēi(Qd) · ¯̄D
√

ρc

s(ρc + s)
exp(−jks) (9)

where Ēi(Qd) is the electric field incident at a point Qd on the edge,
and ¯̄D is the dyadic diffraction coefficient ¯̄D = −β̂′0β̂0D

s − φ̂′φ̂Dh,
where Ds and Dh are, respectively, the soft and hard polarization
diffraction coefficients. ρc is the distance between the caustic at the
edge and the second caustic of the diffracted ray. The unit vectors
β̂′0, β̂0, φ̂′, φ̂, together with ρc, are illustrated in Figures 13–31 of [4].
ρc is represented by

1
ρc

=
1
ρi

e

− n̂ · (ŝ′ − ŝ)
ρg sin2 β′0

(10)

where ρi
e is the radius of curvature of the incident wavefront at Qd

taken in the plane containing the incident ray and the unit vector
tangent to the edge at Qd; ρg is the radius of curvature of the edge
at Qd; n̂ is the unit normal to the edge directed away from the center
of curvature; β′0 is the angle between the incident ray and the tangent
to the edge at Qd; and ŝ′ and ŝ are, respectively, unit vectors in the
direction of incidence and diffraction. The soft and hard polarization
diffraction coefficients are represented by [4]

Ds,h =
−e−jπ/4

2n
√

2πk sinβ′0

({
cot

[
π + (ξ−)

2n

]
F [kLig+(ξ−)]

+cot
[
π−(ξ−)

2n

]
F
[
kLig−

(
ξ−

)]}∓
{
cot

[
π+(ξ+)

2n

]
F
[
kLrng+

(
ξ+

)]

+cot

[
π − (ξ+)

2n

]
F

[
kLrog−(ξ+)

]
})

(11)
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where F (x) is the Fresnel integral, given by

F (x) = 2j
√

xejx

∫ ∞
√

x
e−jt2dt (12)

g±(ξ) = 1 + cos(2nπN± − ξ), ξ± = φ ± φ′; N± is the positive or
negative integer or zero which most nearly satisfies

2nπN+ − ξ = +π

2nπN− − ξ = −π

n is a parameter that determines the wedge angle. For the present
problem, n = 2 where the wedge has zero interior angle. For the
definitions of distance parameters (Li, Lrn , and Lro), refer to [4].
Because the intersecting surfaces forming the edges are plane surfaces,
the distance parameters are equal, that is,

Li = Lro = Lrn = L (13)

For far-field observations, L is given by

L ≈ s′ s À s′ (14)

where s′ is the source distance to the diffracting points in the E and
H planes.

3.2. Edge Diffraction of Aperture Antennas Mounted on
Finite Ground Planes

In this section, two geometries, aperture antennas mounted on square
and circular ground planes, are treated similarly. Far-zone E- and
H-plane amplitude patterns are analytically calculated for the square
and circular ground planes following the procedure as described in the
previous section. Also, it should be noted that since the incident field
is at grazing incidence, the total GO field is multiplied by a factor of
1/2 [1, 4]. To investigate the influence of the ground plane geometry
on the E- and H-plane amplitude patterns, a comparison of square
and circular ground planes, where the side of the square is equal to the
diameter of the circular, is carried out.

The incident field at points Qd1 and Qd2, as shown in Figure 3,
is found from (1)–(6) after substituting θ = π/2 and r = w; w is the
half width of the square ground plane or the radius of the circular
ground plane. ρc1 and ρc2 are the distances between the caustic at the
diffraction points (Qd1 and Qd2) and second caustic of diffracted ray,
and they are found from (10). For the aperture antennas mounted on
a square ground plane:

ρc1 = ρc2 = w (15)
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(a) (b)

Figure 3. Diffraction mechanism by edges of (a) square and
(b) circular ground planes.

and for the circular ground plane:

ρc1 =
w

sin θ
(16)

ρc2 = − w

sin θ
(17)

The distance parameters L1 and L2 of (14) are the same for both
the square and circular ground planes at the diffraction points Qd1 and
Qd2:

L1 = L2 = w (18)
The diffracted field components from diffracting points Qd1 and

Qd2, for either the square or the circular ground planes, are:

Ed1
θ =

1
2
Ei

θ

(
w,

π

2
,
π

2

)
Dh

(
L1, ψ1, 0,

π

2
, 2

)√
ρc1

e−jkr1

r1
(19)

Ed2
θ =

1
2
Ei

θ

(
w,

π

2
,
π

2

)
Dh

(
L2, ψ2, 0,

π

2
, 2

)√
ρc2

e−jkr2

r2
(20)

for the E-plane diffracted field, and

Ed1
φ =

1
2
Ei

φ

(
w,

π

2
, 0

)
Ds

(
L1, ψ1, 0,

π

2
, 2

)√
ρc1

e−jkr1

r1
(21)

Ed2
φ =

1
2
Ei

φ

(
w,

π

2
, 0

)
Ds

(
L2, ψ2, 0,

π

2
, 2

)√
ρc2

e−jkr2

r2
(22)

for the H-plane diffracted field, where

ψ1 =
π

2
+ θ (0 ≤ θ ≤ π) (23)

ψ2 =
π

2
− θ

(
0 ≤ θ ≤ π

2

)

=
5π

2
− θ

(π

2
< θ ≤ π

)
(24)
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For far-field observations

r1 ' r − w cos
(π

2
− θ

)
= r − w sin θ (25)

r2 ' r + w cos
(π

2
− θ

)
= r + w sin θ (26)

for phase terms, and
r1 ' r2 ' r (27)

for amplitude terms.
Therefore, the diffracted fields from the diffracting points Qd1 and

Qd2 reduce to

Ed1
θ =

1
2
Ei

θ

(
w,

π

2
,
π

2

)
Dh

(
L1, ψ1, 0,

π

2
, 2

)√
ρc1e

+jw sin θ e−jkr

r
(28)

Ed2
θ =

1
2
Ei

θ

(
w,

π

2
,
π

2

)
Dh

(
L2, ψ2, 0,

π

2
, 2

)√
ρc2e

−jw sin θ e−jkr

r
(29)

for the far-zone E plane, and

Ed1
φ =

1
2
Ei

φ

(
w,

π

2
, 0

)
Ds

(
L1, ψ1, 0,

π

2
, 2

)√
ρc1e

+jw sin θ e−jkr

r
(30)

Ed2
φ =

1
2
Ei

φ

(
w,

π

2
, 0

)
Ds

(
L2, ψ2, 0,

π

2
, 2

)√
ρc2e

−jw sin θ e−jkr

r
(31)

for the far-zone H plane.
So far, the diffraction effects of this study are accounted for by

using only the diffraction which depends on the magnitude of the
incident field. However, this indicates that the diffracted field would be
zero if the incident field is zero. Physically, the diffracted fields do not
go to zero. Thus a second-order diffraction, due to the rapid change
of the GO field near the edge, can be incorporated into the analysis.
In the H plane for the square and circular ground planes, it is noted
that the first-order diffracted fields are zero because the electric field
on the surface of a conductor wedge vanishes for a grazing incident
wave. Therefore, the slope diffracted fields, second-order diffracted
fields, from the diffraction points are given by [4]

Eslope
θ =

1
jk

[
∂Ei

θ(Qd)
∂n

] (
∂Dh

∂φ′

) √
ρc

s(ρc + s)
e−jks (32)

Eslope
φ =

1
jk

[
∂Ei

φ(Qd)
∂n

](
∂Ds

∂φ′

)√
ρc

s(ρc + s)
e−jks (33)

where
∂Ei

θ
∂n |Qd

= n̂ · ∇Ei
θ|Qd

= − 1
s′

∂Ei
θ

∂φ′ |Qd
= slope of incident field for

hard polarization.
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∂Ei
φ

∂n |Qd
= n̂ · ∇Ei

φ|Qd
= − 1

s′
∂Ei

φ

∂φ′ |Qd
= slope of incident field for

soft polarization.
n̂ is unit normal in φ′ direction.
s′ is the distance from the aperture center to the diffraction point.
s is the distance from the diffraction point to the observation point.
∂Dh,s

∂φ′ = slope diffraction coefficient for hard and soft polarization,
respectively, given by

Ds,h
slope =

−e−jπ/4

2n2
√

2πk sinβ′0

({
csc2

[
π + (ξ−)

2n

]
Fs

[
kLg+

(
ξ−

)]

− csc2

[
π − (ξ−)

2n

]
Fs[kLg−(ξ−)]

}

±
{

csc2

[
π + (ξ+)

2n

]
Fs

[
kLg+

(
ξ+

)]

− csc2

[
π − (ξ+)

2n

]
Fs[kLg−(ξ+)]

})
(34)

where

Fs(x) = 2jx[1− F (x)] (35)

and F (x) is presented by (12).
Due to the circular symmetry of the circular ground plane’s edge,

the edge behaves as a continuous ring radiator which leads to the
formation of a caustic where the diffracted field is infinity. Therefore,
a caustic correction is needed for angles at and near the axis of the
antenna. The UTD can be used to correct for this caustic. Ryan
and Peters [21] showed that UTD equivalent currents can be used
to correct for this caustic. Using this method, equivalent magnetic
and electric currents are created on the edge of the aperture. Then
radiation integrals are used to obtain fields due to these currents,
which correct the diffracted fields at and near the symmetry axis of
the antenna. The electric and magnetic equivalent currents take the
form of

Ie
φ = −

√
8πk

ηk
e−jπ/4DsEi

φ(Qd) (36)

Im
φ = −

√
8πk

k
e−jπ/4DhEi

θ(Qd) (37)

The fields radiated by each of the equivalent currents can be
obtained using techniques of Chapter 5 of [1]. Thus the radiated field
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for a loop carrying an electric current Ie are given by

Ee
θ = −jωµa

4πr
cos θe−jkr

∫ 2π

0
Ie(φ′) sin(φ− φ′)ejka cos(φ−φ′) sin θdφ′ (38)

Ee
φ = −jωµa

4πr
e−jkr

∫ 2π

0
Ie(φ′) cos(φ− φ′)ejka cos(φ−φ′) sin θdφ′ (39)

The duality theorem can be applied to obtain the fields radiated
by a magnetic current Im, rather than an electric current Ie, and it
leads to

Em
θ =−η

jωεa

4πr
e−jkr

∫ 2π

0
Im(φ′) cos(φ− φ′)ejka cos(φ−φ′) sin θdφ′ (40)

Em
φ =η

jωεa

4πr
cos θe−jkr

∫ 2π

0
Im(φ′) sin(φ− φ′)ejka cos(φ−φ′) sin θdφ′ (41)

Now, numerically integrating (38)–(41), corrected diffracted fields
are obtained at and near the symmetry axis of the antenna.

The electric current is zero because the incident field (GO field) is
zero at the edge. Therefore, the radiated fields of the electric current
are zero. The corrected diffracted fields in the E and H planes due to
a magnetic current around the ground edge are obtained at and near
the symmetry axis of the antenna by computing numerically (40)–(41).

For the square ground plane, the slope diffraction does not
significantly improve the radiation pattern in the backlobe region of the
H-plane amplitude radiation pattern. Therefore, one needs to include
the contributions from the E-plane edge diffractions because the E-
plane edge diffractions have a much greater magnitude than those of
the H-plane edge diffractions. This contribution can be calculated by
using the equivalent current method that was described previously.

4. RESULTS AND VALIDATION: PREDICTIONS,
SIMULATIONS AND MEASUREMENTS

All measurements were performed in the ElectroMagnetic Anechoic
Chamber (EMAC) facility at Arizona State University. Models for
the square and circular ground planes with rectangular and circular
aperture antennas mounted at the center have been constructed. The
ground planes are made of aluminum. A computer program was
written in Matlab to calculate the normalized far-zone field amplitude
patterns in the E and H planes for all cases considered in this work.
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4.1. Conical Horn Antennas Mounted on Square and
Circular Ground Planes

The width of the square ground plane and diameter of the circular
ground plane are 12.2 in. Using a dynamic range of 100 dB, the
agreement between theory, experiment, and HFSS simulations is good
in the E and H planes for the X-band conical horn, having a total
flare angle of 35◦ and an axial length L = 8.2 in. The frequency at
which the measurements were preformed is 10.3 GHz. The diameter
of the horn aperture is 5.36 in. The diameter of the waveguides (used
for the measurements and HFSS simulations) is 0.9 in. Numerical and
measured data are compared with simulated data based on Ansoft’s
High Frequency Structure Simulator (HFSS).

Figure 4 displays the far-zone E-plane amplitude patterns of the
conical horn antenna mounted on the square and circular ground
planes. The GO field in the forward region (0 ≤ θ ≤ π/2) is calculated
using (1) and (3) [because (2) vanishes in the E plane (φ = 90◦)].
The edge diffractions from the E-plane edges are included in the total
amplitude pattern using (28) and (29). Very good agreement between
theory, experiment and simulations is indicated; the total field consists
of the GO and first-order diffracted fields. In addition, the fields
associated with the equivalent currents of (38) and (40) are included
for the circular ground planes.

The same comparison for the far-zone H-plane amplitude patterns

(a) (b)

Figure 4. Far-zone E-plane amplitude patterns of an X-band conical
horn antenna at 10.3GHz (L = 8.2 in, 2α0 = 35◦, 2w = 12.2 in)
mounted on (a) square and (b) circular ground planes.
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is illustrated in Figure 5. As shown in the figure, there is good
agreement between predictions, measurements, and simulations; the
total analytical field consists of the GO field given by (2) and (4)
[because (1) vanishes in the H plane (φ = 0◦)], first-order diffracted
fields obtained by using (30) and (31), and slope diffracted fields given
by (33). The edge diffraction contributions using (30) and (31) on
the overall amplitude pattern are zero where the amplitude pattern
is similar to that of the infinite ground plane. In the back region
(π/2 ≤ θ ≤ π) of the H-plane pattern of antennas mounted on
the square ground planes, the contributions from the E-plane edge
diffractions should be included because the E-plane edge diffractions
are more intense than those of the H-plane edge slope diffractions.
Using (39) and (41), the fields associated with the equivalent currents
are included for the circular ground planes to correct for the caustic
formed by the diffracted fields at and near the symmetry axis of the
antenna.

(a) (b)

Figure 5. Far-zone H-plane amplitude patterns of an X-band conical
horn antenna at 10.3GHz (L = 8.2 in, 2α0 = 35◦, 2w = 12.2 in)
mounted on (a) square and (b) circular ground planes.

4.2. Rectangular and Circular Waveguides Mounted on
Square and Circular Ground Planes

The rectangular and circular aperture antennas have been, respec-
tively, excited by the TE10-mode rectangular and the TE11-mode cir-
cular waveguides. The width of the square ground plane and diameter
of the circular ground plane is 12 in. Validity of the radiation pattern
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analysis over the main beam and the near and far sidelobes presented
above has been verified by calculating the far-zone E- and H-plane
amplitude patterns of the aperture antennas. The frequency at which
measurements are performed is 10 GHz. The dimensions of the rect-
angular aperture are a = 0.9 in and b = 0.4 in, and the diameter of
the circular aperture is 0.938 in. A comparison between the predicted,
measured, and simulated results has been made.

Figures 6 and 7 show, respectively, the far-zone E-plane amplitude
patterns of rectangular and circular waveguide antennas mounted on
the square and circular ground planes. Computed amplitude patterns
are compared with experimental and simulated data, and a good
agreement is indicated. The total field consists of the GO given by (5)
and (7) for the rectangular and circular waveguides [because (6) and (8)
vanish in the E plane (φ = 90◦)], respectively, and first-order diffracted
fields from two diffraction points given by (28) and (29), depending on
which ground plane is being considered. In addition, the diffracted
fields associated with the equivalent currents for the circular ground
planes are included at and near the symmetry axis of the antenna
using (38) and (40).

Unlike the E-plane diffraction, there is no diffraction contribution
from the H-plane edges because the incident waves at the diffraction
points, given by (6) and (8) when θ = 90◦, are zero. However,
second-order diffracted fields given by (33) from the diffraction points
(Qd1 and Qd2) are included to improve the total amplitude pattern

(a) (b)

Figure 6. Far-zone E-plane amplitude patterns of a rectangular
waveguide at 10GHz (a = 0.9 in, b = 0.4 in, 2w = 12 in), (a) square
and (b) circular ground planes.
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(a) (b)

Figure 7. Far-zone E-plane amplitude patterns of a circular
waveguide at 10 GHz (a = 0.469 in, 2w = 12 in), (a) square and
(b) circular ground planes.

(a) (b)

Figure 8. Far-zone H-plane amplitude patterns of a rectangular
waveguide at 10GHz (a = 0.9 in, b = 0.4 in, 2w = 12 in), (a) square
and (b) circular ground planes.

especially in the back region. The far-zone H-plane amplitude patterns
of rectangular and circular waveguide antennas mounted on the square
and circular ground planes, respectively, are shown in Figures 8 and 9.
The GO fields are calculated using (6) and (8) for the rectangular
and circular waveguides, respectively. Very good agreement between
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(a) (b)

Figure 9. Far-zone H-plane amplitude patterns of a circular
waveguide at 10 GHz (a = 0.469 in, 2w = 12 in), (a) square and
(b) circular ground planes.

theory, experiment and simulations is indicated; the total field consists
of the GO, first-order diffracted, and slope diffracted fields. For
the square ground plane, the contributions from the E-plane edge
diffractions should be included to calculate the H-plane amplitude
pattern. Also, the fields associated with the equivalent currents of (39)
and (41) are included for the circular ground planes.

In all studied cases, it is very obvious that the magnitude of
the amplitude pattern of the circular ground plane at and near the
symmetry axis of the antenna, below the ground plane, is much larger
compared to that of the square ground plane. Because of the symmetry
of the circular ground plane, there is a ring radiator along the circular
edge contributing about 10–13 dB greater at and near the symmetry
axis of the circular ground plane, compared to that of the square
ground plane.

5. CONCLUSIONS

In this investigation of conical horn, and rectangular and circular
waveguide antennas mounted on finite ground planes, the edges
of the finite ground plane influence the radiation patterns in the
diffraction zone. This effect has been examined both analytically and
experimentally. Two ground planes, square and circular, were chosen
for this study. The study indicates that the finite ground plane does not
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influence greatly the forward main pattern. Its primary impact appears
in far side and back lobes regions. The aperture integration method,
augmented by the Uniform Theory of Diffraction for the prediction
of aperture antenna radiation, has been presented. The UTD edge
diffractions are included for the finite ground plane in both the E-
and H-plane predictions. In the E plane, single edge diffractions plus
the direct GO field contribute to the total field. In the H plane,
the total field consists of the direct GO field, single edge diffractions,
slope diffracted field, and E-plane edge equivalent current field. In
addition, the contributions of the electric and magnetic equivalent
currents must be included for the circular ground plane to correct
the caustics created by the the diffracted fields at and near the axis of
the antenna. Numerical results obtained by our method are compared
with measured data and those simulated by Ansoft’s High Frequency
Structure Simulator (HFSS). The measured and simulated results
indicate that the predictions based on the analytical formulations, for
both square and circular ground planes, are in very good agreement.
This work demonstrates that the impact of the edges must be included
in the calculation to obtain very accurate results of the amplitude
patterns, especially for extended dynamic ranges.

For all studied cases, the H-plane electric field component of the
incident field vanishes along the ground plane edge (grazing incidence).
Thus, only diffraction by the E-plane edges contributes significantly
to the E- and H-plane diffraction patterns. To obtain the far-zone E-
plane amplitude pattern, only the diffraction from the midpoints of the
E-plane edge contributes to the amplitude pattern. For the far-zone
H-plane amplitude pattern, diffraction accruing at all points along the
E-plane edge, non-normal and normal incidence of the incident GO
fields at the edge, must be taken into consideration.

The discrepancies between the theoretical and measured results in
the backward region of the far-zone E- and H-plane amplitude patterns
can be attributed to the inability to accurately model the structure
feeding the aperture antennas as well as the structure used to support
the antenna during the measurements.
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