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Abstract Mycotoxins are fungal metabolites commonly oc-
curring in food, which pose a health risk to the consumer.
Maximum levels for major mycotoxins allowed in food have
been established worldwide. Good agricultural practices, plant
disease management, and adequate storage conditions limit
mycotoxin levels in the food chain yet do not eliminate my-
cotoxins completely. Food processing can further reduce my-
cotoxin levels by physical removal and decontamination by
chemical or enzymatic transformation of mycotoxins into less
toxic products. Physical removal of mycotoxins is very effi-
cient: manual sorting of grains, nuts, and fruits by farmers as
well as automatic sorting by the industry significantly lowers
the mean mycotoxin content. Further processing such as mill-
ing, steeping, and extrusion can also reduce mycotoxin con-
tent. Mycotoxins can be detoxified chemically by reacting
with food components and technical aids; these reactions are
facilitated by high temperature and alkaline or acidic condi-
tions. Detoxification of mycotoxins can also be achieved en-
zymatically. Some enzymes able to transformmycotoxins nat-
urally occur in food commodities or are produced during fer-
mentation but more efficient detoxification can be achieved by

deliberate introduction of purified enzymes. We recommend
integrating evaluation of processing technologies for their im-
pact on mycotoxins into risk management. Processing steps
proven to mitigate mycotoxin contamination should be used
whenever necessary. Development of detoxification technol-
ogies for high-risk commodities should be a priority for re-
search. While physical techniques currently offer the most
efficient post-harvest reduction of mycotoxin content in food,
biotechnology possesses the largest potential for future
developments.

Keywords Mitigation . Natural toxins . Physical methods .

Chemical treatment . Biological detoxification .

Decontamination

Introduction

Toxic secondary metabolites produced by fungi belong to the
most toxic contaminants regularly occurring in a wide range
of food commodities (Bennett and Klich 2003). Most
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countries responded to this threat by establishing and
enforcing maximum levels for mycotoxins in food
(European Commission 2006; van Egmond et al. 2007).
Setting maximum levels is based on toxicity assessment and
exposure data but it also takes supply and demand into ac-
count. Raw materials are usually tolerated to have higher con-
tamination levels (except for products intended for direct hu-
man consumption) than finished products. The rationale be-
hind this is a dilution effect when formulating with non-
contaminated ingredients in preparation of the final product
as well as of the potential mitigation effects due to processing.
In both cases, the mycotoxin concentration in the finished
product will be lower than in the raw material.

Spoilage and toxin formation can occur already on the field
and during storage of agricultural commodities or processed
food. This article focuses on food, but results obtained on feed
will be considered when they can be used to estimate the
efficiency of mitigation strategies potentially useful for food.
A variety of fungal species mostly from the genera
Aspergillus, Penicillium, Fusarium, Alternaria, or Claviceps
are known to produce mycotoxins. Most important in terms of
toxicity and occurrence are aflatoxins B1, B2, G1, and G2

(AFB1, AFB2, AG1, AFG2); ochratoxin A (OTA); fumonisins
B1, B2, and B3 (FB1, FB2, FB3); deoxynivalenol (DON) and
other trichothecenes; zearalenone (ZEN); patulin (PAT); and
ergot alkaloids (EAs), which are briefly characterized in
Table 1, while their chemical structures are shown in Fig. 1.

Harmful effects of mycotoxin-contaminated food can be
avoided by (i) preventing contamination, (ii) removing contam-
inated material from the food commodity, (iii) mitigating myco-
toxin content in food, and (iv) treating exposed individuals. In
some commodities, only part of the harvest enters the food chain.
Selection of charges with low mycotoxin levels for consumption
while using the remainder for feed and energy production would
reduce the exposure of consumers to mycotoxins. Unfortunately,
this is only possible in a few commodities and, even there, pro-
duction systems targeting food markets, feed manufacturing, and
energy production are often so specialized that they cannot re-
place each other. The first priority therefore remains prevention
of toxin accumulation directly on the field (preharvest) or there-
after (transport and storage) (Kabak et al. 2006; Choudhari and
Kumari 2010). A variety of agricultural practices, e.g., growing
resistant crop varieties, crop rotation, soil tillage, chemical and
biological control of plant diseases, and insect control are avail-
able to minimize mycotoxin production on the field (Edwards
2004; Munkvold 2014; Mesterhazy 2014; Alberts et al. 2016).
Proper harvest and storage conditions are crucial to prevent fun-
gal growth and mycotoxin accumulation in harvested commod-
ities (Jacobsen 2014). Unfortunately, preharvest measures do not
guarantee the absence of mycotoxins in food or feed. Food pro-
cessing can impact mycotoxins in raw material by (i) physical
removal, (ii) chemical transformation which can result in metab-
olites of lower or higher toxicity, (iii) release from masked or

entrapped forms which may increase bioavailability, (iv) enzy-
matic detoxification, and (v) adsorption to solid surfaces.
Physical and chemical mechanisms reducing mycotoxin content
often act together in the same food processing step. For instance,
sulfur dioxide used in corn wet milling to ease the separation of
germs, proteins, and starch possesses potential for chemical de-
toxification. Reduction of mycotoxin contamination was docu-
mented for cleaning; milling; brewing; fermentation; cooking;
baking; frying; roasting; flaking; alkaline cooking;
nixtamalization (soaking, cooking in an alkaline solution, and
hulling of grains); and extrusion. Concentrations of some myco-
toxins can be reduced substantially while others, such as DON,
are relatively resistant to degradation (Milani and Maleki 2014;
Karlovsky 2011). Detoxification of grain mycotoxins during
food processing has recently been reviewed (Kaushik 2015).
As the last resort, consumers can be prophylactically treated with
binders in areas of chronically high aflatoxin exposure (Afriyie-
Gyawu et al. 2008; Wang et al. 2008).

The following terms are used to describe the outcome of
mitigation treatments throughout this article: removal of myco-
toxins from raw materials and/or finished products,
transformation (modification of the chemical structure of the
molecule), detoxification (transformation which reduced the tox-
icity), and decontamination (removal or detoxification/inactiva-
tion). Effective decontamination should be irreversible, modified
forms of mycotoxins should be affected together with parent
compounds, the products should be non-toxic, and the food
should retain its nutritive value and remain palatable (Milani
and Maleki 2014). Processing procedures, agents, and microor-
ganisms must be allowed for use in food (Codex Alimentarius,
2015). The interested reader is also referred to European
Commission Regulation 2015/786, defining acceptability criteria
for detoxification processes applied to products intended for an-
imal feed (EC 2015). These criteria may serve as a model for the
assessment ofmycotoxin detoxification technologies in food pro-
cessing. Compliance of a given detoxification process with those
criteria will be assessed by the European Food Safety Authority
(EFSA).

In this review, conventional food processing affecting my-
cotoxins as well as processes dedicated to decontamination are
covered. Applications of the techniques to selected commod-
ities are presented for illustration, knowledge gaps are
outlined, and recommendations for prioritizating mitigation
actions and further research are given.

Physical processing methods

Sorting

Unprocessed cereals in bulk trading often contain dust and
admixtures. Broken and damaged kernels usually contain
most of mycotoxin contamination (Johansson et al. 2006)
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though they constitute only 3–6 % of the bulk load (Whitaker
et al. 2003). The first processing of agricultural goods after
harvest often involves sorting, washing, or milling (Grenier
et al. 2014). Figure 2 summarizes the use of these techniques.

Sorting machines based on particle weight and size are in use
since the end of the nineteenth century (Mayer 1898).
Originally, grains were sorted in bulk using centrifugation
force and flotation in air flow. In the 1960s, optical sorting

Table 1 Major mycotoxins and their producers, affected crops, adverse health effects and guidance values

Mycotoxin Major producing fungi Main affected crops Principal adverse effects Health-based guidance value
(HBGV)

Aflatoxins FB1,
FB2, FG1, FG2;
metabolite
AFM1 in milk

Aspergillus parasiticus,
A. flavus (JECFA 2001a)

Peanuts, nuts, maize, cottonseed,
wheat, barley, cocoa beans, rice,
copra, dried fruits, spices, figs,
crude vegetable oils (IARC 2012;
EFSA 2007; JECFA 1999)

Extremely potent toxins and genotoxic
carcinogens (after metabolic
converstion to 8,9-epoxides in the
liver); classified as carcinogenic to
humans, AFM1 as possibly
carcinogenic to humans (EFSA
2007; IARC 2012; JECFA 1999,
2001a)

Because of carcinogencity, exposure
should be kept as low as reasonably
achievable. No official HBGV

Ochratoxin A
(OTA)

Aspergillus alutaceus,
Aspergillus carbonarius,
Penicillium verrucosum

(EFSA 2006)

Grain, legumes, oleaginous seeds,
peanuts, cashews, dried fruits,
coffee, wine, grape juice, cocoa,
spices, meat products (JECFA
2001a; EFSA 2006)

Nephrotoxic, renal tumors in rodents at
high doses (EFSA 2006, JECFA
2001a, IARC 1993); classified as
carcinogenic in experimental
animals and possibly humans (IARC
1993)

PTWI 120 ng/kg BW/day (EFSA 2006)
and 100 ng/kg BW/day (JECFA
2001a)

Fumonisins B1,
B2, and B3

(FB1, FB2,
FB3)

Fusarium verticillioides,
F. proliferatum,
Aspergillus niger (EFSA
2005; JECFA 2001a,
2012)

Maize (Fusarium spp.), grapes
(A. niger) (EFSA 2005; JECFA
2001a, 2012)

Inhibit sphingolipid biosynthesis;
induction of apoptosis, tumors in
rodents (EFSA 2005; JECFA 2001a;
SCF 2003, IARC 2002), putative
teratogenicity; FB1 classified as
possibly carcinogenic to humans
(IARC 2002)

Group PMTDI (JECFA 2001a, 2012)
and group TDI (SCF 2003) 2 μg/kg
BW/day for FB1, FB2, and FB3

alone or in combination

Deoxynivalenol
(DON) and its
acetylated deri-
vates (3- and
15-acetyl-
DON)

F. graminearum,
F. culmorum (EFSA
2004, 2011a; JECFA
2001a, 2011)

Wheat, maize, barley, oats, rye; less
often rice, sorghum and triticale
(EFSA 2004, 2011a; JECFA
2001a, 2011)

Feed refusal, vomiting, and diarrhea;
reduced growth; thymus, spleen,
heart, liver, and immune system
affected at higher doses (EFSA
2004; IARC 1993; JECFA 2001a;
SCF 2002); not classifiable as to
carcinogenicity to humans, (IARC
1993)

TDI 1 μg/kg BW/day for DON (SCF
2002, EFSA 2004); group PMTDI
1 μg/kg BW/day; ARfD 8 μg/kg
BW/day for DON and its acetylated
derivatives (JECFA 2011)

Other
trichothecenes,
e.g., T-2 toxin,
HT-2 toxin,
nivalenol
(NIV)

F. sporotrichioides,
F. langsethiae (JECFA
2001a), F. poae and
F. cerealis, F. culmorum
and F. graminearum

(EFSA 2013)

Cereals (EFSA 2011a) Acute effects of T-2 similar to high dose
radiation (diarrhea, hemorrhage,
hematotoxicity, and immune sup-
pression) (JECFA 2001a, EFSA
2011a); toxicological profile of NIV
similar (EFSA 2013); not classifi-
able as to carcinogenicity to humans
(IARC 1993)

Group TDI 0.1 μg/kg BW/day (EFSA
2011a) and group PMTDI 0.06 μg/
kg BW/day (JECFA 2001a) for T-2
and HT-2 toxins combined.

TDI 1.2 μg/kg BW/day for NIV (EFSA
2013)

Zearalenone
(ZEN)

Fusarium spp. (JECFA
2000, EFSA 2011b)

Worldwide in all types of grains;
highest levels in maize and wheat
bran (JECFA 2000, EFSA 2011b)

ZEN and its metabolites interact with
α- and β-estrogen receptors and en-
docrine disruptors (JECFA 2000,
EFSA 2011b)

PMTDI 0.5 μg/kg BW/day for ZEN,
recommended that the total intake of
ZEN and its metabolites should not
exceed the PMTDI (JECFA 2000);
TDI 0.25 μg/kg BW/d for ZEN
(EFSA 2011b)

Patulin (PAT) Byssochlamys spp.,
Penicillium spp.,
Aspergillus spp. (IARC
1986; JECFA 1996)

Many fruits, strawberries, tomatoes,
olives, and cereals (IARC 1986;
JECFA 1996)

Gastrointestinal ulceration;
immunotoxicity and neurotoxicity in
animals; genotoxic (JECFA 1996);
inadequate evidence of carcinoge-
nicity in animals, not classifiable as
to its carcinogenicity to humans
(IARC 1986)

PMTDI 0.4 μg/kg BW/day (JECFA
1996)

Ergot alkaloids Claviceps spp., in Europe
mostly C. purpurea

(EFSA 2012, BfR 2004)

True grasses; most important on
cereals (rye, wheat, triticale,
barley, millet, and oats) (EFSA
2012, BfR 2004)

Interact with neurotransmitter
receptors; acute toxicity: convulsive
neurotroxicity, uterine hemorrhage,
and abortions; chronic toxicity:
vasoconstriction with ischemia and
necrosis of extremities (ergotism)
(EFSA 2012, BfR 2004)

Various EAs seem to have similar toxic
potency; group ARfD 1 μg/kg BW/
day and group TDI 0.6 μg/kg BW/
day; both apply to the sum of EAs
(EFSA 2012)

PTWI provisional tolerable weekly intake, PMTDI provisional maximum tolerable daily intake, TDI tolerable daily intake, ARfD acute reference dose
(for 1-day exposure)
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was established. The operation principle is to direct streams of
grains along an array of optical sensors. When a grain differ-
ing in color is detected, the detector triggers a magnetic valve
and a jet of pressurized air removes the kernel from the stream
(Fraenkel 1962). This principle is still used today.
Contemporary grain sorters have a throughput of dozens of
tons grain per hour.

Aflatoxin contamination is usually heterogeneous so that
separating damaged kernels can effectively reduce contamina-
tion (Kabak et al. 2006). Grain sorting using UV light illumi-
nation for aflatoxin reduction is common. The observed bright
greenish-yellow fluorescence (BGYF) does not originate from
aflatoxins but from a kojic acid derivative following reaction
with endogenous peroxidase. In dried commodities, peroxi-
dase is inactivated and the BGYF method does not work.

The quick and easy Bblack light test^ may therefore result in
both false positive and false negative findings (Bothast and
Hesseltine 1975). Although the test is not as reliable as orig-
inally hoped (Doster and Michailides 1998), it is widely used,
e.g., by Turkish companies exporting dry figs and nuts to the
EU. As an audition by the Food and Veterinary Office of the
EU confirmed, the efficiency of sorting is regularly verified by
laboratory analysis (EC 2013).

Distribution of ergot alkaloids (EAs) is even more hetero-
geneous than aflatoxins because intermediate contamination
does not exist at a single-kernel level. Sclerotia loaded with
EAs are efficiently removed from rye by opto-electronic
sorting (Young et al. 1983; Miedaner and Geiger 2015).

Because infection with Fusarium verticillioides often does
not cause symptoms (Munkvold and Desjardins 1988) and

Fig. 1 Chemical structures of
major mycotoxins and
modification due to food
processing. 1 de-epoxidation, 2
acetylation, 3 oxidation, 4
epimerization, 5 deamination, 6
glucosylation, 7 hydrolysis, 8
lactone cleavage (hydrolysis), 9
hydroxylation, 10 peptide
cleavage, 11 sulfonation, 12
reduction, 13 ether cleavage
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correlation between fumonisin content and symptoms is weak
(Afolabi et al. 2007), grain sorting might not reduce fumonisin
content efficiently though successful attempts have been re-
ported (Pearson et al. 2004). Mycotoxins accumulating with-
out visible symptoms pose a limit to optical sorting as a my-
cotoxin mitigation strategy. This may explain why no re-
duction of aflatoxin content by sorting was found in a
recent study (Mutiga et al. 2014).

Sieving cleaning

Removing kernels with extensive mold growth, broken ker-
nels, and fine materials such as dirt and debris can be achieved
by sieve cleaning, which significantly lowers total mycotoxin
contamination. Removal of EAs from wheat grains by sieving
has been used as a plant quarantine treatment (Muthaiyan
2009). After sieving off corn screenings, it was determined

Fig. 2 Summary of physical and
chemical processes applicable to
food commodities in order to
mitigate targeted mycotoxins.
*Conversion to a more estrogenic
cis-form. **Experimentally
demonstrated on apple juice
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that intact kernels contained about 10 times less fumonisins
than broken corn kernels or smaller parts (Murphy et al.
1993). Particles passing through a 3-mm sieve usually consti-
tute 5–20 % of a sample by mass, but contain 26–69 % of
fumonisins (Sydenham et al. 1994). Removing broken kernels
and smaller parts frommaize reduced DON and ZEN contam-
ination by around 70–80 %; however, up to 69 % of the total
maize was rejected as well (Trenholm et al. 1991). Losses of
barley or wheat were lower with 34 and 55 % for comparable
mycotoxin reduction.

Flotation and density segregation

The different physical properties of mold-damaged kernels
compared to non-damaged kernels can be exploited to sepa-
rate them by density segregation or by fractionation on gravity
tables. The damage to the kernels is caused by different fungi,
rendering this techniques sensitive to the overall fungal con-
tamination, rather than to specific toxins. Ergot containing
EAs can be efficiently separated from rye grains by flotation
in NaCl solution (Plante and Sutherland 1944). Removal of
corn buoyant in water reduced aflatoxin levels by 60 %, at a
mass loss of 22% (Huff 1980). Using a 30% sucrose solution,
87% aflatoxin reduction was achieved by the removal of 50%
of the material (Huff 1980). Flotation on a saturated sodium
chloride solution removed not only 3 % of the kernels but also
74 % of the total aflatoxin content in maize (Huff and Hagler
1985). Likewise, the removal of kernels floating on both water
and 30 % sucrose reduced more than 53 % DON in maize and
above 68 % in wheat. The same procedure basically removed

all ZEN in the tested samples (Huff and Hagler 1985). In a
later study, fumonisin reduction of 86 % was achieved by
removingmaize kernels buoyant in saturated brine, with about
20 % material loss (Shetty and Bhat 1999).

Washing

Water-soluble mycotoxins can be partly washed from the sur-
face of grains. ZEN is barely water-soluble, but well soluble in
alkaline solutions. Therefore, sodium carbonate solutions are
often used as an alternative to improve the effectiveness of
washing steps. Washing barley and corn three times in dis-
tilled water reduced the DON content by 65–69%, while ZEN
concentrations were reduced by 2–61 %. Using 1 mol/l sodi-
um carbonate solution for the first wash step reduced DON by
72–75 % and ZEN by 80–87 % (Trenholm et al. 1992). In a
similar study, the concentration of both toxins was reduced by
44 % in corn by a single rinsing step with water. Additional
soaking of the material in a 0.1 mol/l aqueous sodium carbon-
ate solution further reduced DON and ZEN concentrations by
35 % (Rotter et al. 1995). As the soaking step took a full day,
this technique should already be regarded as a chemical pro-
cessing step (see next chapter). Washing and buoyancy tech-
niques both suffer from the shortcoming that the grain must be
dried after treatment before it can be stored. In order to ensure
an efficient washing of contaminated commodities with water
or water-based solutions, parameters such as partition coeffi-
cient or solubility should be considered and are given in
Table 2.

Table 2 Hydrophobicity (log P)
and solubility in water (in mg/l) of
selected mycotoxins. Given data
were gathered from databases
using predictive tools

Name predicted
log P*

Predicted solubility in
water (mg/l)*

Entry number in the toxin and toxin target
database (T3DB)

Ochratoxin A 3.66 25.6 http://www.t3db.ca/toxins/T3D3605

Zearalenone 3.04 117 http://www.t3db.ca/toxins/T3D3665

Ergotamine 2.95 223 http://www.t3db.ca/toxins/T3D2460

T-2 toxin 1.95 347 http://www.t3db.ca/toxins/T3D3664

HT-2 toxin 1.32 1120 http://www.t3db.ca/toxins/T3D3673

Aflatoxin B1 1.73 233 http://www.t3db.ca/toxins/T3D3598

Aflatoxin B2 1.63 392 http://www.t3db.ca/toxins/T3D3669

Aflatoxin G1 1.81 424 http://www.t3db.ca/toxins/T3D3670

Aflatoxin M1 1.21 994 http://www.t3db.ca/toxins/T3D3666

Citrinin 1.23 1160 http://www.t3db.ca/toxins/T3D3597

Patulin −0.27 163,000 http://www.t3db.ca/toxins/T3D3661

Deoxynivalenol −0.76 36,000 http://www.t3db.ca/toxins/T3D3668

Nivalenol −0.79 64,600 http://www.t3db.ca/toxins/T3D3674

Fumonisin B1 −0.81 > 20,000** http://www.t3db.ca/toxins/T3D3603

Fumonisin B2 −0.28 > 20,000** http://www.t3db.ca/toxins/T3D3697

*Data from ALOGPS 2.0 (http://www.t3db.ca/toxins)

**Experimental data from the US National Toxicology Program (NTP 2000)
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Dehulling

The outer layers of grain are removed by dehulling tech-
niques, which are formerly composed of an indispensable
processing step prior to grinding. Limitation of fungal coloni-
zation and mycotoxin accumulation to surface layers of the
kernel are prerequisites for the success of dehulling in myco-
toxin content reduction (Vučković et al. 2013). This condition
is fulfilled for aflatoxins in maize, dehulling of maize can
therefore remove up to 93 % of aflatoxins (Siwela et al.
2005). During the preparation of muthokoi, a traditional
dehulled maize dish in Kenya, aflatoxin content was reduced
by 46.6% (Mutungi et al. 2008), leading to significantly lower
dietary exposure due to maize meal and muthokoi consump-
tion as compared to the consumption of entire kernels
(Kilonzo et al. 2014).

Steeping

This is the first step in wet milling of maize and involves
soaking maize for 36–50 h at 50 °C in water containing 0.1
to 0.2 % SO2 to facilitate germ separation and breaking down
of protein matrix. Adding SO2 also promotes lactic acid pro-
duction which can be regarded as a chemical treatment from
this review’s perspective. Half of the aflatoxin content of corn
was found in the steep liquor (Aly 2002). Fumonisins, which
are highly polar, migrate from kernels into steeping water
(Canela et al. 1996). Pujol et al. (1999) reported that steeping
corn kernels in 0.2 % solution of SO2 at 60 °C for 6 h was
effective in reducing FB1. OTA was distributed equally be-
tween solubles and corn grits (Wood 1982). Steeping sorghum
grains in 0.2 %NaOH reduced the concentration of aflatoxins,
fumonisins, ZEN, and DON under detectable levels (Lefyedi
and Taylor 2006).

Milling

After milling small-grain cereals, high mycotoxin levels are
found in bran, such as DON, while finished flour is contam-
inated to a much lower degree (Cheli et al. 2013; Tibola et al.
2015). Spatial distribution of DON, ZEN, and their masked
forms in wheat milling fractions was studied by Schwake-
Anduschus et al. (2015). ZEN was concentrated in fiber-rich
parts of grains DON contaminated all fractions equally, show-
ing that the efficiency of milling as a mycotoxin mitigation
strategy is limited to commodity/mycotoxin pairs in which
mycotoxins are enriched in fractions that can be removed from
processing.

Wet milling of maize results in germ (further processed into
germ oil), starch, and gluten. Different mycotoxins accumu-
late in different fractions except for the starch fraction in
which all mycotoxins are reduced below a level of concern.
40–50 % of aflatoxins moved from corn into steep water in

wet milling, 28–38 % remained in the fiber fraction, 11–17 %
in the gluten fraction, 6–11 % in the germ, and only 1 % in
starch (Yahl et al. 1971; Bennett and Anderson 1978).
Fumonisins are partly dissolved in steep water. At very high
contamination levels, significant amounts of fumonisins
remained in gluten and fiber. Germ fractions are less affected
and starch is virtually free of fumonisins (Bennett et al. 1996).
Two thirds of T-2 toxin were removed by steep and process
water during wet milling of maize, starch contained 4 % of the
toxin and the remainder was evenly distributed between germ,
gluten, and fiber (Collins and Rosen 1981). OTA present in
steeped corn (see earlier) went into process water solubles and
corn grits in almost equal amounts while only 4 % were trans-
ferred to the germ (Wood 1982).

Dry milling of maize grain leads to concentration of myco-
toxins in germ and bran fractions (Bullerman and Bianchini
2007). Aflatoxins are concentrated in germ fraction to a higher
degree than fumonisins (Pietri et al. 2009). Increased concen-
trations of 16 Fusarium spp. mycotoxins in bran and germ as
compared to whole grain were reported for dry-milled maize
by Schollenberger et al. (2008). As expected, apolar ZEN was
mainly found in germ and bran fractions after dry milling
(Bennett et al. 1976). Milling results in redistribution of the
ergot sclerotia with EAs among milling fractions (EFSA
2012).

Heat treatment

The time/temperature combination undoubtedly remains one
of the most important interventions by which industrial pro-
cessing can affect the mycotoxin content in a finished food
product. Most mycotoxins are chemically and thermally stable
though. While conventional food preparation with tempera-
tures up to 100 °C have little effect on most mycotoxins,
higher temperatures used in frying, roasting, toasting, and ex-
trusion might reduce mycotoxin contamination.

Aflatoxins can be reduced by extrusion by 50–80 %, de-
pending on grain moisture and temperature (Bullerman and
Bianchini 2007). Alkaline treatment (see next chapter) can
increase the efficacy of this process. Similar results were
achieved for peanut meal, when extrusion alone reduced afla-
toxins by 23–66 % and up to 87 % in the presence of ammo-
nium hydroxide (Cheftel 1989). Roasting can reduce the
levels of aflatoxins by 50–70 % in peanuts and pecans and
by 40–80 % in maize (Conway et al. 1978). Pure aflatoxin B1

(AFB1) was destroyed by temperatures above 160 °C; soy-
bean matrix accelerated the process (Raters and Matissek
2008). Roasting can reduce the content of OTA in coffee
beans by up to 97 %, depending on the temperature and par-
ticle size (Oliveira et al. 2013). Degradation of OTA in wheat
by heating (Boudra et al. 1995) and extrusion (Scudamore
et al. 2004) was less efficient. Thermal degradation products
of OTA are 14-(R)-ochratoxin A, 14-decarboxy-ochratoxin A
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and ochratoxin alpha amide, all of which have reduced toxic-
ity (Cramer et al. 2008; Bittner et al. 2015). Cazzaniga et al.
(2001) reported drastic reduction of the level of DONunder all
investigated conditions but other labs found moderate effects
depending on the conditions (Wu et al. 2011) or no reduction
of DON and nivalenol (NIV) (Scudamore et al. 2008).
Extrusion cooking of maize grits contaminated with ZEN re-
duced the toxin content by 65–83 % (Ryu et al. 1999).
Extrusion or roasting was also effective in reducing
fumonisins in maize grits by 34–95 % (Bullerman and
Bianchini 2007). Increased temperature, decreased screw
speed, and glucose addition resulted in higher reduction rates
during extrusion. Thermal treatment always involves transfor-
mation reactions. Fumonisin in corn extruded with glucose
(Bullerman and Bianchini 2007) yielded N-(1-deoxy-D-
fructos-1-yl)-fumonisin B1, a compound less toxic than
fumonisin B1 to rats (Hahn et al. 2015). Citrinin (CIT) could
also be efficiently degraded by heating (Trivede et al. 1992).
EAs are partly degraded and epimerized during bread baking;
the ratio between epimers shifts towards the -inine forms
(EFSA 2012; Merkel et al. 2012).

Irradiation

Irradiation may be an approach for removing mycotoxins on
an industrial scale, providing in fact energy to both food con-
stituents and contaminants: reactions occur and change the
molecular structure of food constituents. Non-ionizing (solar,
UV, microwave) and ionizing (gamma) radiations can reduce
or eliminate pathogenic microorganisms, but partly also my-
cotoxins in food.

Photodegradation of aflatoxins in cereals has been found to
decrease toxin levels by about 40 % after 3 h and up to 75 %
after 30 h of direct sunlight (Herzallah et al. 2008). The same
authors found sunlight to be more effective than 10 min of
microwave heating (32 % reduction) or gamma-irradiation
with 25 kGy (43 % reduction). In another study, peanuts,
pistachios, rice, and corn were irradiated with gamma radia-
tion (Ghanem et al. 2008). At higher doses, the aflatoxin re-
duction was pronounced, reaching 59–88 % at 10 kGy.
However, the most recent study showed aflatoxin reductions
of only 11–21 % at 15 kGy (di Stefano et al. 2014). The same
study reported the reduction of OTA in almonds to 24 % by
gamma radiation at 15 kGy. This number is in good agreement
with fumonisin reduction in maize, which was found to be
about 20 % after a dose of 15 kGy (Visconti et al. 1996).
Microwave treatment (and convection heat) was partially suc-
cessful in lowering DON levels in naturally contaminated
maize, with greatest effect occurring at the highest tempera-
tures. With final temperatures of 150–175 °C, a 40 % reduc-
tion was achieved (Young 1986). This reduction can be ex-
plained by the formation of several nor-DONs, which are far
less cytotoxic than DON (Bretz et al. 2006). Exposure of

vegetable oil contaminated with ZEN to sunlight through
common glass bottles caused isomerization of natural trans-
ZEN into cis-ZEN with a conversion of up to 90 % (Köppen
et al. 2012). UV light is very effective in removal of PAT in
apple juice and cider. Evaluation of the reduction of PAT in
apple juice at different wavelengths in the UVC range showed
that 222 nm was most suitable (Zhu et al. 2014). At an initial
level of about 1000 μg/l, the UV exposure was successful in
reducing PAT levels by 5 to 73%, depending on the number of
passes (Assatarakul et al. 2012). UV exposure, however, af-
fected the taste of apple juice and cider.

Cold plasma

Cold plasma has strong antimicrobial effects and can be used
to sterilize fragile or temperature-sensitive surfaces, such as
food. A recent review on the use of plasma for food processing
(Schlüter et al. 2013) highlighted the potential of this new
technique that at the same time demands cautious use. No
investigation on potential formation of toxic compounds by
plasma treatment has been conducted yet. The authors con-
cluded that plasma-treated products have to be assessed on a
case by case basis for the time being.

Low-pressure cold plasma destroyed up to 50 % of
alfatoxins on nut surfaces (Basaran et al. 2008). The effect
of atmospheric pressure argon cold plasma on spores and my-
cotoxin production of Aspergillus niger contaminating date
palm fruits was recently evaluated (Ouf et al. 2015). After
treatment for 9 min, all fungal spores were killed, OTA and
fumonisin B2 contents dropped from 25 and 6 μg/100 mm2,
respectively, below the limits of detection. Cold plasma gen-
erated by atmospheric dielectric barrier discharge in a direct
and remote mode with synthetic air as working gas reduced
the concentration of DON and ZEN in thin layers from
100 μg/ml to a few micrograms per milliliter (ten Bosch
et al. 2014).

Mycotoxin binders

Mycotoxin binders are a physical technique used for feed
decontamination (Jans et al. 2014) that principally can also
be used in human intervention. Activated charcoal was used
to remove patulin from naturally contaminated cider and ben-
tonite removed AFM1 from naturally contaminated milk
(Doyle et al. 1982). De Nijs et al. (2012) discussed the effi-
ciency of mycotoxin mitigation and food safety aspects of
such techniques. The efficiency of binders in mitigating ad-
verse effects of aflatoxins in food was demonstrated in a ran-
domized and double-blinded clinical trial (Wang et al. 2005;
Afriyie-Gyawu et al. 2008; Wang et al. 2008). These are the
only reports on the use of such techniques in food so far.
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Chemical processing methods

Many studies investigated chemical food processing methods
for their suitability to destroy or inactivate mycotoxins. It
should be noted that chemical treatment for the purpose of
detoxification or decontamination is not authorized within
the EU for commodities destined for human food; dedicated
mitigation treatments would therefore require regulatory ap-
proval. Chemicals transform mycotoxins into other com-
pounds, the toxicity of which must be assessed. It is further-
more crucial that the treatment does not impair nutritional
quality, texture, or flavor of food. Criteria recently defined
for the approval of detoxification techniques for feeds (EC
2015) may serve as a model for the development of corre-
sponding regulations for food.

Common food processing technologies may reduce myco-
toxin content as a side effect of accompanying chemical pro-
cesses. Codex Alimentarius provides a list of such chemicals
(Codex Alimentarius General Standard for Food Additives)
and national legislations regulate their use. In this section,
the effect of chemical treatments on mycotoxins in food will
be reviewed regardless of whether the treatments are part of
standard food processing or they have been studied as dedi-
cated detoxification methods. The use of chemicals in combi-
nation with physical treatments, described in the previous sec-
tion, may increases the efficacy of mycotoxin degradation.
Chemical agents for mycotoxin detoxification can be applied
by mixing, packing, fumigation or immersion.

Acid treatment

Most of the known mycotoxins are resistant against weak
acids, as reviewed by Müller (1983). However, treatment of
aflatoxins with strong acids destroyed the biological activity
of AFB1 and AFG1 by converting them to hemiacetal forms
AFB2a and AFG2a, respectively (Ciegler and Peterson 1968;
Dutton and Heathcote 1968). Treatment with HCl (pH 2) re-
duced AFB1 levels by 19%within 24 h (Doyle et al. 1982). In
the presence of acetic anhydride and hydrochloric acid, the
reaction proceeds further to give the acetoxy derivative.
Similar adducts of AFB1 and AFG1 are formed with formic
acid-thionyl chloride, acetic acid-thionyl chloride, and
trifluoroacetic acid. Aiko et al. (2016) treated aflatoxins with
diluted acetic acid, citric acid, and lactic acid under conditions
simulating cooking. Lactic acid was most efficient, converting
AFB1 into AFB2 (traces) and AFB2a (major product). Apart
from detoxifying aflatoxins, small carboxylic acids inhibit
mold growth, and are therefore used as preservatives.

Treatment with bases

Aflatoxins are unstable under alkaline conditions (Kiermeier
and Ruffer 1974; Itoh et al. 1980), the first step of degradation

being the opening of the lactone ring. Because this step is
reversible, it is important to allow the reaction to proceed to
completion. The degradation of aflatoxins in groundnut and
cottonseed meal as well as in corn by sodium hydroxide and
other alkaline reagents (Ca(OH)2, Na2CO3, Na3PO4, methyl-
amine, ethylene-diamine, ethanolamine) has been reviewed
by Müller (1983). In most cases, a partial detoxification was
achieved. Degradation of aflatoxins using ammonia has been
extensively studied and proved effective in laboratory exper-
iments as well as in field trials effective (Müller 1983; Park
et al. 1988). Ammoniation of AFB1 resulted in two major
breakdown products which retained the difuran moiety but
lost the lactone ring: aflatoxin D1 and D2 [4-hydroxy-6-
methoxy-3a,8a-dihydrofuro[2,3]benzofuran] (Cucullu et al.
1976). Ammoniation decreased aflatoxin levels in maize by
more than 75 % (Park et al. 1988) and completely
decomposed OTA in maize, wheat, and barley (Chełkowski
et al. 1981). Ammoniation can reduce aflatoxin concentration
by more than 99% (Chełkowski et al. 1981; Masri et al. 1969;
Brekke et al. 1977). The efficacy of the process depends on the
temperature, pressure, moisture, duration, and the substrate
(Weng et al. 1994). Park et al. (1988) reviewed the decontam-
ination of aflatoxins by ammoniation and concluded that the
results demonstrate overwhelming support for the efficacy
and safety of ammoniation as a practical solution to aflatoxin
detoxification in oilseed meals intended for animal feeding. In
spite of three decades of encouraging research, ammoniation
of food commodities has, to our knowledge, not been ap-
proved in any country so far.

The instability of rubratoxin and cyclochlorotin under
alkaline conditions was shown by Moss (1971) and
Ishikawa et al. (1970), respectively. Chełkowski et al.
(1981) demonstrated reduction of the content of penicillic
acid, CIT, OTA, ZEN, and AFB1 after treatment with 2 %
aqueous NH3. PAT was unstable already at pH 7, while at
pH 8, it was degraded completely after 190 h (Brackett
and Marth 1979). Bennett et al. (1980) described 80 %
reduction of ZEN in spiked corn grits and 64 % reduction
in naturally contaminated corn after treatment with 3 %
NH3 at 50 °C for 16 h.

Treatment of FB1-contaminated corn with Ca(OH)2,
simulating nixtamalization (soaking/cooking in an alka-
line solution), completely hydrolyzed FB1 but the toxicity
of the products in brine shrimp assay was only partly
reduced (Park et al. 1996). Ammoniation reduces the con-
centration of FB1 in wheat by 79 % (Park et al. 1992) but
was inefficient in corn according to Norred et al. (1991).
Toxicity of the products of alkaline hydrolysis of
fumonisins varies considerably among species (see enzy-
matic hydrolysis of fumonisins in the following section
for details). Until these effects are fully understood, alka-
line treatment of fumonisin-containing food ingredients
should be avoided.
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Use of oxidizing agents

The oxidation of aflatoxin appears to be primarily an addition
directed towards the double bond of the terminal furan ring,
followed by subsequent reactions involving the phenol
formed on opening the lactone ring. It was well-known that
aflatoxins such as AFB1, AFG1, and AFM1, which had a ter-
minal double bond in the dihydrofuran ring were more sus-
ceptible to attack by ozone (O3) and other oxidizing agents
than AFB2, AFG2, and AFM2, which lack this double bond
(McKenzie et al. 1997). It is postulated that ozone reacts with
the C8–C9 double bond of the furan ring of aflatoxin through
electrophilic attack, causing the formation of primary ozon-
ides followed by rearrangement into derivatives such as alde-
hydes, ketones, and organic acids (Proctor et al. 2004). Studies
have demonstrated that ozone is able to degrade aflatoxins in
different commodities (Dwarakanath et al. 1968) and in aque-
ous solutions (Maeba et al. 1988). AFB1 and AFG1 were
sensitive to ozone and easily degraded with 1.1 mg/l of ozone
within 5 min at room temperature. On the other hand, afla-
toxins B2 (AFB2) and G2 (AFG2) were rather resistant to
ozone, requiring 50–60 min to degrade them completely with
34.3 mg/l of ozone. These forms require longer exposure for
detoxification; a possible mechanism is opening of the lactone
ring (Samarajeewa et al. 1990).

Ozone was reported to reduceAFB1 andAFG1 levels by 77
and 80 %, respectively, in peanuts after treatment at 75 °C for
10 min, while the maximum degradation of 51 % was
achieved for AFB2 and AFG2 regardless of the exposure time
(Proctor et al. 2004). In another study, the reductions of AFB1

in paprika were 80 and 93% after exposures to 33 and 66mg/l
O3 for 60 min, respectively (Inan et al. 2007). Ozone degra-
dation has been shown to be effective also against other my-
cotoxins such as DON (Young 1986, Young et al. 1986) and
moniliformin (Zhang and Li 1994). A highly concentrated
ozone produced by an electrochemical method (Rogers et al.
1992) was able to degrade and detoxify several mycotoxins
in vitro, including aflatoxins, cyclopiazonic acid, OTA, PAT,
secalonic acid D, and ZEN after treatment with O3 at 10 % for
15 s (McKenzie et al. 1997).

Hydrogen peroxide, H2O2, was used on a commercial scale to
detoxify aflatoxins. Treatment of figs with H2O2 at 0.2 % caused
a 66 % reduction in AFB1 levels following 72-h storage (Altug
et al. 1990). Hydrogen peroxide reduced aflatoxin concentrations
in corn (Chakrabarti 1981), peanut meal (Sreenivasamurthy et al.
1967), and milk (Applebaum and Marth 1982). The concentra-
tion and the toxicity of ZEN decreased after treatment with aque-
ous solution of H2O2 (Lasztity et al. 1977). The efficiency of
H2O2 for destruction of ZEN in contaminated corn was found
to dependent upon the concentration of H2O2, temperature, and
period of exposure (Abd Alla 1997). CITwas completely detox-
ified by 0.05 %H2O2 after 30 min whereas OTAwas resistant to
this treatment (Fouler et al. 1994).

Matsuura et al. (1979) reported that ZEN is destroyed by
oxidation with ammonium persulfate. Natarajan et al. (1974)
showed that sodium hypochlorite concentration and pH, but
not temperature and time, affected the destruction of afla-
toxins in peanut protein. Aflatoxin degradation by sodium
hypochlorite was compared with the effect of sodium hydrox-
ide and ammonium hydroxide (Draughon and Childs 1982).
All three treatments significantly reduced fluorescence but the
survival of brine shrimp has not always increased. The muta-
genic and cancerogenic aflatoxin B1-2,3-dichloride may be
formed using sodium hypochlorite, although this can be
avoided by adding acetone (Castegnaro et al. 1981).
Aflatoxins were removed completely from rice meal treated
with 16.5 % NaCl and 1 % NaOCl for 24 h (Okonko and
Nwokolo 1978).

Treatment with reducing agents

Sodium bisulfite (NaHSO3) was shown to destroy myco-
toxins, primarily AFB1 in maize (Doyle et al. 1982) and dried
figs (Altug et al. 1990). Dried fig fruits were spiked to contain
250 μg/kg AFB1 and treated with sodium bisulfite (1 % in the
aqueous phase). This treatment caused 28 % of added toxin to
degrade within 72 h at 25 °C. When 0.2 % H2O2 were added
10 min before the bisulfite treatment, 65 % of AFB1 were
degraded in 72 h. Heating bisulfite-treated samples at 45 to
65 °C for 1 h caused up to 68 % of added AFB1 to be degrad-
ed. Promising results have been achieved in AFB1, AFG1, and
AFM1 detoxification using sodium bisulfite (Doyle andMarth
1978a, b; Moerck et al. 1980; Hagler et al. 1982; Yagen et al.
1989). Moerck et al. (1980) and Hagler et al. (1982) demon-
strated efficient destruction of low and high levels of aflatoxin
in corn. The decontaminated corn had improved color, better
palatability, better handling properties, improved economics,
and the residual bisulfite was a permitted food additive. Yagen
et al. (1989) established the structure of aflatoxin B1S as 15α-
sodium sulfonate of AFB1. The formation of AFB1 products
substituted at the 15th position only is unprecedented and
implies an unusual mechanism. The completeness of the reac-
tion and the water solubility of aflatoxin B1S supports the use
of bisulfite as a promising method to mitigate AFB1 and
AFG1.

NaHSO3 solutions reduced DON in contaminated maize
(4.4 mg/kg) by 85 % after 18 h at 80 °C (Young et al. 1987).
Sodium metabisulfite at 10 g/kg was reported to overcome the
depressing effect of DON on feed intake in piglets (Dänicke
et al. 2005). Reduction of DON in animal feed by treatment
with sodium bisulfite and sodiummetabisulfite has been dem-
onstrated in several studies. The treatment leads to the forma-
tion of less toxic DON sulfonate; a review is available
(Dänicke et al. 2012). Later, it was discovered that the use of
different sulfur reagents for reduction of DON yielded three
different DON sulfonates with the same mass and molecular
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formula (Schwartz et al. 2013). DON sulfonate 1 is character-
ized by loss of the epoxide group, and DON sulfonate 2 by
formation of a hemiketal. DON sulfonate 3 is an equilibrating
mixture of two isomers, a ketone and a hemiketal. Rapid for-
mation of DON sulfonates 1 and 2 occurs at alkaline pH, slow
formation of DON sulfonate 3 takes place at acidic pH, irre-
spective of the sulfur reagent used. Whereas DON sulfonates
1 and 2 are stable across a broad pH range, DON sulfonate 3
decomposes to DON and DON sulfonates 1 and 2 at alkaline
pH (Schwartz et al. 2013).

Treatment with food ingredients and medical plants

Certain spices, herbs, and other ingredients used in food produc-
tion and home cooking were shown to detoxify mycotoxins.
Incubation with extract of ajwan (carom), used as a spice in
Asian cooking, destroyed aflatoxins (Velazhahan et al. 2010).
Extracts of medicinal plants Ocimum tenuiflorum detoxified af-
latoxins even at room temperature (Panda and Mehta 2013) and
aqueous extracts of vasaka leaves (Adhatoda vasica) degraded
AFB1 completely after 24 h at 37 °C (Vijayanandraj et al. 2014).
Detoxification of aflatoxins by Indian spices and herbs was re-
cently reviewed (Aiko and Mehta 2015). Reducing sugars such
asD-glucose andD-fructose blocked the primary amino group of
FB1, after incubation at 65 °C for 48 h, preventing FB1-induced
toxicity on cell tissue cultures on rats and swine (Fernandez-
Surumay et al. 2005).

Enzymatic detoxification

Distinguishing features of enzymatic detoxification

Enzymatic catalysis takes a unique position among activities
potentially suitable to detoxify mycotoxins. A distinguishing
feature of enzymatic detoxification is its specificity. Notable
exceptions are laccases and peroxidases, which have been
tested for degradation of mycotoxins (Alberts et al. 2009;
Wang et al. 2011) though they modify a wide range of sub-
strates and may thus destroy valuable food components. The
potential of enzymatic activities for the detoxification of my-
cotoxins in general was recently reviewed (Vanhoutte et al.
2016) but only a single short review is available on the
potentical of enzymatic detoxification of mycotoxins in food
production (Karlovsky 2014).

Enzymes are proteins and, when used in food processing,
may cause allergy. However investigation of the allergenic
potential is part of the documentation required for the approval
of enzymes as additives or processing aids (EFSA 2009;
JECFA 2001b). No allergic reaction to current food enzymes
has been reported so far, indicating that enzymes are of limited
concern regarding food allergies (Bindslev-Jensen et al.
2006). Because of their specificity and favorable toxicological

profile, enzymes possess a yet unexplored potential to detox-
ify organic contaminants in food. A recent application
pointing the way is the use of recombinant asparaginase to
prevent formation of acrylamide in bread (Hong et al. 2014).
No enzyme has so far been authorized in the EU for the re-
duction of mycotoxin contamination in food.

Intentional use of enzymes to detoxify mycotoxins in food

production

Enzymes are used extensively as processing aids. For in-
stance, recombinant aspartic protease chymosin is an al-
ternative to rennet in the manufacturing of cheese (Teuber
1993) and industrial enzymes of five classes are used in
bread making (Whitehurst and van Oort 2010). Malting
and brewing are further examples of processes that would
benefit from the use of enzymes detoxifying mycotoxins.
Beer is commonly contaminated with DON (see section
BEthanol and beer^). Adding enzymes detoxifying DON
to amylases, glucanases, proteases, and other enzymes
used in beer production (Whitehurst and van Oort 2010)
is compatible with brewing technologies. Unfortunately,
enzymes suitable for irreversible detoxification of DON
are not available yet. Promising new detoxification activ-
ities have been identified (Ito et al. 2013; He et al. 2015);
it remains to be seen whether enzymes responsible for
these activities are suitable for industrial production.

DON is a major mycotoxin contaminating wheat. Because
the same mycotoxin occurs in beer and wheat flour, enzymes
envisaged for the detoxification of DON in beer might be
suitable for bakery products, too. Such an enzyme could be
added to wheat flour together with recombinant xylanases,
proteases, amylases, and other enzymes commonly used in
the process.

Another example of the potential of industrial enzymes
to reduce exposure to mycotoxins is the detoxification of
PAT. Fruit juices and particularly purees may contain PAT.
Production of juices involves treatment with pectinases/
arabanases , glucoamylases , and other enzymes.
Enzymatic activities degrading PAT have been found in
many species of bacteria and yeast (for instance, Zhu
et al. 2015b). Degradation products are less toxic
(Castoria et al. 2011; Zhu et al. 2015a), indicating that
mitigation of PAT by enzymes is feasible. At least one of
the enzymes detoxifying PAT does not require diffusible
cofactors and is active in semi-purified form (Zhu et al.
2015a). Degradation of PAT can likely be combined with
current enzymatic treatments used in the production of
fruit juices and purees.

Widespread use of enzymes in food processing suggests
that detoxification of mycotoxins by enzymatic treatment is
compatible with current food technologies.
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Examples of enzymatic activities suitable

for the detoxification of mycotoxins in food processing

Because fumonisins cause severe, species-specific diseases in
farm animals (Voss et al. 2007) and are presumably also in
humans (Isaacson 2005), extensive research on fumonisin de-
toxification has been carried out (Alberts et al. 2016).
Enzymes detoxifying fumonisins were found in black yeast
Exophiala spinifera (Blackwell et al. 1999) and genetically
engineered maize varieties detoxifying fumonisins by en-
zymes of the yeast were developed (Duvick 2001).
Fumonisin-detoxifying bacterium Sphingomonas spp. was
characterized (Heinl et al. 2010) to provide enzymes for the
decontamination in animal feeds; applications of these en-
zymes in food production are explicitly considered in the
pertaining patent. Fumonisins are polyketides possessing an
amino group and esterified with two carballylic acid residues.
Microbial degradation of fumonisins is initiated by the hydro-
lysis of the ester bonds, which reduced the toxicity of
fumonisins in pigs (Grenier et al. 2012) but not in rats
(Seiferlein et al. 2007). Biochemical studies showed that hy-
drolyzed fumonisins might be transformed to highly toxic de-
rivatives in vivo (Humpf et al. 1998), which might account for
species differences in the toxicity of hydrolyzed fumonisins.

It was shown already in 1988 that the fungus Clonostachys
rosea (syn. Gliocladium roseum) is capable to metabolize ZEN
in high yield (el-Sharkawy and Abul-Hajj 1988) to a less estro-
genic product. Two groups identified theC. rosea gene encoding
a ZEN-specific hydrolase (Takahashi-Ando et al. 2002;
Karlovsky et al. 2003). The enzyme does not require cofactors
and appears suitable for food processing. Further activities de-
toxifying ZEN have been found in yeasts, bacteria, and fungi
(Vekiru et al. 2010; Tan et al. 2014; Popiel et al. 2014).

Numerous enzymes degrading OTA have been described
(Abrunhosa et al. 2010). Because OTA is an amide, many pep-
tidases are able to hydrolyze this mycotoxin, including carboxy-
peptidase and chymotrypsin (Pitout 1969). Numerous lipases
were shown to hydrolyze OTA, too (Stander et al. 2000). An
enzyme from A. niger cleaves OTA into less toxic OTα and
phenylalanine (Dobritzsch et al. 2014).

Enzymatic detoxification appears conceivable for any myco-
toxin but a proof of concept for food processing is yet to be
provided.

Microbial decontamination

Detoxification of mycotoxins as a side effect

of fermentation

Fermentation is food processing with the help of microorgan-
isms. Activities of bacteria and fungi used in fermentations are
responsible for desired transformations of food components but

hundreds of additional enzymatic activities are present in their
cells, actively secreted into food matrix or released from
disintegrated cells after autolysis. Some of these activities may
transform mycotoxins into non-toxic products (Wolf-Hall and
Schwarz 2002) but no microbial strain has been authorized so
far as a processing aid targeting mycotoxins. Malting and
brewing are prominent examples of technologies that may ben-
efit from such fermentation aids. Considering howmuch beer per
capita is consumed in industrial countries, beer contributes sig-
nificantly to exposure of consumers to DON and ZEN (see sec-
tion BEthanol and beer^). Detoxification of several mycotoxins
during malting has been documented, including complete loss of
OTA and CIT (see section BEthanol and beer^) and loss of most
of EAs during malting and brewing (Schwarz et al. 2007) but
DON survives the process (Scott 1996).

Manufacturing of many dairy products involves fermentation
with lactic acid bacteria. Themajormycotoxin of concern inmilk
is aflatoxin M1 (see section BMilk and other dairy products^).
Detoxification of aflatoxins by lactic acid bacteria has been stud-
ied for three decades (Megalla andMohran 1984). Unfortunately,
we still do not knowwhether the loss of aflatoxins observed after
incubation with lactic bacteria is caused by adsorption, as shown
for some lactobacteria (Pierides et al. 2000; Haskard et al. 2001),
or whether irreversible enzymatic transformations occurred. This
question has not been rigorously addressed so far in spite of its
eminent relevance for food safety.

Cultures of yeast Saccharomyces cerevisiae are used in wine
making, brewery, and sour dough production. S. cerevisiae was
shown to detoxify the mycotoxins PAT (Moss and Long 2002)
and OTA (Petruzzi et al. 2014). Alcoholic fermentation of fruit
juices destroys PAT, therefore fermented products such as cider
and perry will not contain PAT (FAO/WHO 2003). Products of
the transformation of ZEN by S. cerevisiae retain their
estrogenicity (Matsuura and Yoshizawa 1985; Böswald et al.
1995). Other mycotoxins such as fumonisins and some tricho-
thecenes are not affected by fermentation (Bothast et al. 1992;
Schwartz et al. 1995).

An example of technologywith potential to reducemycotoxin
content by fermentation is the production of tempeh in Indonesia.
Tempeh is traditionally made of soybean fermented with
Rhizopus oligosporus. Some current forms of tempeh contain
maize and groundnuts, which are prone to contamination with
aflatoxins. Interestingly, Rhizopus spp. strains were reported to
detoxify aflatoxins (Nakazato et al. 1990). The safety of tempeh
can possibly be improved by selecting starter cultures that detox-
ify aflatoxins without any modification of the technology.

Detoxification of mycotoxins by pure microbial cultures

with potential for applications in food production

Except for Rhizopus spp., the ability of food-grade microbial
strains to detoxify mycotoxins is limited. Most toxicologically
relevant mycotoxins are not detoxified by microbial species
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used in fermentation. Active strains have to be isolated from
other sources. The first screening for mycotoxin-degrading
microbes was carried out in the 1960s in the US Department
of Agriculture, targeting aflatoxins (Ciegler et al. 1966).Many
promising activities were reported but the results were rarely
confirmed and advanced. Physical adsorption and enzymatic
degradation were seldom differentiated. The unsatisfactory
state of knowledge is reminiscent of the removal of aflatoxins
by lactic acid bacteria. Numerous further bacterial and fungal
species were identified in screening for the detoxification of
aflatoxins but progress in elucidating mechanisms of their
action was slow. It took 34 years to obtain indication that
detoxification of aflatoxins by Flavobacterium aurantiacum

is enzymatic (Smiley and Draughon 2000) yet the mechanism
is still not known. New microorganisms removing myco-
toxins from culture supernatant are continuously being de-
scribed but follow-up studies are often missing. Degradation
of AFB1 by Rhodococcus erythropolis, reported by Teniola
et al. (2005) and Alberts et al. (2006) 10 years ago, is a typical
example. It is to be hoped that the recent discovery of aflatoxin
detoxification by Rhizopus oryzae and Trichoderma reesei

(Hackbart et al. 2014) will not share this fate.
In some systems, studies of detoxification of myco-

toxins at a molecular level revealed that the activities
are not suitable for food processing. This applies in par-
ticular to the degradation of AFB1 by Actinomycetes sp.
(Ciegler et al. 1966, Hormisch et al. 2004, Teniola et al.
2005, Alberts et al. 2006). The enzymes responsible for
aflatoxin degradation in these bacteria are reductases de-
pending on cofactor F420, which does not occur in micro-
organisms used in food processing (Taylor et al. 2010).
Anaerobic de-epoxidation of trichothecenes by ruminal
and intestinal microflora is another example. The activity
is known since 1983 (Yoshizawa et al. 1983), the first
active pure culture was obtained in 1997 (Binder et al.
1997) but the mechanism and enzyme(s) involved remain
unknown.

Yeast used to protect fruits from fungal spoilage may en-
zymatically destroy the mycotoxin PAT, produced by
Penicillium species in infected fruits. Rhodosporidium
paludigenum, which is a yeast species studied for fruit protec-
tion, degrades PAT into less toxic desoxypatulinic acid (Zhu
et al. 2015a). However, treatment of infected apples and pears
with R. paludigenum increased the PAT content of the fruits,
probably by triggering a stress response in PAT producers
(Zhu et al. 2015b). Caution is therefore advised when biolog-
ical control agents are applied to food commodities. Another
example of potentially undesirable side effects of biological
control provides ZEN. Because the mycotoxin protects its
producer against mycoparasites and competitors (Utermark
and Karlovsky 2007), applications of biological control agents
to grain contaminated with ZEN-producing Fusarium species
might induce increased ZEN production.

Laccases and peroxidases can degrade diverse organic
compounds. Degradation products of aflatoxins by peroxidase
fromwhite-rot fungusPhanerochaete sordidawere elucidated
(Wang et al. 2011). In most cases, however, the mechanisms
of detoxification remained unknown. For instance, Alberts
et al. (2009) demonstrated degradation of AFB1 by laccases
of several fungal species and showed that the products were
not mutagenic but they have not determined their structures.

The list of microorganisms reported to detoxify myco-
toxins is long; we refer to reviews on microbial degradation
of mycotoxins in general (Karlovsky 1999; McCormick 2013;
Hathout and Aly 2014) and on trichothecenes (He et al. 2010;
Karlovsky 2011). New detoxification mechanisms for DON
have been discovered recently (Ikunaga et al. 2011; Ito et al.
2013; He et al. 2015, 2016). Although the enzymes involved
are still unknown, the use of these strains for the decontami-
nation of food commodities appears promising. As holds for
all microorganisms used in food processing, microbial strains
for mycotoxin mitigation in food would require regulatory
approval.

Commodities

In this section, examples of raw materials and commodities
are given that suffer from high mycotoxin contamination and
for which mitigation strategies were studied.

Cereals and derived products

Cereals are staple food worldwide. They are the primary
source of carbohydrates and the main source of foodborne
mycotoxin exposure. The degree of fungal penetration into
the endosperm of grains is reflected in the redistribution of
mycotoxins in milling fractions (see section BPhysical pro-
cessing methods^). Due to high mycotoxin concentrations in
surface tissues of grains afflicted with Fusarium head Blight,
sorting, cleaning, dehulling, and debranning reduce mycotox-
in contamination of the flour. A large fraction of mycotoxins
can be removed with damaged kernels, fine material, and dust
(Cheli et al. 2013). The efficiency of such cleaning in myco-
toxin reduction was demonstrated for T-2 and HT-2 toxins
(Schwake-Anduschus et al. 2010), fumonisins (Saunders
et al. 2001), and DON (Lancova et al. 2008a). Scudamore
and Patel (2000) reported effect of cleaning on the content
of aflatoxins and fumonisins. In the last decade, several au-
thors reported DON reduction through debranning (e.g.,
Aureli and D’Egidio 2007). The concept was extended to
masked mycotoxins such as DON-3-glucoside (Kostelanska
et al. 2011). Recently, the fate of fumonisins along the entire
corn meal production chain has been elucidated (Generotti
et al. 2015b). Fumonisin content decreased by 40 % in
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cornmeal semolina; the reduction was less pronounced in corn
flour and middlings.

Aflatoxins in cereal matrix can be reduced by soaking (with
or without organic acids), cooking/heating, or steaming
(Samarajeewa et al. 1990). Ordinary cooking of rice contam-
inated with AFB1 resulted in a reduction of 34 %; more than
70 % were destroyed by pressure cooking (Park and Kim
2006). The reduction of aflatoxin content by extrusion de-
pends on the presence of additives, moisture level and the
applied temperature/pressure; an efficiency of 50 to 80 %
can be achieved. Similar effects were reported for OTA in
bakery products (Scudamore et al. 2004).

Nixtamalization, which hydrolyzes ester bonds of
fumonisins, reduced FB1 content of tortillas by 82 %
(Dombrink-Kurtzman et al. 2000). Mycotoxins were retrieved
mainly in the steeping and washing water.

Gamma and electron-beam irradiation was evaluated for
the reduction of trichothecenes in grains (O’Neill et al.
1993). DON and 3-acetyl-DON were more efficiently
destroyed in aqueous solution than on maize kernels.

The effect of bread baking on DON is controversial. While
reduction by more than 50%was observed in one study (Voss
and Snook 2010), no changes in DON concentrations during
baking was reported by others (Lancova et al. 2008a). The
effect of the fermentation of dough on mycotoxins was also
evaluated by Vidal et al. (2014). OTA remained stable, where-
as DON concentration increased from unkneaded mix to
fermented dough and decreased during baking. Zachariasova
et al. (2012) observed the opposite: DON concentration de-
creased from flour to fermented dough and increased during
baking. Other authors (Bergamini et al. 2010; Suman et al.
2012, 2014; Generotti et al. 2015a) confirmed the reduction
of DON content during baking with the help of a Design of
Experiments approach in a pilot plant and industrial produc-
tion for bread, rusks, and crackers. Baking time and tempera-
ture were the key factors of DON reduction. Protease and
xylanase used in the bakery industry released additional
DON from the matrix during kneading and fermentation of
dough (Simsek et al. 2012).

ZEN was reported to remain stable during bread baking
(Cano-Sancho et al. 2013) but another study estimated ca.
40 % loss in bread and 20 % in biscuits (Alldrick and
Hajšelová 2004). Numanoglu et al. (2013) constructed a ki-
netic model of ZEN degradation in maize bread during
baking.

Nivalenol degradation accelerated with increasing bakery
processing temperature (Bretz et al. 2005). Degradation of T-2
and HT-2 toxins by 20–30 % during bread baking was report-
ed (Monaci et al. 2011) but no degradation was observed in
another study (Schwake-Anduschus et al. 2010).

As shown earlier, studies of the fate of DON, ZEN, and T-2
during baking within the last 30 years left contradictory con-
clusions. Results on fumonisins are less extensive but equally

contradictory. The first study, conducted more than 20 years
ago, reported high losses of fumonisins in heated corn (Scott
and Lawrence 1994). A more recent study (Numanoglu et al.
2010) found no significant reduction in the content of DON,
ZEN, and fumonisins in traditionally produced Turkish maize
bread. Finally, (Bryła et al. 2014) demonstrated reduction of
fumonisins by 30 % during baking of gluten-free bread.

Studies of the fate of the depsipeptidemycotoxins enniatins
(ENNs) and beauvericin (BEA) during processing of cereals
are limited. Vaclavikova et al. (2013) showed that ENNs
levels dropped during bread baking to 30 %. Meca et al.
(2012) observed BEA degradation from 20 to 90 % in crispy
breads during heat treatment and fermentation.

Ergot alkaloids in cereals attract increasing attention of
food safety authorities (EFSA 2012). Reduction of sclerotia
by up to 80 % can be achieved by winnowing previous to the
milling, resulting in substantial reduction of ergot alkaloid
content (Berg et al. 1995). Recent incidents of contamination
with ergot alkaloids above tolerable levels were reported par-
ticularly in small (organic) enterprises (Masloff 2006). An
explanation is that equipment for optical sorting is too expen-
sive for small enterprises (Dusemund et al. 2006). Processing
sclerotia-contaminated flour in bread, pancakes, or noodles
result in a loss of the toxicologically relevant (R)-isomers.
Complete decomposition of (R)-isomers of six predominant
ergot alkaloids was observed during baking of whole wheat
bread, whereas rye bread and triticale pancakes retained 85
and 74 % of these compounds, respectively (Scott and
Lawrence 1982). A recent work on biscuits reported degrada-
tion and epimerization of up to 30 % ergot alkaloids to less
toxic forms (Merkel et al. 2012).

In pasta, the solubility of mycotoxins in boiling water de-
termines the level of consumer exposure. According to
Visconti et al. (2004), most DON was extracted from pasta
to cooking water. Brera et al. (2013) observed DON reduction
in semolina in dry and cooked pasta by 8 and 41 %,
respectively.

Cocoa-chocolate

Cocoa is grown in West Africa, Asia, and Latin America mainly
as rawmaterial for chocolate production. Suboptimal storage and
processing conditions in producing areas frequently cause fungal
contaminations producing aflatoxins and OTA (Copetti et al.
2014). In order to minimize the OTA contamination of cocoa,
cocoa-producing countries are developing new post-harvest
treatment guidelines. OTA is concentrated in beans shells and
therefore toxin levels in the nibs are low: mechanical shelling
removed 48 % of OTA (Gilmour and Lindblom 2008), while
shelling by hand reduced OTA to between 50 and 100 %
(Amezqueta et al. 2005).

The first step of cocoa processing is opening the harvested
pods at the farm site; then, the beans are fermented naturally
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by yeasts and bacteria. Experiments in Brazil (Copetti et al.
2012) demonstrated the importance of organic acids produced
by fermentative bacteria in suppressing the growth of fungi
with the potential to produce OTA. Fermented beans are dried
in the sun on wooden platforms or on the ground. The OTA
level significantly increases during transition from fermenta-
tion to drying (Dano et al. 2013). Drying must be therefore
conducted as rapidly as possible. In processing plants, dried
beans are broken and winnowed to obtain de-shelled kernels
(nibs). The nib is sterilized with steam and roasted directly with-
out (natural) or with addition of alkali to develop the final flavor
and color. The temperature reaches 100 to 120 °C for a period of
15 to 70min; it is not expected that OTA is degraded significant-
ly in this step (Mounjouenpou et al. 2012). However, degradation
of OTA by 17 to 40 % was reported in different experiments
(Manda et al. 2009; Copetti et al. 2013).

The effect of roasting on aflatoxins in cocoa was evaluated
by Mendez-Albores et al. (2013); roasting cocoa beans at
250 °C for 15 min reduced aflatoxin content by up to 71 %.
Mycotoxin levels in alkalized cocoa powder tend to be re-
duced (Copetti et al. 2011; Turcotte et al. 2013).
Alkalization appeared to be more effective in reducing afla-
toxin than OTA. Results of Mendez-Albores et al. (2013)
showed reduction in aflatoxin content in cocoa liquors due
to the thermal-alkaline treatment up to 98 %. Turcotte et al.
(2013) reported that OTA and AFB1 occurred ubiquitously in
natural and alkalized cocoa, decreasing progressively from
cocoa liquor to baking chocolate, to dark chocolate, and milk
chocolate; no OTAwas found in cocoa butter. Overall, it can
be inferred that processing cocoa bean to chocolate leaves
negligible concentrations of OTA and aflatoxins in the final
product. In addition to the degradation described earlier, pro-
duction of chocolate includes addition of other ingredients
(e.g., milk products and sugars) which further dilutes myco-
toxins in the final commodity.

The European Commission currently considers that intro-
ducing maximum limit of OTA in cocoa or cocoa products
does not appear necessary for the protection of public health
(European Commission (EC) Regulation No. 1881/2006).
Indeed, samples of cocoa containingmore than 2 ng/g of these
mycotoxins can rarely be found.

Coffee

Green coffee beans are one of numerous food commodities
significantly contaminated with OTA (Speijers and van
Egmond 1993). Coffee and cocoa beans are hygroscropic
and thus vulnerable to contamination with OTA during stor-
age and transport (Magan and Aldred 2005). Scudamore
(2005) reviewed the effect of roasting and brewing of coffee
on the level of OTA as compared to green coffee beans. OTA
levels were drastically reduced during production of soluble
coffee. The roast and the ground of coffee contained only

16 % of the concentration found in raw green coffee beans
(Blanc et al. 1998). Similarly, Milanez (1996) reported 84 %
of OTA reduction in processed beans. However, other inves-
tigators found lower OTA reduction (Leoni et al. 2000).

Fruit juices

The major mycotoxin in fruit juices is PAT. The starting point
of reducing PAT in apple-derived products is the selection of
intact apples and the removal of rotten apples. Several studies
have shown that PAT is stable in slightly acidic apple and
grape juices but is decomposed during the production of cider
(Moss and Long 2002). Alcoholic fermentation converts PAT
into ascladiol, which is less toxic than PAT (Suzuki et al.
1971). A number of studies on the effect of different physical,
chemical, or microbiological food processes on PAT concen-
trations have been performed (Leggett et al. 2001; Castoria
et al. 2011; Zhu et al. 2015b). PAT reacts with sulfhydryl
(thiol) groups of proteins, polypeptides, and amino acids
available in certain food commodities such as cereals to form
intra- and intermolecular protein cross links. These PAT ad-
ducts are not detected by conventional methods for PAT anal-
ysis (Fliege and Metzler 1999).

Milk and other dairy products

AFB1 contaminating dairy feed may be metabolized in the
animal into its monohydroxy derivative form aflatoxin M1

which is carried over into milk (Holzapfel et al. 1966).
AFM1 or its metabolites can then contaminate subsequent
dairy products. Distribution and stability of AFM1 during pro-
cessing, ripening, and storage of Telemes cheese was studied
by Govaris et al. (2001). Concentration of AFM1 in the curds
was about four times higher than in milk but it fell in the
cheese during ripening. In certain cheese kinds in Turkey,
the concentration of AFM1was, however, higher in the cheese
than in bulk milk (Bakiri 2001). Fermentation of milk to yo-
gurt at pH 4.6 and 4.0 reduced AFM1 concentration by 13 and
22 %, respectively; total loss of AFM1 after storage was 16
and 34 %, respectively (Govaris et al. 2002). In opposition
with these findings, Yousef and Marth (1989) reported that
AFM1 in fermented milk remained stable. Separation of milk
components partitioned the toxin in accordance with its affin-
ity for casein and the lack of solubility in fats.

Vegetable oils

Mahoney and Molyneux (2010) assumed that aflatoxins are
not found in vegetable oils but there is increasing evidence
that this does not apply to non-purified or crude vegetable oils
(Shephard et al. 2011). High incidences of aflatoxin contam-
inations in edible vegetable oils were even reported (Bordin
et al. 2014). The different processes used for vegetable oil
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extraction may partially explain these discrepancies. Edible
vegetable oils indeed can be extracted from oleaginous mate-
rial either by mechanical pressing or by solvents.

Distribution of mycotoxins from steeped corn to corn
germs in wet milling depends on their solubility. Water-
soluble mycotoxins such as DON were found at high concen-
trations in steep liquor but at low levels in the solid (germ,
fiber, and gluten) fractions. The inverse is true for ZEN, which
is relatively insoluble in water (Table 2). ZEN may occur in
maize germ oil but investigations about the effect of process-
ing of oils on ZEN are limited, except for UV light exposure
during storage (see section BIrradiation^). Abalaka and
Elegbede (1982) reported that only 10–20 % of aflatoxins
were transferred from groundnuts and cotton seeds to crude
oil. Similarly, Parker and Melnick (1966) found most afla-
toxins after extraction of oil from peanut and maize in defatted
meal. In their work, corn oil extracted with chloroform
contained more aflatoxins than oil extracted with hexane.
Refining based on alkaline neutralization, washing, bleaching,
and deodorization was reported to remove mycotoxins from
oil (Kamimura et al. 1986). There are no studies in the litera-
ture relating degumming to the presence of aflatoxins.

In the deacidification step of refining, fatty acids are re-
moved using an alkali (chemical refining) or water vapor
(physical refining). Alkaline treatment is effective in
degrading aflatoxins (see section BTreatment with bases^).
Kamimura et al. (1986) evaluated the efficiency of the pro-
cessing steps of refining vegetable oils contaminated with
mycotoxins and observed that after treatment with sodium
hydroxide, AFB1 and AFB2 were significantly reduced,
DON and NIV were present only in traces and AFG1 and
AFG2 were completely eliminated. These results confirmed
an earlier finding by Parker and Melnick (1966) that sodium
hydroxide efficiently removed aflatoxins from peanut oil.
ZEN is removed below a level of concern from corn germ
oil by alkaline treatment at pH 9–10 (Slope et al. 2013).

Bleaching consists of introducing an adsorptive bleaching
material, called bleaching earth or clay, under vacuum
condition and high temperature, and subsequent removal of
the agent by filtration. Parker and Melnick (1966) found that
bleaching reduced aflatoxin levels in peanut and corn oils
below 1 μg/L. Kamimura et al. (1986) reported that bleaching
of vegetable oil eliminated trichothecenes and aflatoxins but
not ZEN.

The last step of the refining process of vegetable oil is the
deodorization step, which is a codistillation process using wa-
ter vapor under high temperature (220–270 °C) and low pres-
sure (0.1–0.7 kPa). Conditions adopted in the deodorizing
process can lead to complete removal of aflatoxins from veg-
etable oils, as Kamimura et al. (1986) showed for artificially
contaminated vegetable oils. The levels of trichothecene and
ZEN were reduced, too. Thus, it is possible to ensure safe
edible vegetable oil provided it is properly processed.

Ethanol and beer

In process where fermentation is followed by distillation, my-
cotoxins are not present in the alcohol fraction but may be
increased in the spent grain product. AFB1 was decreased by
47 % after cooking and fermenting contaminated corn or
wheat (Dam et al. 1977), although its concentration in the
solids after distillation was higher than in the starting grain.
No ZEN from contaminated corn appeared in ethanol but ZEN
concentration in the solids after fermentation doubled. Two
lots of corn contaminated with 15 and 36 mg/kg of FB1 were
fermented for ethanol production (Bothast et al. 1992).
Analysis of the various fermentation products showed that
there was little fumonisin degradation during fermentation.
No FB1 was found in distilled ethanol or centrifuged solids.
Most of the fumonisins were distributed over distillers’ dried
grains, thin stillage, and distillers’ solubles.

Most mycotoxins can survive brewing and end up in the
beer; DON is found at highest concentrations (Scott 1996).
Lancova et al. (2008b), however, reported that even larger
amounts of DON in beer were present in the form of DON-
3-glucoside. Schwartz et al. (1995) found that in the brewing
process both ZEN and 15-acetyl-DON increased during ger-
mination of barley. Eighty to 93 % of DON from malt grist
was found in the beer; 60 % of ZEN and 18 % of 15-acetyl-
DON were found in the spent grains. Scott and Lawrence
(1995) examined the losses of OTA as well as of FB1 and
FB2 in fermentation of wort. Up to 21 % of OTA but negligi-
ble amounts of fumonisins were taken up by the yeast, indi-
cating that OTA and fumonisins could contaminate beer.
Fumonisins were later indeed detected in domestic and
imported beer in Canada (Scott et al. 1993). Most recently,
the fate of 14 mycotoxins during beer brewing was investigat-
ed by Inoue et al. (2013). After brewing, the levels of afla-
toxins, OTA, FB2, PAT, and ZEN dropped below 20 %. ZEN
and PAT were apparently metabolized to less toxic com-
pounds. Trichothecenes survived brewing at more than 50 %
of their initial concentration. Vaclavikova et al. (2013) report-
ed that enniatins from contaminated wheat and barley were
not transferred into beer; these hydrophobic mycotoxins
remained adsorbed on spent grain.

Dried fruits, nuts, and spices

Food safety is significantly affected by mycotoxin contamina-
tion of dried fruits, nuts, and spices. Dry fruits such as raisins,
sultanas, figs, apricots, and dates are consumed worldwide.
Cultivation and processing of these fruits in warm climates
rise mycotoxin risk, especially concerning aflatoxins and och-
ratoxin A. The pH of fruits ranging from 2.5 to 5.0 is the most
important factor affecting spoilage of fruits by microorgan-
isms. Fruits become increasingly susceptible to fungal inva-
sion during ripening, as the pH of the tissue increases and skin
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layers soften (Drusch and Ragab 2003). Other factors contam-
ination level are harvesting and drying conditions and mois-
ture content (Bullerman et al. 1984). Physical cleaning and
separation, where the mold-damaged kernel/seed/nuts are re-
moved, can result in 40–80% reduction in aflatoxin level. Dry
and wet milling may redistribute aflatoxins into less utilized
fractions.

In groundnuts, higher levels of aflatoxin are associated
with small, immature pods. Removing these pods reduces
aflatoxin concentration in shelled lots (Dorner 2008). To re-
move foreign material and unshelled pods, shelled peanuts are
subjected to gravity separation. Because highly contaminated
kernels are less dense, this process reduces aflatoxin contam-
ination (Davidson et al. 1981). Shelled kernels can be further
separated by size through a series of slotted screens; generally,
aflatoxins are associated with smaller-sized kernels (Whitaker
et al. 2005). Further, aflatoxin reduction can be obtained by
blanching combined with electronic color sorting (Cole et al.
1995) and sorting with the help of IR and UV spectroscopy
(Durmus and Kalkan 2016). Blanching and color sorting is
used for other nuts such as pistachios, too.

Among dried fruits, figs are the most challenging. Removal
of damaged fruits, solar drying, fluorescence sorting, and
treatment with sulfur dioxide are effective mycotoxin mitiga-
tion strategies (Scott and Trucksess 2009). Sun-drying figs are
often practiced in tropical countries but because it is slow, it
allows proliferation of molds producing mycotoxins. Ozay
et al. (1995) showed that dipping figs in solution of
metabisulfite or sorbate or in hot water followed by dehydra-
tion reduced fungal colonization and aflatoxin content.
Comparison of different drying systems with sun-drying re-
vealed that ultrasound treatment combined with osmotic solu-
tions is most effective (Villalobos et al. 2016).

Very recently, the use of cold atmospheric plasma to de-
stroy aflatoxins in dehulled hazelnuts was reported, with over
70 % aflatoxin reduction achieved by 12 min of treatment
(Siciliano et al. 2016). Another recent work demonstrated that
roasting pistachio nuts with lemon juice and/or citric acid
destroyed over 90 % AFB1 (Rastegar et al. 2016).

To the best of our knowledge, the effect of food processing
on mycotoxin levels in spices was not studied. A moderate
reduction of OTA and aflatoxin content in pepper by gamma
radiation was reported (Jalili et al. 2012).

Implications and outlook

Mycotoxin contamination of food commodities, especially of
staple foods, poses a serious threat to human health. Efficient
reduction of mycotoxin exposure via food products requires
the utilization of all available technologies from good agricul-
tural and storages practices and selection of raw materials
suitable for human consumption to the application of food

processing technologies including biotechnology. Today’s
consumers are keenly aware of the importance of food for
their health. Their perception of food safety has been heavily
biased towards man-made pollutants but toxic compounds of
natural origin are slowly gaining attention. Food industry has
recognized the trend, as intellectual property protection efforts
in mycotoxin detoxification show (He and Zhou 2010).

Mitigation of mycotoxins as a side effect of established food
processing techniques, such as fermentation of apple juice or
nixtamalization of maize flour, should be utilized whenever pos-
sible. Development of new techniques dedicated to mycotoxin
mitigation will, however, require extensive research. The impact
ofmycotoxinmitigation processes on the nutritional composition
and organoleptic quality of food and their influence on other
contaminants such as acrylamide (Anese et al. 2009) have to
be assessed. The advantage of reducing mycotoxin levels has
to be weighed against the loss of material and/or nutrients.
Novel physical and chemical treatments (cold plasma) and novel
detoxification agents (microbes or purified enzymes) for myco-
toxin mitigation in food would have to undergo regulatory ap-
proval, which implies a risk analysis. European regulation 1881/
2006 provides direction in what is likely to be acceptable; similar
regulations operate outside Europe (refer also to EC regulation
2015/786).

Disappearance of a parent mycotoxin does not necessarily
mean detoxification, if the toxin is converted into a form that
escapes detection, yet remains toxic. Often, the mechanism of
mycotoxin transformation is not fully understood, the products
have not been characterized, and their bioavailability and toxicity
compared to the parent compound has not been assessed.
Limited toxicological investigations on mycotoxin degradation
products were restricted to in vitro and acute in vivo studies
which provide insufficient information regarding the safety at
chronic low level exposure. New predictive tools in toxicology
(Schilter et al. 2014; Kavlock et al. 2012; Cozzini and Dellafiora
2012) may be helpful in identifying transformation or degrada-
tion products requiring detailed toxicological investigation.
Without such knowledge and as a precautionary approach, risk
assessment has to assume that allmycotoxin forms have the same
bioavailability and toxicity as the respective parent compound
(EFSA 2014).

While detoxification of mycotoxins has been studied exten-
sively, little is known about the potential of food processing to
increase or hide mycotoxin exposure. Chemical and physical
treatments applied to food may release mycotoxins frommasked
forms and make them bioavailable or convert mycotoxins into
forms not detectable by conventional analytical methods
(Rychlik et al. 2014) while retaining their toxic potential
(Suman and Generotti 2015) or stimulate contaminating fungi
to mycotoxin production, e.g., during steeping of barley.
Analytical tools for mycotoxins transformed by processing
(structural modification, binding to food matrix) need to be
developed.
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Most research on mycotoxins focused on regulated myco-
toxins. The recent unexpected discovery of the fungus
Stachybotrys chartarum in culinary herbs (Biermaier et al.
2015) showed that the scope has to be broadened:
S. chartarum, so far known mainly from water-damaged walls,
produces macrocyclic trichothecenes of higher acute toxicity
than any regulated mycotoxin. Highly toxic metabolites of the
fungus Stenocarpella maydis recently discovered inmaize grains
provide another example of toxicologically relevant non-
regulated mycotoxins in food (Rogers et al. 2014). Even well-
studied fungal metabolites may raise new food safety concerns,
such as AAL toxin of Alternaria alternata if it occurs in tomato
juice (Karlovsky 2016). Genome sequencing revealed that fungi-
contaminating food commodities have the potential to produce
30–60 secondarymetabolites each, some ofwhichmight turn out
to be mycotoxins. Mitigation strategies have to be adapted to
newly discovered mycotoxins, once their toxicity and level of
exposure have been assessed. Undoubtedly, the list of regulated
mycotoxins will grow.

The large number of combinations of processing/commodi-
ties/mycotoxins calls for prioritization among applications on
which to focus further research efforts. Criteria for prioritization
should be consumption of the contaminated commodity (staple
foods and commodities consumed by sensitive population
groups like young children), occurrence at high levels in such
commodities and unfavorable toxicological profiles. Different
geographical regions and target groups require different prioriti-
zations. An example is fumonisin contamination of maize: in
Africa, maize is a staple food, causing human exposure to
fumonisins that would exceed the tolerable daily intake (TDI)
even if EU limits of contamination could be achieved (Shephard
et al. 2007; JECFA 2012). Celiac disease patients in industrial-
ized countries consume above-average amounts of maize; it was
shown that their dietary exposure to fumonisins clearly exceeds
average levels (Dall’Asta et al. 2012). Most consumers in
Europe, however, would not exceed TDI for fumonisins even
if they consume maize exceeding the EU limit by an order of
magnitude. Guidelines have been elaborated on how to identify
relevant targets for mitigation, determine the effectiveness of
mitigation measures, and assess the risk of unintended conse-
quences (van der Fels-Klerx et al. 2014).

Conclusions

Food processing can reduce mycotoxin exposure by
destroying or eliminating mycotoxins, by transforming them
into less toxic derivatives, by adsorbing mycotoxins to solid
surfaces or by reducing their bioavailability due to chemical
attachment to food matrix structures. Complete elimination of
mycotoxins from food product by processing can rarely be
achieved.

Several processing techniques of proven value (mostly
physical treatments) have been in use for a long time. These
are the only mycotoxin mitigation methods currently applica-
ble to human food. Few chemical and biotechnological tech-
niques reducing mycotoxin content have been approved for
animal feed but many promising strategies remain at an ex-
perimental stage. In addition to mycotoxin derivatives modi-
fied by microorganisms or plants (EFSA 2014), the risk as-
sessment of mycotoxins in food has to include mycotoxin
forms resulting from food processing. Before a novel myco-
toxin decontamination technique is approved, chemical iden-
tity and toxicity of the reaction products have to be deter-
mined. Availability of analytical methods which permit reli-
able detection of these products is a key prerequisite for risk
assessment. Bioavailability and toxicity of transformation
products should be assessed using a systematic approach
and generally acknowledged testing systems. This in turn al-
lows prioritizing those which require more detailed toxicolog-
ical assessment and the choice of specific, adequate risk as-
sessment options. Recently established legislative criteria for
detoxification processes applied to feed may serve as a model
(EC 2015). In the absence of adequate toxicological data,
mycotoxin forms generated during processing must be as-
sumed to have the same toxicity, bioavailability and carcino-
genic potency as the respective parent compounds. The devel-
opment of mitigation strategies should prioritize mycotoxins
that regularly occur at high levels in highly consumed com-
modities and have unfavorable toxicological profiles. The ul-
timate goal of mycotoxin mitigation is to prevent adverse
health effects caused by foodborne exposure to mycotoxins
while preserving nutritional and organoleptic quality of food.
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