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Abstract

Advances in the use of fractional order calculus in control theory in-
creasingly make their way into control applications such as in the process
industry, electrical machines, mechatronics/robotics, albeit at a slower rate
into control applications in automotive and railway systems. We present
work on advances in high-speed rail vehicle tilt control design enabled by
use of fractional order methods. Analytical problems in rail tilt control still
exist especially on simplified tilt using non-precedent sensor information
(rather than use of the more complex precedence (or preview) schemes).
Challenges arise due to suspension dynamic interactions (due to strong
coupling between roll and lateral dynamic modes) and the sensor measure-
ment. We explore optimized PID-based non-precedent tilt control via both
direct fractional-order PID design and via fractional-order based loop shap-
ing that reduces effect of lags in the design model. The impact of fractional
order design methods on tilt performance (track curve following vs ride
quality) trade off is particularly emphasized. Simulation results illustrate
superior benefit by utilizing fractional order-based tilt control design.
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1. Introduction

Tilting is a quite successful concept of high-speed trains that offers a
solution to “make rail vehicles run faster hence reduce journey times” on
railway routes without the need of substantial change on infrastructure.
The idea is straightforward and based on the cycle/motorcycle rider trick
of “lean in towards the curve to go faster and feel more comfortable”. Simi-
larly, tilting trains lean in towards the railtrack corner (via tilt mechanism)
to reduce passenger lateral acceleration and enable increased vehicle speed.
Tilting train technology was highlighted in the 2014 article of BBC future
[19] on the new ZEFIRO tilting train. In addition, tilting trains continue
evolving in terms of their structure and tilt mechanisms [7] that facilitates
further exploration of advanced control design.

Most tilting trains nowadays use the command-driven with precedence
tilt control approach devised in the early 1980s as part of the UK-led Ad-
vanced Passenger Train development [4]. Precedence (or preview) schemes
use signals from the vehicle in front to provide preview information, care-
fully designed so that the delay introduced by the filtering during commu-
nication compensates for the preview time. There has been some further
developments of the concept, i.e. use of GPS database and/or additional
sensors, but the overall principles essentially remain the same. It is worth
noting that achieving a satisfactory local/vehicle tilt control scheme is still
an important research question due to facilitating system simplifications
and more straightforward fault detection.

Concentrating on the tilt control approach, a number of studies exist
[24] [38] (and references within) [37]. Albeit no study exists on an in-depth
investigation of fractional order control for the tilt problem. Without doubt
fractional order calculus [14] has an immense impact on enhancing control
theory and design of simpler controller structures for complex applications.
In fact, Fractional order (FO) systems have received substantial attention
in the last two decades, with a number of modelling approaches and con-
trol design techniques developed. In particular, there is a large number of
papers in fractional PID control design as well as control design via loop
shaping. A number of references exist in the literature with few suggested
here (and references within), e.g. [23], [28], [29], [27], [33], [2], [15].

This paper contributes to the impact fractional order calculus, through
the channel of fractional order control, has in the area of high speed railway
vehicles, i.e. advanced tilt control design. The paper’s contribution strongly
aligns with a viewpoint highlighted in [14], i.e. quoting Y.-Q. Chen, the
“Need to show that fractional calculus enables better performance (result)
than the best achievable ones previously using integer-order calculus”.



IMPACT OF FRACTIONAL ORDER METHODS ON . . . 3

The paper is organized as follows: Section 2 introduces the vehicle
model including an insight into non-minimum phase characteristics. Sec-
tion 3 presents the design setup and a brief introduction to the assessment
process. Design of conventional integer-order PID control is followed in Sec-
tion 4 including performance limitations. Section 5 introduces fractional
order methods and follows a rigorous design of fractional order based con-
trollers from both a direct FOPID design and via loop-shaping approach
with non-minimum phase cancellation shaping. In the same section, con-
troller order reduction is emphasized as a means of easier implementation.
Section 6 presents simulation and related analysis emphasizing robustness
properties. Finally, conclusions are drawn in Section 7.

2. Modelling and system dynamics

2.1. Endview diagram. The model is based on the end-view of a typical
tilt across secondary (with anti-roll bar- referred to as ARB) train vehi-
cle, see Figure 1. The mathematical representation of the tilt model is
shown in [39], including detailed discussion on the modelling parameters
and variables.
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Figure 1. Vehicle end-view

The overall roll angle from the horizon (track elevation + expected tilt)
is not to exceed ≈ 14 degrees which supports the use of a linearized model
for robust control design. From the vehicle equations, a (nominal) design
model transfer function (TF), Gyu(s) is given by (2.1). This represents
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the dynamic relationship between effective cant deficiency Y(e.c.d) (for 60%
tilt compensation) and the control input ∆(t−i) (ideal control tilt angle).
In fact, the effective cant deficiency is the indicator on how much tilting
requires to provide the reduction in passenger acceleration at higher speed.

Gyu(s) =
27531(s + 26.18)(s + 40.73)

(s+ 23.2)(s2 + 1.38s + 17.44)(s2 + 5.11s + 88)

. . .
(s− 29.36)(s− 6.02)

(s2 + 22s+ 483.6)(s2 + 29.15s + 4888)

. . .
(s2 + 7.65s + 24.44)

(s2 + 4.825s + 15870)(s2 + 41.73s + 28440)
. (2.1)

This is a 13th order plant TF utilized for tilt control design (after minimal
realization), and highlighted is the nominal location of the NMP zeros.

2.2. Insight into the Non Minimum Phase model characteristic.
The nature of the NMP zeros of the SISO TF is due to the location of
the suspension -relative to the centre of gravity of the vehicle body (cog)
and the centre of tilt- and the roll angle contribution (from portion of the
gravitational force) measured by the lateral accelerometer. Symbolic anal-
ysis is meaningful on a simpler (physically reduced) 4th order model with
no air-spring. This result is approximate as it includes only the secondary
suspension dynamics (while disregarding bogie, airpring and kinematics
contribution). However, the validity of the analysis stands as the neglected
modes do not largely affect the NMP zeros location. The 4th order model
symbolic state space matrices (state, control and output respectively) are:

A2 =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1

−2 ksy
mv

2h1 ksy
mv

−2 csy
mv

2 csy h1

mv

2h1 ksy+g mv

ivr
−2 ksy h1

2+kvr
ivr

2 csy h1

ivr
−2 csy h2

1

ivr

⎤
⎥⎥⎥⎦ , (2.2)

B2 =
[
0 0 0 kvr

ivr

]T
, (2.3)

C2 =
[

6 ksy
5 g mv

−6h1 ksy−5 g mv

5 g mv

6 csy
5 gmv

−6 csy h1

5 g mv

]
. (2.4)

We use state space here to illustrate transmission zeros. The state vector

includes
[
yv, θv, ẏv, θ̇v

]
(i.e. body: lateral, roll, lateral rate, roll rate, resp.).

The output matrix C2 refers to the effective cant deficiency for 60% tilt
compensation on steady-state curve.
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Definition 2.1. For a system Σp represented in state space by the
triple {A,B,C}, its invariant zeros are the values of s ∈ C such that its

Rosenbrock matrix, RSM(s) =

[
sI −A −B

C 0

]
, looses normal rank.

For a minimal state space realization invariant and transmission zeros
coincide. From a practical point of view, the system zeros refer to the case
of a zero output for some non-zero input acting on the system. In fact, the
zeros are the solution of det (RSM(s)) = 0.

Given the simplified 4-state model, the determinant of the above RSM(s)
system matrix results to (a) a cubic polynomial in s if damping is csy �= 0;
(b) a quadratic polynomial in s if damping is csy = 0.

For case csy �= 0 the characteristics of the system give negative cubic
discriminant, and its roots comprise a real root and a complex pair. The
real root is positive (reflecting the location of the slow NMP zero) and,
after tedious calculations (and extended symbolic analysis), given by

zp = . . .

. . .+
3

√√√√√
rfc −

(
ksy
csy

− 5 g mv

6 csy h1

)3

27
−

5 g
(
9 ksy
csy

− 15 g mv

2 csy h1

)

162h1
+

5 g ksy
6 csy h1

. . .+
3

√√√√
−√

rfc −
5 g

(
9 ksy
csy

− 15 g mv

2 csy h1

)

162h1
−

(
ksy
csy

− 5 g mv

6 csy h1

)3

27
+

5 g ksy
6 csy h1

+

. . .+
5 g mv

18 csy h1
− ksy

3 csy
, (2.5)

with

rfc =

(
2
(

ksy
csy

− 5 g mv
6 csy h1

)3

27 +
5 g

(

9 ksy
csy

− 15 g mv
2 csy h1

)

81h1
− 5 g ksy

3 csy h1

)2

4
. . .

−

(
(

ksy
csy

− 5 gmv
6 csy h1

)2

3 + 5 g
3h1

)3

27
, (2.6)

note that finding the complex pair of roots is not necessary as, for the tilt
system, these naturally reflect the stable complex zero location.

For the case csy = 0 the state matrix is largely simplified (as all contri-
butions of csy are now neglected) and the result greatly simplifies to a set
of real roots. The positive root relates to the aforementioned NMP zero,
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i.e.

zp|(csy=0) =

√
10 g ksy

6h1 ksy − 5 g mv
.

The contribution of the suspension location and lateral-roll dynamic cou-
pling can be clearly seen.

We also provide the numerical values for the location of the slower
NMP zero (which is the most important one in limiting closed-loop band-
width for all the three models, i.e. zp|(csy=0) ≈ 7.35 (4-state model, no
damping); zp|(csy �=0) ≈ 5.47 (4-state model, with damping); zp = 6.02 (13th
order model). Note that the simplified (approximate) 4th order model with
damping reflects a slightly slower NMP zero location. The simplified model
used here is only to illustrate the nature of the important NMP zero in the
model (the one that mainly hinders fast tilt response).

2.3. Exogenous inputs that excite the vehicle. Regarding track in-
puts, Gyd(s) is a matrix TF, i.e.

Yecd(s) = Gyd(s)

[
Ut−det(s)
Ut−sto(s)

]
,

where Ut−det(s) relates to intended rail track features (deterministic), and
Ut−sto relates to the unintended (misalignment) track features (stochastic).

Track inputs (also used for simulation/assessment purposes) are: (i)

a rail track corner with maximum cant angle θ
{max}
o = 6 deg, maximum

curve radius Rmax = 1 km, transition length = 145 m at each end and
track length = 1.2 km; (ii) the unintended track input was characterized
by velocity spectrum [31]

ṠT(ft) =
(2π)2Ωlv

2

ft
, (m/s)2(Hz)−1, (2.7)

noting that v is the vehicle speed (m/s) and ft the temporal frequency.
With Ωl = 0.33 · 10−8m (a typically medium-quality rail track) and tilting
speed of 58 m/s.

For ride quality we assess the weighted lateral acceleration of passengers
by WZ Sperling index TF (for the index see [21]).

3. Design setup and brief introduction to tilt assessment

3.1. Design setup. The feedback structure for the controller designs is
shown on Figure 2. We use a simplified setup, with no feed-forward of
disturbances. The rationale is twofold: (i) accurate estimation of railtrack
disturbance inputs is possible [40] but challenging, while adds complexity
in the solution, (ii) the impact of fractional order methods on simple tilt
control design is emphasized.
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Figure 2. The feedback setup for the control designs (in

the non-FO cases Q̃−1
n = 1)

Remark. A single figure is used to illustrate feedback control structure
for designs, noting the following:
(a) For the integer order PID design (presented in this section) Ki

pid is an

integer-order rational (IOR) TF and Q−1
n = 1;

(b) For the fractional PID design (presented in section 5.2) Ki
pid is a frac-

tional TF and Q̃−1
n = 1;

(c) For the loop-shaping design (presented in section 5.3) Ki
pid is IOR TF

and Q−1
n is a fractional order shaping filter (although on the figure its ratio-

nal order approximation is depicted, i.e. Q̃−1
n ). We refer to this approach

as “loop-shaping” due to the way the filter is included to dictate partial
cancellation of the NMP zero authority in the design.

Note that all PID controllers are implemented with derivative action
cut-off frequency = 1000 rad/s (well above the frequency range of interest
for the tilt system), i.e.

KPID(s) = kp

(
1 +

1

τis
+

τds
s
N + 1

)
, (3.1)

where kp, τi, τd, N ∈ R
+ (proportional gain, integral time constant, deriva-

tive time constant, derivative cut-off freq., resp.)
With conventional PID being the most popular controller in industrial

applications, a number of rules and design techniques have been developed
and exist in the control literature see for example [1], [34].
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3.2. Tilt control assessment. From a controller assessment point of view
the procedure used in [39] follows a rigorous approach for accessing the de-
terministic tilt control performance. Essentially separates the curve transi-
tion response into two aspects: (i) investigation of the fundamental tilting
response based upon the PCT factor; (ii) investigation of the transitional
dynamic suspension effects via comparison to the ideal tilting response. The
PCT factor specifies the percentage of passengers, on a tilting train, feeling
uncomfortable on the curve transition (based on a comprehensive exper-
imental/empirical study undertaken in the 1980s and now is a European
standard). For more details the readers are referred to [39], [38].

4. Integer order PID control design

4.1. Conventional PID design rules. As discussed previously the SISO
tilt control design transfer function is non-minimum phase. The simplest
controller structure is a PID-type (integral to guarantee zero steady-state
error on steady curve and proportional action to limit phase lag at high fre-
quency). The conventional approach is to manually design via classical PID
design rules (i.e. Ziegler-Nichols, Tyreus-Luyben etc.) or via frequency-
response gain/phase margins and overall guaranteeing an acceptable per-
formance level of tilt deterministic vs tilt stochastic trade-off. To illustrate
the achieved performance by conventional integer-order PID, the following
(typical in control design) approaches are utilized:

• Ziegler-Nichols (Z-N) on 1/4 decay ratio (original),
• Z-N de-tuned (with emphasized integral action),
• Tyreus-Luyben approach (mainly because it was based on the Z-N
original but aims to less oscillatory response and reduced sensitivity
in process conditions), Tyreus-Luyben detuned (to emphasize more
integral action), and

• Frequency response design (F-R manual) providing GM approx.
5dB, PM approx. 45 deg, b/w approx. 1 rad/s. The manual
designs are quite straightforward [1], [10], and hence we omit the
details.

The controller gains for the manually designed PIDs are:

Z-N original: kp = 0.6ku, τi = 0.5Tu, τd = 0.125Tu

Z-N detuned: kp = 0.6ku, τi = 0.25Tu, τd = 0.125Tu

T-L original: kp = ku/2.2, τi = 2.2Tu, τd = Tu/6.3
T-L detuned: kp = ku/2.2, τi = 0.19Tu, τd = Tu/6.3
F-R manual: kp = 0.1256, τi = 0.122, τd = 0.1829

where the ultimate gain (gain at which the closed-loop system is marginally
stable) and period of such oscillations for the nominal TF are ku = 0.325
and Tu = 0.825s, respectively.
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The achievable (nominal) performance is shown on Table 1 (due to space
limitations we do not present the detailed PCT related dynamic variables
but only the PCT result) and Table 2. The F-R manual design offers
improvement (but requires few design iterations to accomplish), still the
achieved ride quality is slightly higher than the industrially accepted norm
of 7.5% degradation. Clearly the NMP zero characteristic of the plant
imposes hard bandwidth constraint [32], while achieving a low value for
the module margin ‖S‖∞ is a challenging task.

4.2. Optimized integer-order PID control design. Here the integer
order PID is tuned via optimization, as follows

minimize
Kpid

f(x)

subject to rqd ≤ 7.5%

‖S(jω)‖∞ ≤ 2

‖Wδ(jω)T (jω)‖∞ ≤ 1,

(4.1)

where f(x) is the PCT factor. The rationale behind this is to minimize the
PCT factor (which combines dynamic variables relating to the deterministic
performance), bounding the Module margin ‖S(jω)‖∞ to allow for a degree
of robustness [32], while imposing (stochastic) ride quality degradation al-
lowance close to ≤ 7.5% and guaranteeing robust stability to multiplicative
uncertainty i.e. bounding ‖Wδ(jω)T (jω)‖∞ [10] (this will be explained in
detail later in the robustness section, esp. the bound Wδ(jω)).

The optimization runs over all integer order PID controllers and can be
performed via nonlinear tools, e.g. Matlab’s fmincon() (implementing the
Nelder-Mead method), or via heuristics (i.e, GA). We employ fmincon()

and a multi-start approach perturbing initial conditions (10 iterations with
a random initial value generation in the interval [0.01�x0, 2�x0] suffices; where
�x0 is a row vector of initial gains using the Z-N rule outcome on the original
plant TF). Once the solution from the iterative process is found, pattern
search could be used to examine the solution at the neighbourhood.

The (nominal system) result for the optimized PID is also shown on
Table 1 and Table 2 (last column and row, respectively). It may seem
slightly “inferior” in terms of PCT achieved compared to the F-R manual
approach, however the optimized integer-order PID satisfies the level of
‖S(jω)‖∞, robust stability bound and ride quality bound (due to the nature
of the global optimization utilized). Overall the optimized PID offers a

better solution, and is given by Kopt.
pid =

1.328s2 + 2.533s + 44.84

0.05548s2 + 55.48s
.
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5. Fractional order control methods

This section discusses the main contribution of this paper, in particu-
lar the impact of fractional order methods on advanced tilt control design.
After a brief introduction of fractional calculus the design problem is ap-
proached in two ways: (i) design a Fractional order PID (FOPID) controller
on the NMP TF, (ii) design an integer order PID controller on a shaped
model of the plant TF via fractional order shaping filter cancelling por-
tion of the TF’s NMP zeros (the final controller comprises both the PID
and shaping filter). Note that the analysis and design of fractional order
controllers in MATLAB was performed via the CRONE toolbox [22].

5.1. Fractional order calculus and control theory. The birth date of
Fractional order calculus relates to 1695 with a letter sent by L’Hospital
to Leibniz on the topic of derivatives, which excited replies on the con-
cept of ‘non-integer’ order i.e. a more generalized version of differentiation
and/or integration. Various definitions for the general fractional differen-
tial/integral exist [30] (e.g. Riemann-Liouville definition, Caputo’s defini-
tion etc.), with Caputo’s approach offers the advantage of linking fractional
order to physical realization and given by

C
a D

α
t f(t) =

1

Γ(α− n)

∫ t

a

f (n)(τ)

(t− τ)α+1−n
dτ, (5.1)

where (n − 1 < α < n) and Γ(.) is the Gamma function. In addition, its
Laplace transform is ([30])

∫ ∞

0
e−st

{
C
0 D

α
t f(t)

}
dt = sαF (s)−

(n−1)∑

k=0

sα−k−1f (k)(0), (5.2)

where F (s) = L{f(t)}, (n− 1 < α ≤ n) and s is the Laplace operator.

Undoubtedly fractional order calculus enables more flexible analysis and
design on dynamical systems and controller solutions. It offers great bene-
fits in the area of control theory, and Fractional order PID control illustrates
such benefits very delicately. Fractional order control design has gained,
especially recently, popularity in the control literature [26] and a number of
control design cases can be seen related to industry applications [17] [3] [27]
[9] [5]. The approach is quite straightforward, i.e. instead of the classical
case of integer powers of s, fractional powers are utilized. Hence, addi-
tional flexibility in tuning controller parameters arise (note that the frac-
tional controllers can be approximated by appropriate IOR functions and
a number of techniques to achieve these approximations exist). There are
four well known fractional order controllers: CRONE (Commande Robuste
d’Ordre Non Entier) [22] [12], Fractional order PID (FOPID) (aka PIλDµ),
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Fractional Order Lead-Lag compensator [18] , and Fractional Order Phase
shaper [6]. The work presented here stems from utilizing an FOPID and
also utilizing [15] which proposes an FOC method that reduces the effect
of unstable poles and zeros within a feedback control design framework.

The impact of FOC on advanced PID tilt control is twofold: (i) via
design of a fractional PID while maintaining the original NMP model, (ii)
via design of an integer order PID + fractional order-based shaping filter
partially cancelling the NMPZ characteristics of the original model. The
designs are discussed in the sections below.

5.2. Fractional PID controller . Fractional order PID (FOPID) also
identified as PIλDµ introduces two extra fractional variables to tune i.e.
the integral order (λ) and derivative order (µ). Hence, FOPID enables a
refined shaping of the compensated open-loop in terms of gain/phase (but
at the expense of tuning an extra two controller parameters). Its transfer
function (with limited fractional derivative) is given by

KFOPID(s) = kp

(
1 +

1

τisλ
+

τds
µ

N−1sγ + 1

)
, (5.3)

where kp, τi, τd ∈ R
+ and also λ, µ, γ ∈ R

+ (R+ the set of positive real
numbers). It is normal to set γ = µ for bi-properness (and hence not
necessary to tune this parameter in the design process). The parameter N
is the derivative cut-off frequency similar to the case of integer order PID.

Introducing two extra tuning terms adds complexity, albeit advanced
software tools (as mentioned previously) and available processing power
nowadays offer a smooth way of designing. Ultimately FOPID control is
possible to implement (e.g. via integer-order approximation) although its
structure can be more complex compared to conventional PIDs. FOPID
benefits a more flexible control design in terms of loop shaping [13] and,
while similar to conventional PID, enables shaping closer to Bode’s ideal
transfer function. FOPID is not the panacea of all solutions as there may be
cases where it does not offer better performance compared to conventional
PID, e.g. issues of rejection of input disturbance to the plant [13].

Once the FOPID is tuned [25] an IOR approximation [35], [36] can be
obtained. A popular technique is the Oustaloup recursive method (i.e. re-
cursive approach of fractional terms approximation) [35]. In fact, the IOR
approximation is key to making FOPID largely attractive to the practising
control engineer i.e. a more direct way of “refined” PID design (i.e. inject-
ing extra lead-lag networks), thus fine shaping the frequency response of
the compensated open loop. The notion of frequency shaping is also met in
conventional control methods such as Quantitative Feedback Theory [11].

Tuning the FOPID follows the same optimization process to the con-
ventional PID, i.e. (4.1), with the optimization running on all fractional
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order PID controllers. In addition to the tuning of the three gains, two
extra tuning variables of fractional order are included (one for the integral
and one for the derivative part). Regarding the order of the integral and
derivative terms, bounds need to be set such that the optimization has a
meaning (for example to avoid excessive integral or derivative action as
these will offer no advantage to control design). A bound for the fractional
order of the integral term between 0.5 and 2 as well as a bound for the
derivative term between approx. 0 and 1.25 suffice.

Deterministic(as per given units) FOPID (IOR)

Lateral accel.
RMS Deviation (%g) 2.605
Peak value (%g) 10.873

Roll gyro.
RMS deviation(rad/s) 0.031
Peak value (rad/s) 0.140

PCT related
Peak jerk level(%g/s) 6.652
Standing (% of passengers) 51.437
Seated (% of passengers) 12.619

Stochastic (acceleration %g) @58m/s **
**Ride quality of non-tilt. train if running @ high speed = 2.848%g

Ride quality
Tilting train 3.061
Degradation (%) 7.485

Performance Margins

Freq. resp.

Gain margin (linear) 6.49
Phase margin (deg) 30.45
Bandwidth (rad/s) 1.02
‖S(jω)‖∞ 2.00
‖Wδ(jω)T (jω)‖∞ 1.00

Table 3. FOPID controller performance (results on full or-
der IOR approximation of the controller)

The tuned FOPID that satisfied the constraints and provided minimum
PCT value was:

KFOPID = 0.2217

(
1 +

1

0.0843s1.673
+

0.029s0.913

0.001s0.913 + 1

)
. (5.4)

For its rational order implementation, the Oustaloup (5th order per frac-
tional term) recursive approximation is utilized,
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H(s) = sµ, µ ∈ R
+, approximated by

Ĥ(s) = C

M∏

k=−M

1 + s/ωk

1 + s/ω′
k

, (5.5)

where C,M,ωk, ω
′
k are given by the approximation procedure in [35].

The direct integer-order controller approximation is 16th order, and
Table 3 presents the results (on nominal plant). Note that reduced or-
der controller approximation are presented in the robustness and results
section.

5.3. PID with fractional order loop shaping . We present the design
of an integer-order PID on the shaped tilt design TF (shaped by use of
NMP zero partial cancellation fractional order filter). The process is rather
straightforward, (i) shape the plant TF by cancellation fractional order
filter Q−1

n ; (ii) design the integer-order PID controller on the shaped plant
Gyu ×Q−1

n ; (iii) the final controller is Q−1
n ×Ki

pid and implemented on the

original plant TF (normally via integer order approximation of the Q-filter

(e.g. via Oustaloup’s method) i.e. Q̃−1
n ). This is motivated by seminal

work of Merrikh-Bayat in [15] on fractional order filters partially cancelling
unstable zeros. Only partial cancellation is considered, and an example [15]
for a single unstable zero is shown in (5.6) (n: integer; zu: nmp zero freq.)

1− s/zu = 1− (s/zu)
n/n =

[
1−

(
s

zu

)1/n
]

n∑

k=1

(
s

zu

)(k−1)/n

. (5.6)

Such cancellation approach enables refined shaping of the plant by a series
of lead-lag networks in the frequency domain (after integer-order approxi-
mation), potentially improving performance margins. Also, cancellation for
n = 2 results to 1/2 portion of the NMP zeros characteristic is cancelled,
n = 3 to 2/3, n = 4 to 3/4 etc. This clearly shows the impact of fractional
order methods from a loop-shaping viewpoint.

The optimization problem (4.1) is also followed for the design in this
section, but the design TF is now shaped by Q−1

n . The consideration for
initial conditions is similar to Section 4.2 (but the initial tuning rule is
applied to the shaped design TF). The fractional order shaping filters Q−1

n
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for increasing NMPZ partial cancellation i.e. n = 2 up to n = 7 are:

Q{n=2} = 0.0752s + 0.592s0.5 + 1. (5.7)

Q{n=3} = 0.0318s1.33 + 0.156s + 0.586s0.67 + 0.874s0.33 + 1. (5.8)

Q{n=4} = 0.0206s1.5 + 0.0803s1.25 + 0.2376s + 0.632s0.75 + 0.867s0.5 . . .

+ 1.068s0.25 + 1. (5.9)

Q{n=5} = 0.0159s1.6 + 0.0541s1.4 + 0.14s1.2 + 0.32s + 0.696s0.8 . . .

+ 0.901s0.6 + 1.1s0.4 + 1.21s0.2 + 1. (5.10)

Q{n=6} = 0.0135s1.6667 + 0.048s1.5 + 0.098s1.3333 + 0.21s1.1667 + 0.41s . . .

+ 0.77s0.8333 + 0.96s0.6667 + 1.15s0.5 + 1.3s0.3333 + 1.31s0.1667 + 1.
(5.11)

Q{n=7} = 0.012s1.7143 + 0.035s1.5714 + 0.076s1.4286 + 0.15s1.2857 . . .

+ 0.28s1.1429 + 0.49s + 0.85s0.8571 + 1.02s0.7143 + 1.2s0.5714 . . .

+ 1.37s0.4286 + 1.46s0.286 + 1.4s0.1429 + 1. (5.12)

The controller gains for the integer-order PID portion, from the optimiza-
tion process on the FO shaped plant, are (time const. in sec):

on case n=0: kp = 0.045 τi = 0.056 τd = 0.533
on case n=2: kp = 0.1057 τi = 0.0568 τd = 0.6743
on case n=3: kp = 0.2821 τi = 0.0810 τd = 0.5315
on case n=4: kp = 0.4782 τi = 0.0839 τd = 0.5401
on case n=5: kp = 0.7691 τi = 0.0917 τd = 0.5165
on case n=6: kp = 1.000 τi = 0.083 τd = 0.574
on case n=7: kp = 1.398 τi = 0.088 τd = 0.555

Implementing the FO filter Q−1
n within the final controller Q̃−1

n ×Ki
pid

also utilizes a 5th order Oustaloup continuous-time (OCT) realization [35].
Note that the overall controller order comprises the order of the PID (2nd

order) portion and the order of Q̃−1
n after minimal realization (per case

n). Hence, once the fractional order portion is approximated as mentioned
above, the integer order of the final controller ranges from order= 8 for
n = 2 up to order= 33 for n = 7 (giving the largest controller order in this
scenario).

Note that: (a) for n = 0 the results are the ones obtained for the opti-
mized integer-order PID as there is no NMP zero portion cancellation; (b)
a 5th order OCT approximation of the fractional power was sufficient; (c)
we consider up to n = 7 NMPZ cancellation as after that value performance
differences become less significant. Figure 3 presents the compensated open
loop magnitude frequency plot for Gyu × (Q̃−1

n Ki
pid) per case n.
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PID + Q−1
n filter 0 1/2 2/3 3/4

cancel. cancel. cancel. cancel.

PCT
Stand.
(% of passg.)

64.83 59.257 56.883 55.487

PCT
Seated
(% of passg.)

20.20 17.586 16.245 15.462

Stochastic (acceleration %g) @58m/s **

R.Q.
Lateral
accel. (%g)

3.031 2.929 2.955 2.98

R.Q. Degrad. (%) 6.41 2.847 3.766 4.64

PID + Q−1
n filter 4/5 5/6 6/7

cancel. cancel. cancel.
PCT Stand. (% of passg.) 54.542 54.195 53.87
PCT Seated (% of passg.) 14.941 14.648 14.43

Stochastic (acceleration %g) @58m/s **
R.Q. Lateral accel. (%g) 3.002 3.010 3.024
R.Q. Degradation (%) 5.395 5.692 6.178

Table 4. Performance assessment (PCT / Ride qual.) un-
der different PID + FO partial cancellation filter degree

Final Controller GM(dB) PM(deg) B/W(rad/s) ‖S‖∞
PID only (0 canc.) 6.01 89.9 0.7 1.99
PID with 1/2 canc. 6.171 70.939 0.83 1.99
PID with 2/3 canc. 6.305 61.547 0.88 1.99
PID with 3/4 canc. 6.479 55.278 0.91 1.99
PID with 4/5 canc. 6.567 51.883 0.93 1.99
PID with 5/6 canc. 6.582 47.931 0.96 1.99
PID with 6/7 canc. 6.63 46.34 0.96 1.99

Table 5. Stability margins for PID+Q−1
n controller

5.4. Order reduction of the IOR approximation of the Fractional
order controller. In this section all fractional order controllers are already
in rational (integer) order form as discussed previously (i.e. via Oustaloup’s
method and minimal realization where necessary). This normally results
to large size integer order controllers.

We illustrate that the large size rational order controller can be approx-
imated by a low-order one still preserving the properties of the closed loop
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Figure 3. FO loop shaping: designed open loop magnitude plot

-

Kr(s)-K(s)
+

G(s)[I+K(s)G(s)]
-1

Figure 4. Feedback formulation for reduced-order con-
troller design maintaining stability criteria

in which the controller would operate. Closed-loop controller reduction is
utilized [20] with problem posed as a frequency-weighted one (Figure 4),
i.e. emphasizing approximation in critical frequency ranges for the closed-
loop system. Although there are other ways of controller reduction, the
one used here is of particular interest to the control community in terms of
maintaining closed-loop properties.

The process is as follows. A low-order controller Kr(s), introduced in
an additive sense, is required to replace the high-order IOR approximation
of the FO controller, K(s) in the closed-loop. This is shown in Figure 4
that characterizes the (most usual) frequency weighted formulation of the
controller design. The reduction problem is to find (a stabilizing) low-order
controller Kr(s) such that the quantity (assuming only integer-order TFs)

||(K(jω) −Kr(jω))F (jω)||∞, (5.13)
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Figure 5. Controller reduction and performance trade-off

is minimized, with F (jω) = G(jω)(I+K(jω)G(jω))−1 (the reduction algo-
rithm can be found in [20] and thus we omit its theoretical details). In the
expressions K(jω) and G(jω) refer to the rational order approximation of
the fractional order controllers and Gyu(jω) resp. Note that there are also
alternative frequency weighted formulations with more details also available
in [20]. The frequency weight F (jω) essentially introduces the importance
of the true plant and controller information in the design procedure via
the closed loop consideration. The low-order controller Kr(s) will then be
implemented on the original plant to control. Controller reduction could
be incorporated as part of an extended global optimization problem, albeit
normally designers investigate reduction after the full-order design[20].

Figure 5 presents (only the stable closed-loop cases) controller reduction
level and the related PCT factor/ ride quality performance trade-off.

A 6th order controller for the approximated FOPID case and a 5th or-
der for the approximated loop shaping controller maintain even the typical
robustness properties of the closed-loop. This illustrates the usefulness of
controller reduction in closed-loop (achieved 63% reduction for the approx-
imated FOPID case, and 85% reduction for the loop-shaping one). Note
that controller order has immense impact on hardware resources require-
ments for practical implementation, i.e. low-order controllers are always
favourable (see example of FPGA-implemented LQG controllers in [8]).

6. Results

The discussion of the performance of the fractional-order based con-
trollers is utilizing their integer-order (approximation) versions. When re-
duced order controller cases are used, this is denoted clearly on the rele-
vant figures and tables and/or discussion lines. Due to limited space we
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refer to the following reduced order controllers (when these are utilized in
the discussion) as: (CA) the Optimized integer-order PID (Section (4.2));
(CB) the 6th order reduced integer-order approximation of the FOPID
(Section 5.2); (CC) the 5th order reduced integer-order approximation of

loop-shaped PID by Q̃−1
n=7 (Section 5.3).

Also we present important vehicle parameters used [39]: yv, yb, y0 lateral
displ. of body,bogie and railtrack (m); θv, θb, θr roll displ. of body, bogie
and airspring reservoir (rad); θ0 rail track cant, curve radius (rad); mv, ivr
half body mass 19000(kg) and roll inertia 25000(kgm); mb, ibr bogie mass
2500(kg) and roll inertia 1500(kgm2); kaz , ksz airspring area stiffness, 210e3

N/m and series stiffness, 620e3 N/m; krz, crz airspring reservoir stiffness,
244e3 N/m and damping, 33e3 Ns/m; ksy, csy secondary lateral stiffness,
260e3 N/m and damping, 33e3 Ns/m; yw bogie kinematics displ. (m).

6.1. Nominal Performance (nominal plant and controllers). Nom-
inal system performance results have been presented in previous sections,
while here a set of time–domain simulation figures is included to comple-
ment the design outcome.

Figure 6(b) illustrates the immense benefit of fractional order based
control on improving tilt following (with full order control). Figure 6(c)
and Figure 6(d) utilize reduced order controllers and further illustrate the
benefit of fractional order based control in non-preview tilt, i.e. its close
proximity to the industrial-norm curving response of tilt with precedence
(tilt precedence schemes are more complex as described earlier). The prece-
dence (preview) scheme uses tilt angle preview signals for 60% tilt compen-
sation and integer-order PID for tilt following [40].

6.2. Robust performance (plant uncertainty). The perturbation char-
acteristics of the plant are (see Figure 7): (i) P1/P2 20% body mass in-
crease/decrease; (ii) P3 20% dynamic body mass decrease and 40%(20%)
decrease (increase) in secondary vertical and roll suspension damping (stiff-
ness); (iii) P4 20% dynamic body mass increase and 30%(20%) decrease (in-
crease) in secondary vertical and roll suspension stiffness (damping). The
rationale behind the parameter perturbation choice is: vehicle body mass
variation serves as a mechanism to affect (vehicle dynamics) and NMPZ lo-
cations, while variation of the listed secondary suspension parameters will
affect vehicle dynamics (not NMPZ locations).

Note that: (i) vehicle body mass variation affects NMP zero locations
of the perturbed plant, (ii) vehicle body mass increase (P1 and P4) forces
a 13% increase in the “slow” NMPZ frequency and a 25% decrease in the
“faster” NMPZ frequency compared to the nominal plant P0, (iii) vehicle
body mass decrease (P2 and P3) forces a 9% decrease in the “slow” NMPZ
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Figure 6. Passenger acceleration (deterministic)

frequency and a 36% increase in the “faster” NMPZ frequency compared
to case P0, (iv) varying secondary suspension (airpsring and roll) damping
and/or stiffness does not affect the unstable zero locations as expected (note
that only lateral suspension characteristics impact NMPZ locations).

The reduced order controllers maintain the required robust stability re-
sult, see Figure 8. This is further supported in Table 6 illustrating PCT
and ride quality degradation for the different plants (noting that the con-
trollers where designed on the nominal plant i.e. P0). Robust stability is
clearly seen on PCT (as it directly treats deterministic problems), however
the design naturally does not directly cater for robust ride quality perfor-
mance (i.e. robust stochastic criterion, not considered here). Plant case
P4 is a rather extreme case of uncertainty (e.g. under such conditions the
vehicle would be retired for maintenance/replacement of the suspensions),
but simply illustrates the extend of achieved robust stability.
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7. Conclusion

A rigorous study on the impact of fractional order methods in design
of PID-type tilt controllers was presented. The problem was posed in a
straightforward single-input single-output control framework. The substan-
tial impact of fractional order based methods on designing advanced tilt
controllers compared to the integer-order conventional counterparts was
illustrated. With the proposed solution there is no need for disturbance
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Plant IOR-FOPID Loop-shaping Optim. PID
id 6th order (CB) 5th order (CC) 2nd order (CA)

Pct rqd Pct rqd Pct rqd
(% of psg.) (%) (% of psg.) (%) (% of psg.) (%)

P0 51.32 7.70 53.84 6.45 64.83 6.41
P1 51.15 24.10 55.49 22.25 66.10 11.61
P2 53.30 -0.25 56.59 -1.47 66.00 12.19
P3 59.35 -1.17 62.69 -2.18 67.47 40.83
P4 52.75 89.77 56.82 89.20 70.12 24.96

Table 6. Robust performance results for (CA), (CB), (CC)

feed-forward hence avoid estimators. We emphasize the path from frac-
tional order tuning to integer-order approximation and controller reduc-
tion while maintaining robust stability. The immense performance benefits
were shown via simulation results on a comprehensive tilt vehicle model.
With no loss of generality, the design framework in the paper can be the
basis for other active suspension control design. Fractional order methods
enable considerable opportunities in advanced control design for vehicle
applications. A combined deterministic-stochastic robust control design
on tightening tilting train ride quality performance while achieving curve
following performance under uncertainty is investigated by the authors.
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