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Abstract

Research has been done into the influence of friction thermomechanical treatment
parameters on forming the structure and properties in a surface layer of 20X13 steel.
The paper presents a theoretical approach towards controlling the process variables.
A hardened layer with a thickness of 1,7 mm was obtained after 20X13 steel had been
subjected to the process. The thickness of the layer that had a microhardness of≥600HV0,05 turned out to be about 0,75mm while the microstructure of the hardened
layer was martensitic, martensitic and perlitic with dispersed inclusions of carbides.
It was established that the feed has the biggest influence on the thickness of the
hardened layer.

Keywords: friction stir processing, rotation speed, tool feed, normal force,
microhardness, microstructure.

1. Intorduction

Friction stir processing with a rotating tool (FSP) is based on controlling intensive local-

ized plastic deformation and high-speed thermal effect. FSP is applied for processing

alloys containing aluminum, magnesium, copper, steels, etc. To control the FSP process

the following variables are distinguished: tool rotating speed, feed and axial force [1. FSP

normally employs a tool with a shoulder and a tip because of which various defects are

likely to occur in the surface layer. To avoid internal defects tools with no tip but with

a flat end face and a chamfer [3] are used. A kinematic diagramme illustrating FSP is

presented in Figure 1.

The paper [4] gives results of researching into FSP for the case of processing AISI 420

steel. It was determined that hardening of the surface layer is achieved through forming

How to cite this article: V.V. Voropaev, V. P. Kuznetsov, A. S. Skorobogatov, and A.A.∘Barashova, (2019), “Impact of Friction Stir Processing Parameters
on Forming the Structure and Properties in AISI 420 Steel Surface Layer” inXIX International scientific-technical conference “The Ural school-seminar
of metal scientists-young researchers”, KnE Engineering, pages 158–162. DOI 10.18502/keg.v1i1.4404

Page 158

Corresponding Author:

V.V. Voropaev

sen_vvv@mail.ru

Received: 25 February 2019

Accepted: 9 April 2019

Published: 15 April 2019

Publishing services provided by

Knowledge E

V.V. Voropaev et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Selection and Peer-review under

the responsibility of The Ural

school-seminar of metal

scientists-young researchers

Conference Committee.

http://www.knowledgee.com
mailto:sen_vvv@mail.ru
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The Ural school-seminar of metal scientists-young researchers

Figure 1: Kinematic diagramme of friction stir processing.

a martensitic structure. Strengthening surface layers in chromium steels by FSP with a

tool that has a flat end face under the conditions when the effect of stirring is reduced

to a minimum can be done predominantly by thermal action, through air hardening.

In this particular case it is essential that the surface layer should be heated to a

temperature(T𝑛) exceeding the critical point Ac3= 950∘С and pearlite be transformed

into austenite.

To attain optimal results of hardening AISI 420 steel it is necessary to establish the

impact of FSP variables on the structure and properties of the surface layer.

The selected process variables are expected to ensure heating to reach the temper-

ature T𝑛 >Ac3 and an appropriate conditioning time t𝑐𝑜𝑛𝑑 at this temperature to transfer

the friction heat to the surface layer. At the same time, overheating of the material must

be avoided as in this case austenite grains will significantly grow in size which is likely

to adversely affect strength, hardness and other mechanical properties.

Thus, proper processmodes should be selected so that the α→γ transformation could

be ensured avoiding austenite grain growth. Analyzing a correlation between process

variables and thermal parameters has made it possible to present it as a diagramme of

hardening control (fig. 2).
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Figure 2: Diagramme showing hardening control.

2. Experimental Setup

The friction stir processing was conducted on a MA-600/Okuma milling machine centre

making use of 100-mm diameter samples fabricated from AISI 420 steel, the original

hardness being 187 HB while the microhardness after milling was 220-230 HV0,05. FSP
was done with a Iskar tungsten carbide based hard-alloy tool with a flat end face end;

the diameter of its body was 9 mm and its chamfer - 0,5x45∘. The process variables are

shown in table 1.

Table 1: The process variables.

№ exp. F𝑛,[N] f, [mm/min] n, [rev/min]

1 2500 100 3000

2 2500 150 3500

3 2500 200 4000

4 3000 100 3500

5 3000 150 4000

6 3000 200 3000

7 3500 100 4000

8 3500 150 3000

9 3500 200 3500
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3. Results and Discussions

Metallographic samples were prepared to measure the microhardness of the surface

layer at various depths after FSP. The plane lay at a 19∘-degree angle in reference to

the treated surface. Microhardness measurements were made along the central axis of

each track by Vickers hardness test making use of a Leica VMHT microhardness tester

with a 50 gf load applied on the indentor. HV0,05 microhardness was measured along

the depth with 10 µm incremental steps to the depth of 50 µm, with a 20 µm incremental

step to the depth of 50 µm, a 50 µm step to the depth of 900 µm and a 100 µm step

until the parent matrix was reached. 5 measurements were made at each depth.

f mm/min 

№7 Fn 3500N; n 4000rev/min №4 Fn 3000N; n 3500rev/min 

 

Figure 3: Changing of microhardness in depth.

The microhardness tests (fig. 3) showed that the deepest hardened layer of approxi-

mately 1,7 mmwas obtained in sample№4 treated at F𝑛=3000N: f= 100mm/min: n=3500

rev/min; and №7 produced at F𝑛=3500 N: f= 100mm/min; n=4000 rev/min. Both modes

have the slowest feed. This indicates that the feed is an important factor affecting not

only the hardness but also the depth of the hardened layer. One more criterion of hard-

ening the surface layer may be its thickness with a microhardness of ≥600 HV0, 05.

The best treatment mode according to this criterion was used in experiment №4 when

the thickness of the layer with a microhardness of ≥600 HV0, 05 was approximately

0,75∘mm. Studying the microstructure of the working zone was done on an OLYMPUS

optical microscope using SIAMS-700 software and x50 and x500 magnification. A post-

FSP mictrostructural analysis of the surface layer showed the formation of a zone of

parabolic shape where the modified mictrostructure is observed (fig. 4). In this zone 3

areas emerge. In area 1 next to the treated surface, a martensitic structure with dispersed

inclusions of carbides can be seen (fig 5, a). A microstructural analysis at a depth of 500

µm showed that the formation of a homogeneous martensitic structure is ensured only
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if the feed is 100 mm/min (fig. 5, b). At 1000 µm from the surface and 100 mm/min feed a

composite martensitic-perlite structure with dispersed inclusions of carbides is formed

(fig. 5, c). When the feed values are 150 and 200 mm/min, at a depth of 1000 µm no

changes in the microstructure occur

Figure 4: Microstructure of the surface layer at x50 magnification of experiment №4.

 

а (h=100 µm) 

 

b (h= 500 µm) 

 

c (h=1000µm) 

Figure 5: Microstucture of a hardened layer at x500 magnification F = 3000 N; f = 100 mm/min; n =
3500rev/min.

4. Conclusions

Comparing the microstructure measurements and the microstructural analysis of the

modified and original materials together with the temperature changes in the FSP at

various combinations of process variables gives grounds to draw the conclusion that the

conditioning time at maximum temperature has a decisive influence on the thickness of

the hardened layer.
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