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The propagation of perturbations is studied with generalized holonomy corrections in a fully
consistent way, ensuring that the deformed algebra of constraints remains closed. The primordial
cosmological power spectra are calculated. It is shown that, although the detailed form of the correc-
tion does unavoidably impact the observables, the main known results of loop quantum cosmology
are robust in this respect.

INTRODUCTION

Loop quantum gravity (LQG) is a background-
independent quantization of general relativity (GR) [1].
It can be expressed in the canonical form [2] or in the
covariant way [3]. The theory has been successfully
applied to both black holes and the early universe.
Many consistency checks – mostly encouraging – have
been carried out, although some important questions
remain open [4]. An excellent philosophical introduction
is given in [5].

The cosmological sector of the theory has received
a particular attention and numerous complementary
aspects were investigated in details (see, e.g. [6–15],
and references therein). The main conclusions are
the following. The existence of a bounce replacing
the usual big bang is a robust result. It has been
shown analytically in simplified situations and proven
to survive when a cosmological constant is added, when
spatial curvature is taken into account, and when quite
general potentials for the inflaton field are considered. In
addition, the semiclassical states were demonstrated to
remain sharply peaked, allowing the safe use of effective
equations. Importantly, the duration of inflation is
statistically predictable in this framework. Generic
features for the primordial power spectra were also
derived.

This work deals with a specific – and somehow under-
estimated – point: the consequences of a generalized
holonomy correction. The outstanding issue of quanti-
zation ambiguities in LQG was mentioned in [16]. New
arguments were recently given in [17]. In particular,
the question was addressed from the interesting point
of view of renormalization. The quantization ambigu-
ity of the connection-based holonomy variable might
influence the associated cosmological predictions. This
has been studied in [18]. The main effects are quite
weak on the background dynamics and do not change
substantially the usual conclusions of loop quantum

cosmology (LQC). Interestingly, most new effects tend
to decrease the number of e-folds. This makes the
situation more phenomenologically promising. Pertur-
bations were also considered in this work. However, the
usual Mukhanov-Sasaki equations for gauge-invariant
perturbations were used, which are not fully consistent
with the underlying deformed algebra. The effects of the
holonomy modifications were accounted for at the level
of the background and at the level of the potential, but
not in the core of the propagation equation. This article
fills this gap and shows the calculation of fully reliable
primordial spectra (in the deformed algebra approach).
The main conclusion is that the known results of LQC
are robust.

In the first section, we review the basics of LQC so that
this article is self-contained for nonspecialists. Then, the
deformed algebra and the propagation equations for per-
turbations are defined. Finally, the results are shown for
different parametrizations of the holonomy correction.

Throughout all the article, we use Planck units.

BASICS OF LOOP QUANTUM COSMOLOGY

Loop quantum cosmology is an attempt to perform a
symmetry reduction of LQG, mimicking the quantization
used in the full theory [19, 20]. This section explains the
basic ideas for the unfamiliar reader.

The canonical formulation of LQG is based on the
Ashtekar connection,

Ai
a := Γi

a + γKi
a, (1)

where γ is the Barbero-Immirzi parameter and the ex-
trinsic curvature coefficients are given by Ki

a = Kabe
b
jη

ij

for triads defined such that qab = eai e
b
jδ

ij at each x ∈ Σt.

The spin connection Γi
a reads
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Γi
a = −1

2
ϵijke

b
j

(
∂[ae

k
b] + δklδmse

c
l e

m
a ∂be

s
c

)
, (2)

eai being the inverse triads such that eai e
j
b = δji . In order

to complete the set of canonical variables, one defines the
densitized triads Ea

i := |det e|−1eai that are conjugate to
the Ashtekar connection,

{
Ai

a(x), E
b
j (y)

}
= κγδbaδ

i
jδ

3(x− y), (3)

with, κ = 8πG.

The dynamical equations appear as constraints. Namely,
the Gauss constraint,

G[Λ] = (κγ)
−1
∫
Σt

d3xΛi
(
∂aE

a
i + ϵℓikA

k
aE

a
ℓ

)
, (4)

the diffeomorphism constraint,

D [Na] = (κγ)
−1
∫
Σt

d3xNaF i
abE

b
i , (5)

where F i
ab = 2∂[aA

i
b]+ϵijkA

j
aA

k
b is defined as the curvature

of the Ashtekar connection, and the scalar constraint,

C [N ] = (2κγ)
−1
∫
Σt

d3xN |det E|−1/2
(
ϵijkF

i
abE

a
jE

b
k

−2
(
1 + γ2

)
Ki

[aK
j
b]E

a
i E

b
j

)
. (6)

For an isotropic, homogeneous and flat universe, the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric
can be written as

ds2 = −N2
(
dx0

)2
+ a2(t)dxadxbδab. (7)

The Ashtekar variables are rewritten as:

Ai
a(x) = γȧ(t)δia ≡ c(t)δia, Ea

i (x) = a2(t)δai ≡ p(t)δai ,
(8)

where a dot denotes a derivative with respect to the cos-
mic time dt = Ndx0. Only the scalar constraint con-
tributes to the dynamics of this system. Taking into ac-
count the symmetries, it can be written as,

C[N ] = −3NV0

κγ2
p1/2c2, (9)

where V0 is a fiducial volume element.

The matter sector is assumed to be a scalar field ϕ with
an arbitrary potential V (ϕ). The full Hamiltonian is

Ht[N ] = NV0

(
− 3

κγ2
p1/2c2 + p3/2ρ

)
, (10)

which, after setting Ht[N ] = 0, leads to the usual Fried-
mann equation.

The holonomy around the closed fiducial square □ij can
be written as

h□ij
= hlihljh

−1
li

h−1
lj

, (11)

with

hli = exp
{
|l|kτ i

}
, (12)

where τ i are base matrices of the fundamental SU(2)
representation, which is arbitrary at this point. Hence,
the holonomy-corrected curvature is

F k
ab = −2 lim

l→0
tr

[
h□ij

− 1

l2
τk

eiae
j
b

γ2

]
, (13)

which is equivalent to

F k
ab = lim

l→0

sin2 (|l|k)
|l|2

ϵkij
eiae

j
b

γ2
. (14)

The presence of a minimal area in the theory, given by the
smallest nonzero eigenvalue of the area operator in LQG,

leads to the introduction of the µ̄ = lPl

(
4
√
3πγ

)1/2
p−1/2

parameter which allows to introduces the so-called holon-
omy correction substitution,

c2 −→ µ̄−2 sin2 (µ̄c) . (15)

Gathering everything, the holonomy-corrected Hamilto-
nian constraint becomes

Ht[N ] = NV0

(
− 3

κγ2µ̄2
p1/2 sin2 (µ̄c) + p3/2ρ

)
, (16)

which leads to the LQC-modified Friedmann equation,

H2 =
κ

3
ρ

(
1− ρ

ρc

)
, (17)
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where ρc =
√
3/(4πκγ3) is usually assumed to be close

to the Planck density. This is the usual bounce solution.

Many arguments (see, e.g. [21, 22]) were given for consid-
ering seriously LQC with arbitrary spin representations
or higher-order terms. In this work, we will remain as
general as possible. To this aim, we will focus on a so-
called polymerization defined by the substitution,

c2 −→ g2(c, p), (18)

Details about the construction of suitable semiclassical
states and associated Dirac observables are given in [6].

where the only restriction on the (periodic) g(c, p)
function is the low-curvature limit, in which GR should
be recovered, i.e. g(c, p) −→ c.

In order to set notations let us recall some known results
for the polymerized background dynamics in LQC. As
shown in [23], the background dynamics is described by
the set of equations

ċ = − 3N

2
√
p
g2(c, p) +

Nk
√
p
G(1)(c, p)−N

κ

2

√
pP,

ṗ = 2N
√
pG(1)(c, p),

ϕ̇ = Nπp−3/2,

π̇ = −Np3/2∂ϕV (ϕ),

(19)

where, as defined above, dots correspond to derivatives
with respect to the cosmic time t, {ϕ, π} are the canon-
ical variables for a given minimally coupled scalar field
with potential V (ϕ) and pressure P . We also used the
notation G(1)(c, p) := ∂cg

2(c, p)/2.

The background Hamiltonian constraint can be rewritten
as

3
√
pg2(c, p) = κρ, (20)

where ρ = π2

2p3 + V (ϕ). We make the usual gauge choice
N = 1, which allows us to rewrite the above set of equa-
tions as a generalized Friedmann equation, together with
the usual Klein-Gordon equation for the inflation field:

H2 =
κ

3
ρ (∂cg(c, p))

2
,

ϕ̈+ 3Hϕ̇+ ∂ϕV (ϕ) = 0,
(21)

where H := 1
2 ṗp

−1 is the Hubble parameter.

For the background dynamics given above, four initial
conditions are needed: the scale factor a, the Hubble
parameter H, the scalar field ϕ, and its time derivative
∂tϕ, have to be determined at some specific time. The
Ashtekar school has usually advocated the (reasonable)
idea that the bounce time should be chosen whereas
the Grenoble school prefers the pre-bounce classical
universe. The dynamics at the bounce being dominated
by quantum effects, we adopt this second choice (which
is anyway meaningful if the bounce state is to be
understood as the result of causal evolution from the
contracting branch). In addition, in the prebounce
phase, one can define a clear measure for probabilities
[14, 24, 25] relying on ‘safe” equations.

We impose a(ti) = 1. Far in the prebounce phase, the
universe is mostly classical and the Hubble parameter is
then given by the usual Friedmann equation, i.e. H(ti) =
−
√

κρ(ti)/3. To discuss initial conditions for the matter
sector, we introduce two parameters x and y defined by

x =

(
V (ϕ)/ρc

)1/2

,

y =

(
ϕ̇2/2ρc

)1/2

,

(22)

satisfying the relation

x2 + y2 =
ρ

ρc
. (23)

In this study, we assume a quadratic potential (that is
a simple mass term) for the field. Even though this po-
tential is not favored by observational data [26], it al-
lows easy comparisons with other studies. Our results
do not, in any case, significantly depend on the shape
of the potential. We have explicitly checked this with
the Starobinsky potential. In the remote contracting uni-
verse, the dynamics of x and y is described by a harmonic
oscillator,

x(t) ≈
(
ρ(ti)

ρc

)1/2

sin (mt+ δ) ,

y(t) ≈
(
ρ(ti)

ρc

)1/2

cos (mt+ δ) ,

(24)

where the phase parameter δ has been studied in [27] and
is not of particular importance in this work. The initial
density is

ρ(ti = 0) ≈ ρc

(
Γ

α

)2 [
1− (4α)

−1
sin (2δ)

]
, (25)
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with Γ the ratio of the classical timescale over the quan-
tum one and α is a free parameter (set, as usually, to
α = 17π + 1 to ensure that the scalar field oscillates
enough during the contracting phase for our approxima-
tions to be valid).

DEFORMED ALGEBRA AND PERTURBATION
EQUATIONS

The deformed algebra approach

The treatment of perturbations is less consensual than
the one of the background. On the one hand, the
so-called dressed metric approach (see [28, 29] for an
introduction) was developed to account for quantum
effects as deeply as possible. It is basically equivalent
to the hybrid quantization one [30] and the propagation
equation is the usual one. On the other hand, the de-
formed algebra framework (see [31] for an introduction)
was suggested to put emphasis on covariance. It is the
main focus of this study as it constitutes the natural
path to investigate the specific effects of the generalized
holonomy correction in a self-contained way.

Basically, the deformed algebra approach is a conserva-
tive one which relies on consistency. In the canonical
formulation of GR, the smeared constraints form a first-
class algebra. This closure property – that is, the fact
that each Poisson bracket between constraints is propor-
tional to another constraint – ensures that the evolu-
tion vectors always remain tangent to the submanifold of
constraints. In other words, this makes the constraints
compatible with themselves. When holonomy corrections
are implemented, the resulting quantum gravity effective
constraints do, however, not close anymore for perturba-
tions (the closure is automatically ensured for the back-
ground). In the seminal work [32], an elegant and consis-
tent way out was found. The interested reader can find
details, e.g., in [33, 34]. Important consequences were
derived on the allowed shapes of the correction in [35].
To cancel the so-called anomalies, that is AIJ terms ap-
pearing in Poisson brackets between (smeared) corrected

constraints CQ
I ,

{CQ
I , CQ

J } = fK
IJ(A

j
b, E

a
i )C

Q
K +AIJ , (26)

one adds counterterms physically encoding the deforma-
tion of the algebra. A pictorial representation is given in
[33]. Those terms are required to vanish in the classical
limit and are uniquely determined by the full system of
equations (including matter). Quite amazingly, similar
conclusions were reached in [23], with a more general
holonomy substitution. The fact that an anomaly-free
algebra can still be constructed, always requiring the

µ̄-scheme, is a strong hint in favor of the consistency of
this path.

The idea, when considering linear perturbations, is to
perturb constraints (and so the Hamiltonian) up to the
quadratic order and to add counterterms (vanishing in
the classical limit) to prevent anomalies. The Poisson
brackets between all constraints are explicitly calculated.
The calculations are quite involved but the final result is
surprisingly elegant and simple:

{G[Λ], G[Λ′]} = 0, (27)

{Dtot[N
a], G[Λ]} = 0, (28)

{Htot[N ], G[Λ]} = 0, (29)

{Dtot[N
a
1 ], Dtot[N

a
2 ]} = 0, (30)

and

{Htot[N ], Dtot[N
a]} = −Htot[δN

a∂aδN ], (31)

together with

{Htot[N1], Htot[N2]} =

(
1

2

∂2g2(c, p)

∂c2

)
(32)

×Dtot

[
N

p
∂a(δN2 − δN1)

]
. (33)

The factor 1
2
∂2g2(c,p)

∂c2 tends to 1 in the classical limit.
When this factor becomes negative, the signature of
spacetime changes to Euclidean, in agreement with what
happens in the µ̄-scheme near the bounce. This has far-
reaching consequences, from a specific phenomenology
[9, 11, 12, 36–46] to unforeseen links with the Hartle-
Hawking proposal [47, 48].

A contradiction with data was noticed in [49] due to the
power increase in the UV part of the spectrum, asso-
ciated with the Euclidean phase. It is very important
to underline – as this point is often misunderstood –
that this result does not mean, in any way, that the
deformed algebra approach to LQC is discarded. Just
the other way around, it shows that this framework is
suited at making potentially testable predictions. It
could very well be that the deformed algebra captures
the main features of loop gravity and that LQC in
itself is falsified. It could also be that the observational
window does not fall in the altered part of the comoving
spectrum (if inflation is brief). It could finally be that
the way perturbations are propagated in the “timeless
phase” is incorrect, which has nothing to do with the
deformed algebra framework itself [50]. It might even be
that initial conditions are not properly set [41].
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The main point that has to be underlined at this stage
is that as long as the function g2(c, p) changes concavity,
a signature change in unavoidable in this (conservative)
approach, as mentioned in [23]. As g2(c, p) ∼ c2 near the
origin (to recover GR) and as the function is periodic,
the change of concavity automatically happens. This
is a strong conclusion. However, contrarily to what is
written in [23], this does not necessarily happen near
the maximum of the function. Otherwise stated, for
generalized holonomy corrections, the signature change
is unavoidable but the energy density at which it takes
place does not need to be close to the one of the bounce.

Perturbation equations

Quite a few results were derived both for the background
and the perturbations in [18]. However, the equation for
perturbations was not fully consistent. This is what we
correct here.

The perturbed Einstein equations for a flat Universe filled
with a scalar field in the polymerization framework has
already been derived in the deformed algebra approach
[23]. The Hamilton equation of motion for background
variables is written thanks to the elementary Poisson
brackets, as previously explained. Following the stan-
dard procedure, the equations of motions for the per-
turbed variables are decomposed in scalar, vector, and
tensor modes. The physical part is then extracted by
considering terms invariant under both Gauss and dif-
feomorphism transformations. This results in:

v′′S/T − G(2)(c, p)∇2vS/T −
z′′S/T

zS/T
vS/T = 0, (34)

where the prime denotes a derivation with respect to the
conformal time dη = p−1/2dt and vS/T is the Mukhanov
variable for, respectively, scalar and tensor modes. We
have also defined G(2)(c, p) := ∂cG(1)(c, p). This in
agreement with what was previously found for the usual
correction [35].

By performing a Fourier decomposition on the k modes
and introducing the variables hk = vk/z and g̃k =√
pḣk/G(2)(c, p), it is possible to rewrite Eq. (34) as a

set of first-order coupled differential equations. For ten-
sor modes, one gets

ḣk =
G(2)(c, p)

√
p

g̃k,

˙̃gk = −2Hg̃k − ak2hk,

(35)

whereas, for scalar modes, the equations are

ḣk =
1
√
p
g̃k,

˙̃gk = −2Hg̃k − aK(k, t, c, p)hk,

(36)

with K(k, t, c, p) = G(2)(c, p)k2a−2 −HżSz
−1
S − z̈Sz

−1
S .

Initial conditions for perturbations

Following the logic of causality (and remaining consistent
with the background evolution), the initial conditions
for perturbations are set in the prebounce contracting
branch. The perturbations are thereafter propagated
through the bounce and the Euclidean phase until
they exit the horizon during the inflationary stage.
This approach is different from the one depicted in
[23] in which the authors set initial conditions for the
perturbations at the onset of inflation. In this latter
case, by construction, the perturbations never feel the
high energy quantum regime and the Euclidean phase.
This is why our results are deeply different.

The usual canonical quantization procedure is applied for
each mode vk. In the Heisenberg picture,

v̂k(η) = vk(η)âk + v∗k(η)â
†
−k, (37)

where âk, â
†
k are, respectively, the annihilation and cre-

ation operators, satisfying the usual commutation rela-
tion. This leads to the so-called Wronskian condition:

vk
dv∗k
dη

− v∗k
dvk
dη

= i, (38)

implying restrictions for the mode coefficients. In par-
ticular, the Minkowski vacuum can be rewritten (in the
case of tensors modes) as:

hk(ti) = (2k)
−1/2

a−1(ti),

g̃k(ti) = −i (k/2)
−1/2

a−1(ti)− (2k)
−1/2

H(ti).
(39)

Initial conditions for scalar modes are way harder to de-
rive, in particular due to the shape of the potential in
the contracting branch of (all) bouncing models [45]. One
can however rely on an appropriate WKB approximation
[42]. In this approach, we constrain the mode coefficients
from the Wronskian equation and choose the coefficients
to describe a wave propagation in the positive time di-
rection. One is then able to derive the initial conditions
of hk and gk for scalar modes.
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NUMERICAL RESULTS AND DISCUSSIONS

For Gaussian perturbations, the full statistical informa-
tion is given by the 2-point correlation function. In a very
standard manner, the scalar and tensor primordial power
spectra are expressed as functions of the Mukhanov vari-
able and the associated potentials evaluated at the hori-
zon crossing:

PS(k) =
k3

2π2

∣∣∣∣ vkzS
∣∣∣∣2
∣∣∣∣∣
k=aH

(40)

and

PT (k) =
4k3

π2

∣∣∣∣ vkzT
∣∣∣∣2
∣∣∣∣∣
k=aH

. (41)

In order to study the polymerization effects on those pri-
mordial power spectra, one needs to choose explicit ex-
pressions for the g(k, p) function. There are not many
constraints on the shape of g: mainly the low-energy
limit and periodicity. Still, following [23], solving the
anomalies in the algebra of constraints imposes g to be
of the following form:

g(c, p) = p1/2φ(cp−1/2), (42)

φ(cp−1/2) being an arbitrary function of (cp−1/2). For
the rest of this work we rewrite

g(c, p) := µ̄−1f(x) (43)

where µ̄ is the parameter already introduced Eq. (15).
With this notation, one can easily retrieve the usual LQC
prescription with f(x) = sin(x).

Several functions have been considered in [18], for exam-
ple

fsqr(x) = sin(x)
√
1 +A1xn1(x− π)n2 , (44)

with ni ≥ 1, i ∈ {1, 2} and A1 ≥ 0, together with

fcos(x) = sin(x)

√√√√(1 + C1)
−1

C1∑
n=0

cos2n(x), (45)

with C1 ≥ 1. One can easily show that such parametriza-
tions have the correct behavior in the low-energy limit.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. Graphical representation of the fζ polymeriza-
tion choice for various values of ζ (ζ = 5 in black with
short dashes, ζ = 1 in gray with intermediate dashes and
ζ = 0.1 in light gray with big dashes). The usual sin2(x)
prescription is represented in solid blue line.

To specifically study the effects of the change of signa-
ture, we introduce a new function fζ(x) which has GR as
a limit and allows to parametrically control the G(2) ≤ 0
region. It reads:

fζ(x) =

√
ζ2 + π2

ζ2 + 4 (x− π/2)
2 sin(x), (46)

where, ζ is the free parameter associated with the signa-
ture change. Figure 1 shows how the parameter changes
the shape of the function.

Tensor primordial power spectrum

For illustrative purposes, the numerical computation of
the time evolution of the tensor mode amplitude squared
|vk|2 is displayed in Fig. 2 for the fζ polymerization
choice with ζ = 1. As for other plots, Planck units are
used. The contraction phase can easily be seen, together
with the bounce, close to t = 2.275 × 107 tP , and the
inflationary phase on the right side of the plot.
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FIG. 2. Time dependence of the tensor mode amplitudes
|vk|2, in the fζ polymerization framework, with ζ = 1,
for the comobile wave numbers k = 10−6, k = 10−2, and
k = 10 from top to bottom.
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FIG. 3. Tensor primordial power spectrum for the fsqr
polymerization (black dots) with A1 = 1 and ni = 1
(i ∈ {1, 2}), together with the usual sin2(x) prescription
(smaller blue dots). A zoom on the oscillatory regime is
also represented.

Tensor primordial power spectra for the polymerization
choices defined in the previous section are presented in
Figs. 3,4, and 5. Those spectra are evaluated at the
end of the slow-roll inflationary phase, when slow-roll
hypotheses break down. We ensure that all modes of in-
terest, i.e those represented on the spectra, are outside
the horizon at that moment. Whatever the polymeriza-
tion choice, the spectra exhibit three regimes:

1. A scale invariant behavior in the infrared limit(
k ∈

]
−∞; 10−4

])
;

2. An oscillatory behavior (associated with the
bounce) for

(
k ∈

[
10−4; 2

])
; and

3. An exponential divergence in the ultraviolet limit
(k ∈ [2; +∞[).

The infrared (IR) regime corresponds to the largest wave-
lengths. Those modes do exit the horizon during the
contracting phase (before slow-roll inflation takes places)
and remain frozen during the bounce and the subse-
quent phase of inflation. However, during contraction,
the comoving Hubble radius (hence the tensor potential)
behaves similarly as it does during the slow-roll phase
aH ∼ 2/η and z′′T /zT ∼ 2/η2. Moreover, the tensor
potential converges towards 0 when going backward in
time in the contracting branch and those modes can ini-
tially be normalized using the usual Bunch-Davies vac-
uum. This situation therefore corresponds to the classi-
cal solution of inflation and the associated tensor power
spectrum is scale invariant. Those perturbations are not
impacted by the presence of the bounce. As will be dis-
cussed further in this paper, the situation is more com-
plicated for scalar perturbations as the scalar potential
does not vanish when going backward in time in the con-
tracting branch, leading to a scale-dependent behavior of
the scalar spectra in the IR. This issue has been investi-
gated in [45] but is however not of high importance as,
for the vast majority of the parameter space, those modes
cannot be observed in the CMB. A more exhaustive in-
terpretation of those results has been widely studied in
previous articles [12, 39, 43, 44, 49]. It basically means
that, depending on the number of inflationary e-folds, the
model is either indiscernible from GR1 (brief inflation),
marginally compatible with GR, or fully different from
GR (long inflation). We insist once more that the UV in-
crease is not in itself inconsistent as the power spectrum
does anyway not describe the real world in the k → ∞
limit. Nonlinear local effects rule in this regime. In addi-
tion, it should be pointed out that modes are propagated
in the Euclidean regime using their Fourier expansion
which remains conceptually unclear.

1 We do not consider here the subtle normalization effects associ-
ated with the preceding deflation



8

...........................
.........................

..........................................................
..
...
.....................
.............
.......
.
..
.....
.
..
.....
....
.
....
.
.....
..
..
..
.
....

.

...
.
.
.....
.

.

.

.

.

.

....
.
...
..

.

...
.
................
..
.
.....
...
..
.
.......
.
......

.

........
.
.
.
......
....
.................
.
.
...
.........
......
...............................................

...
.........
..
.......
.......
...
.
.
.
.
....
......

.

.....
...
.
.
.....
.
.....
...
.....
......
...
.
.
.

.

..
.

.

.....
.

...
.

..
.
...
..

............................................
........................................

.........................................
........
...............
...........
..
........
.
.......
.
.......
.....
................
..
.
...
....
.
............
.....
........
.............
.
.....................
.........
....................
....................................................................

......
............
...........
.....
....

.

....
......
.........
.....
........
.
.
..
.
......
.....
..
..
..
...
.
..
.
.
.

10-5 10-4 10-3 10-2 10-1 100 10
10-10

10-5

100

105

1010

1015

1020

..........
........
.......
......
........
........
........
.........
...........
................................

.

.

.

.

.

.

..
..
....
..........
.

.

.

.

.

..
.......
.
.

.

.

.

..
...
.
.

.

.

.

....
.

.

.

.

...

.

.

.

..
.

.

.

...

.

.

..

..

..

.

.

.

.

.

..

.

..

.

.

.

.

.

.

..
.
.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

...

.

.

.........
....

..

..

.

..

.

.

.

.

.

.

.

.

.

.

.....
.

.

.

.

.

.

.

.

.

......
.
.

.

.

.

..
.
..
.
.

.

.

.

....
..
....
...
.
..

.

.

.

..
.

.

.

.

.....

.

..
.
..

.

..
.
..

.

.

.

..

..
.
.
.
.
......
...............
.
.
.
.
.
.

.

..
...

.

.....
....

.

.

.

...
..

.............
.........
...........
............
.............
..................
.........................
.

..

.

..

...
..............
.

..

.

..

........
.

.

.

.

......
.

.

.

..

...
.

.

.

....

.

.

...
.
.

...

..

..

.

.

..

..

..

.

..

.

..

.

.

..

.

.

.

.

........
.

.

.

.

..

.

..

.

.

..

.

.

..

..........
.

.

.

.

.

.

.

.

...
.

.

..

..

.

.

..

.

.

..

.

..

.

..

.

..

...
.
.

.

.

.

.

.

...
..
.

.

.....

.

.

.

....
..
..
...
..
.....
.
..
.
..........................
..
.
.
.
....
...

.

.

.

...
.
.
......
.
...

.

.

.

....
...
..
..
..

....
.

.

.

.

10-4 10-3 10-2 10-1 100
10-12

10-11

10-10

10-9

10-8

10-7

FIG. 4. Tensor primordial power spectrum for the fcos
polymerization (black dots) with C1 = 2, together with
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zoom on the oscillatory regime is also represented.

...........................
.........................

..........................................................
..
...
.....................
.............
.......
.
..
.....
.
..
.....
....
.
....
.
.....
..
..
..
.
....

.

...
.
.
.....
.

.

.

.

.

.

....
.
...
..

.

...
.
................
..
.
.....
...
..
.
.......
.
......

.

........
.
.
.
......
....
.................
.
.
...
.........
......
...............................................

...
.........
..
.......
.......
...
.
.
.
.
....
......

.

.....
...
.
.
.....
.
.....
...
.....
......
...
.
.
.

.

..
.

.

.....
.

...
.

..
.
...
..

....................................
......................................

...........................................
.....
................
.
....
...................
.....
.
.......
...........
.
......
.
..
.
..........
.
.
.
.
.......
..
.
....
...........
...........
.
....
...............
.......
..........
.
.
.....
.......
......................................................

.....
....
.
......
..
...
......
....
..
..
...
.
.....
.
.
.
........
......
.......
.....
....
.....
.......
...
....
..
....
.....
...
...
.

....................................
......................................

............................................
....................
..............
.......
.
.........
.....
.................
...........
..............
..
.
..
.
...
..
.................
........
........
...
.
...
.
..........................................

..
.
.................................
...........
.
.
....
......
...............
..
.
..
.
...
.
.
.....
..
..
...
...
.
.......
...
...
..
.

......
....
......
...
.....
.
.
....
....
...
...
...
..

..
..
..

10-5 10-4 10-3 10-2 10-1 100 10
10-10

10-5

100

105

1010

1015

1020

..........
........
.......
.......
........
........
........
.........
...........
..............................

.

.

.

.

.

.

..
..
....
..........
.

.

.

.

.

..
.......
.
.

.

.

.

..
...
.
.

.

.

.

....
.

.

.

.

...

.

.

.

..
.

.

.

...

.

.

..

.

.

..

.

.

.

.

.

..

.

..

.

.

.

.

.

.

..
.
.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

...

.

.

.........
....

..

..

.

..

.

.

.

.

.

.

.

.

.

.

.....
.

.

.

.

.

.

.

.

.

......
.
.

.

.

.

..
.
..
.
.

.

.

.

....
..
.
.
..
...
.
..

.

.

.

..
.

.

.

.

.....

.

..
.
..

.

..
.
..

.

.

.

..

..
.
.
.
.
......
...............
.
.
.
.
.
.

.

..
...

.

.....
....

.

.

.

...
..

.

.

..

...........
.........
...........
...........
...........
............
........................................
.

.

.

.

..
...
.............
.
.

.

.

..
........
.

.

.

..
....
.
.
.

.

....
.

.

.

....

.

.

...

..
...

.

.

..

.

...
.

..

.

..

.

..
.

.

.

..
.
.

.

.

.

.

.

.

.

...
.

.

..

.

...

.

....
.

.

.

...
.

.

.

....
.

..
.
.

.

.

.

..

.

.......
...
.

.

.

.

.

..
.
..
.
..
.
..
.
.

...

.

.

.

.

.

..
.

...

.

..
.
.
.
...
.

...
..
....
.
.
.
..
.
..
.

..
...

..

.....
.

.

...

..........
..
.

.

.

.

.

.

.

...

.

.

.

...

.

..

.

.

.

.

..
.
..

.

.

.

.

.

..

............
.........
...........
...........
...........
.............
......................................
.
.

.

.

.

..
...
.............
.

.

.

.

..
.......
.
.
.

.

..
....
.

.

.

..
...
.
.

.

...
.

.

.

..
.

.

.

..
..

..
..

..

.

.

.

..
.
..
.

.

..

.

.

.

.

........
.

.

.

..

.

..

.

...

.

.

............
..

..

.

..
.
.
.
..

.

...
.

.

..
.

.

..

.

.

.

.

.

......
..
.
.
..
....
.
.
.
.
.
..
.

...
..
.
.
.
....
..
...
...

.

...
.
..

.

..
...

..

.

.

.

......

..

.....

.

.

.

.

..
.
.....

.

.

.

.

.

.

.

.

.....

.

.

..
.
.
.
.
...
.
.
....
..

10-4 10-3 10-2 10-1 100
10-12

10-11

10-10

10-9

10-8

10-7

FIG. 5. Tensor primordial power spectrum for the fζ
polymerization with ζ = 1 (black dots) and ζ = 0.1 (gray
dots), together with the usual sin2(x) prescription (blue
dots). A zoom on the oscillatory regime is also repre-
sented.

The results displayed in the previously mentioned figures
are not difficult to interpret (within the assumptions of
the model). For tensor modes, the potential z′′T /zT de-
pends only on the scale factor a and its derivatives. In
other words, the potential depends only upon background
variables. Even with quite exotic generalized holonomy
corrections, those variables are mostly equivalent to the
usual loop quantum cosmology ones (see [18]). Neverthe-
less, some deviations from the standard behavior can be
observed in the ultraviolet. This is due to the maximum
value of f : if it differs from unity, the bounce energy
density is not exactly the same than the one of the usual
sin2(x) bounce. This can be explicitly seen in Fig. 6 for
the fζ polymerization choice.
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FIG. 6. ζ dependence of the bounce energy density for a
background described by the fζ polymerization choice.
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FIG. 7. Scalar primordial power spectrum for the fsqr
polymerization (black dots) with A1 = 1 and ni = 1
(i ∈ {1, 2}), together with the usual sin2(x) prescription
(blue dots). A zoom on the oscillatory regime is also
represented.

The numerical results for the scalar primordial power
spectra are given in Figs. 7,8, and 9 for the same poly-
merization choices. Three regimes can still be identified:

1. A power law (∝ k3) in the infrared(
k ∈

]
−∞; 10−3

])
;

2. Oscillations for
(
k ∈

[
10−3; 2

])
;

3. A divergence in the ultraviolet (k ∈ [2; +∞[).

Once again, the meanning of the main features have al-
ready been studied (see, in particular, [42]).

Starting from the definition of zS := a2ȧ−1ϕ̇, one obtains:
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z′′S
zS

= −a2
(
∂2
ϕV

)
+ 2ȧ2 − 2κf ′′ϕ̇ (∂ϕV ) a4ȧ−2 (47)

−7

2
a2κf ′′ϕ̇2 + 3a2κϕ̇4 +

1

2
a4ȧ−2κ2f ′′2ϕ̇4.

This complicated expression is what makes the case
of scalar perturbations specific. In addition to the
previously explained issues with initial conditions (that
are not related with this specific model but inherent to
all bouncing models), the fact that the polymerization
choice also appears in the z′′S/zS term of the propagation
equation is what makes the study of scalar modes subtle.
This is however the most interesting part of the game as
they are directly related with CMB measurements.

To allow a direct comparison with data, one needs to
convert comobile values into physical ones. In this work,
as usual and useful when studying bouncing models, we
normalized the scale factor to unity at the bounce time.
The conversion therefore requires to know the number
of e-folds between the bounce and the decoupling. In
particular, it requires the knowledge of the number of
inflationary e-folds Ninf , which cannot be fully fixed by
the model but depends on contingent parameters (such
as the phase of the scalar field during the contraction
phase). Extensive discussions can be found in [49] and
[51, 52]. In practice, the physical wavenumber kphys is re-
lated to the comobile wavenumber k used in the different
plots of this article by

kphys = k

(
eNinf

TRH

Tdec

)−1

, (48)

where TRH and Tdec are, respectively, the reheating and
decoupling temperatures.

The main conclusion that can be drawn from all the plots
is that the spectra remain remarkably close one to the
other, and similar to the “standard” deformed algebra
sin2(x) one. In the scalar case, this was not an a priori
expected result. This shows that the precise shape of
the holonomy correction has a very weak influence on
the details of the observables, even if initial conditions
are set in the contracting branch, and the perturbations
propagated through the bounce and the Euclidean phase.
This is an important point for the reliability of the model.
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FIG. 8. Scalar primordial power spectrum for the fcos
polymerization (black dots) with C1 = 2, together with
the usual sin2(x) prescription (smaller blue dots). A
zoom on the oscillatory regime is also represented.
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FIG. 9. Scalar primordial power spectrum for the fζ
polymerization with ζ = 1 (black dots) and ζ = 0.1 (gray
dots), together with the usual sin2(x) prescription (blue
dots). A zoom on the oscillatory regime is also repre-
sented.

This work focuses on the shape of the power spectrum
as this is precisely where effects of generalized holonomy
corrections are expected to play a significant role.
General considerations on the amplitude of the spectrum
and on the scalar-tensor ratio in this framework can be
found in [43, 49].

FALSIFIABILITY

In principle, it could be that measurements allow to
constrain the inflaton potential. In this case, the
duration of inflation would somehow be predicted by
the model (see, in [18], the extension to generalized
holonomy correction of the results from [25]). Should
the latter be high enough so that the observational
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window falls in the UV part of the spectrum, the model
would be discarded. What conclusions could then be
drawn? Obviously, the situation is intricate as quite a
few of explicit and implicit hypotheses are always at play
in a cosmological scenario. At the heuristic level, this
would discard a specific approach to generalizing gravity
through a periodization of the Ashtekar connection
(with the suitable low-curvature limit). More deeply,
the delicate and important point would be to clarify the
link between this specific approach and LQG in general.

On the one hand, it is true that the deformed algebra
framework does not retain much of the complicated struc-
ture of loop quantum gravity. It particular, it is obviously
“less quantum” than the dressed metric approach.

On the other hand, it could be argued that it actually
captures the core ingredients. Gauge fixing before quan-
tization is often harmless. However, the constraints con-
sidered here are not of the kind of those encountered in
Yang-Mills theories. When quantum corrected, the gauge
transformation they generate are not of the usual form.
Therefore, gauge fixing before quantization might lead to
choose the gauge according to transformations that need
to be modified; hence the inconsistency.

In addition, in the case of gravity, the dynamics is part
of the gauge system [53, 54]. Consistency therefore
imposes to quantize gauge transformations and the
dynamics simultaneously. It is not correct to fix the
gauge in order to derive the dynamics. The deformed
algebra approach solves both of those issues [31] and
should therefore be taken seriously.

The relation between this approach and the full theory
is still unclear. If it was, in the future, shown to be
reliably related to LQG, possible conflicts with data
would rule out the main theory. On the other hand, if
this framework was demonstrated to miss key features
of the full theory, it would discard only this specific way
to describe the cosmological dynamics.

It is fair to underline that this remains an open question
at this stage. It should however be stressed that the
unforeseen link between the deformed algebra approach
and the disappearance of time, as predicted by the
Hartle-Hawking proposal [55], is quite remarkable. Even
more impressive is the way it might cure the weaknesses
of the original proposal [47, 48].

Finally, as previously reminded, it could also be that
modes are not correctly propagated in the Euclidean
phase. In this work, we make minimalist assumptions
and work in Fourier space to avoid obvious problems with
the definition of a wave in a timeless space. Another in-
teresting view was suggested in [50].

CONCLUSION

In this work we have considered generalized holonomy
corrections, as the usual harmonic choice made in loop
quantum cosmology is far from being the only possible
one. It has even been recently argued that there is no
fundamental reason for focusing on this specific shape
[17].

We have studied three different generic functions having
general relativity as their low-energy limit and satisfying
the basic loop gravity requirements. One of them is
specifically parametrized so that the position of the
Euclidean region, corresponding to a change of concavity,
can be easily varied and probed.

The generalized holonomy correction appears both at the
background level and in the propagation equation for per-
turbations. In addition, for scalar modes, it also enters
the z′′S/zS term. This leads to an intricate situation which
cannot be fully understood intuitively.

To clarify the situation, we have numerically calculated
the primordial power spectra in all cases, setting initial
conditions in the prebounce contracting branch. Since
in this setting (motivated by general arguments), cosmo-
logical perturbations are propagated through the bounce
and the Euclidean phase, a bigger sensitivity of the
spectra to the shape of the holonomy correction than
the one established in [23] could have been expected.
However, we have shown that, whatever the (reasonable)
form of the function and values of the parameters, the
overall shape of the spectra remains unchanged with
respect to the usual deformed algebra LQC results. This
shows that the known conclusions are robust.

Obviously, the actual content of the Universe in the
contraction phase is not known and this constitutes a
weakness for all bouncing models. As pointed out in
[56, 57] this might raise some interesting paradoxes. In
this work, the only assumption required is that a scalar
field dominates over all the other possible contents at
high-energy before the bounce. Although speculative,
this assumption makes sense as it both leads to the
desired phase on inflation and seems favored by grand
unified models of particle physics [58]. Obviously, a
detailed description on an “inverse-reheating” process is
still missing. More important than the actual content is
the question of anisotropies, extensively discussed e.g.
in [14].

In the future, it would be interesting to generalize this
investigation to the dressed metric approach. In this case,
the way the new holonomy correction might alter the
propagation equation is, however, less clear and requires
further investigations.
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