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Impact of genomic polymorphisms on the
repertoire of human MHC class I-associated
peptides
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For decades, the global impact of genomic polymorphisms on the repertoire of peptides

presented by major histocompatibility complex (MHC) has remained a matter of speculation.

Here we present a novel approach that enables high-throughput discovery of polymorphic

MHC class I-associated peptides (MIPs), which play a major role in allorecognition. On the

basis of comprehensive analyses of the genomic landscape of MIPs eluted from B lympho-

blasts of two MHC-identical siblings, we show that 0.5% of non-synonymous single

nucleotide variations are represented in the MIP repertoire. The 34 polymorphic MIPs found

in our subjects are encoded by bi-allelic loci with dominant and recessive alleles. Our analyses

show that, at the population level, 12% of the MIP-coding exome is polymorphic. Our

method provides fundamental insights into the relationship between the genomic self and

the immune self and accelerates the discovery of polymorphic MIPs (also known as minor

histocompatibility antigens).
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C
lassic adaptive CD8 T cells recognize major histocompat-
ibility complex (MHC) class I-associated peptides (MIPs),
and the ensemble of MIPs presented on the surface of a

cell (the ‘immunopeptidome’) establishes its immunologic
identity1–3. CD8 T cells are eminently self-referential and
highly discriminant: they are selected on self-MIPs, sustained
by self-MIPs and must swiftly react when confronted with non-
self-MIPs interspersed in a sea of self-MIPs4,5. Understanding the
molecular definition of self for CD8 T cells has been made
possible by high-throughput mass spectrometry (MS) analyses of
MIPs6–12. Progress in this field has been heralded by the
development of MS instruments whose sensitivity, dynamic
range and mass accuracy are orders of magnitude superior to
those of analysers available a decade ago13. High-throughput MS
studies have revealed that the immunopeptidome is highly
complex and that its composition (that is, the source of
MIPs) cannot be inferred solely from transcript or protein
abundance7,9,12,14–16.

The MHC I region contains two major classes of genes: modern
classical MHC Ia genes (for example, HLA-A, HLA-B and HLA-C
in humans) and more ancient MHC Ib genes (for example, HLA-E
and HLA-G). MHC Ia molecules play a dominant role in adaptive
immunity. They bind MIPs and are encoded by the most
polymorphic genes known17,18. Since MHC Ia allotypes display
distinct peptide-binding motifs, the HLA (human leukocyte
antigen) genotype has a major impact on the MIP repertoire19.
Notably, almost all genetic polymorphisms in HLA Ia alleles are
located in exons 2 and 3, which encode the MIP-binding pocket.
Besides, the 1,000 Genomes Project Consortium has identified
38million single nucleotide polymorphisms (SNP), 1.4million
short insertions and deletions, after comprehensive studies on
1,092 subjects18. This raises the fundamental question: what might
be the impact of the numerous polymorphisms outside the
MHC on the MIP repertoire? In other words, to what extent
do genomic polymorphisms translate into differences in the
immunopeptidome?

Several MIPs have been found to derive from polymorphic
genomic regions20,21. For historical reasons, these polymorphic
MIPs are referred to as minor histocompatibility antigens
(MiHAs). MiHAs are essentially genetic polymorphisms viewed
from a T-cell perspective. MiHA-coding alleles can be dominant
or recessive at the peptide level. Thus, a non-synonymous SNP
(ns-SNP) in an MIP-coding genomic sequence will either hinder
MIP generation (recessive allele) or generate a variant MIP
(dominant allele)22–24. MiHAs are generally defined according to
three criteria: they are present in some but not in all subjects
bearing a given HLA allele, their presence/absence is linked to a
well-defined genetic polymorphism and they can elicit allo-
immune T-cell responses22–24. Three decades of research have led
to the discovery of about 35 human MiHAs encoded by
autosomes and presented by HLA class I molecules23,24. The
discovery of each MiHA has been a major endeavour, if not a
technical tour de force25–30. However, owing to the lack of a
suitable systems-level approach, we ignore the global impact of
non-MHC genomic polymorphisms on the immunopeptidome
(that is, what proportion of MIPs are MiHAs). On the basis of
various theoretical premises, it has been speculated that the
number of MiHAs expressed by an individual might be very low
(less than 10) or very high (greater than 1,000)21,24. In addition to
its conceptual importance, the impact of genetic polymorphisms
on the immunopeptidome is of considerable medical relevance
because MiHAs are the targets of three allo-immune processes:
graft rejection, graft-versus-host disease and graft-versus-tumour
reaction24,31–36.

Systems-level molecular definition of the immunopeptidome
can be achieved only by MS studies. However, since current MS

approaches cannot reliably detect polymorphic peptides, they are
inadequate for MiHA discovery37. Furthermore, since several
steps of MIP processing cannot be modelled with available
algorithms38, MiHA identification using prediction tools is a
daunting task fraught with high false discovery rates (FDRs)37.
To resolve this conundrum, we have developed a genoproteomic
strategy that hinges on a combination of next-generation
sequencing and high-throughput MS peptide identification. Our
personalized platform provides unprecedented insights into the
genomic landscape of human MIPs and enables high-throughput
identification of MiHAs and of their underlying genomic
polymorphisms.

Results
Novel approach for the identification of MIPs. To evaluate the
impact of non-HLA genetic polymorphisms on the MIP reper-
toire, we analysed the immunopeptidome of Epstein–Barr virus
(EBV)-transformed B-cell lines (B-LCLs) from two non-twin
HLA-identical female siblings (Fig. 1a). The success of our
endeavour hinged on two factors: the need to reliably identify
MIPs encoded by polymorphic genomic regions and to maximize
the coverage of the immunopeptidome (the number of unique
MIPs identified).

Large-scale MS-based analyses represent the sole approach
enabling comprehensive molecular definition of the MIP
repertoire1,12,39. However, standard high-throughput MS is
blind to a whole universe of polymorphic peptides. Indeed,
sequencing (or assignation) of peptides by tandem MS is done
using engines (for example, Mascot) that attempt to correlate
tandem MS fragment ions from a sample under study with those
predicted from available protein databases (for example,
UniProt). Unfortunately, most polymorphic peptides are absent
from these databases and tandem MS spectra from unlisted
polymorphic peptides will inevitably remain unassigned or
misassigned. We reasoned that the most straightforward
solution to this conundrum would be to use next-generation
sequencing data to create subject-specific proteomic databases
that would serve as a reference for MS sequencing.

Transcriptome sequencing (or RNA-seq) provides information
about gene expression and can reveal sequence variation such as
SNPs or RNA editing events40. However, lowly expressed genes
might be missed by RNA-seq depending on the depth of
coverage. Exome sequencing is the method of choice to capture
RNA coding or exonic regions including SNPs as it tends to be
less noisy than RNA-seq for variant calling and mapping40.
Nevertheless, exome capture is limited to regions that are targeted
by the probe set and not all exons are indeed transcribed in a
particular cell type. Accordingly, the immunopeptidome is cell
type specific1 and preferentially derives from abundant
transcripts8,19, and hence it is more likely to reflect trans-
criptome sequences rather than genomic sequences. To combine
the benefits of both sequencing technologies and to cover as
much as possible each individual’s coding genome40,we
sequenced both the exome and the transcriptome of B-LCLs
from each subject (Fig. 1a). Annotated exons were covered at a
depth of 130–131� in the RNA-seq and a coverage depth of 66–
158� of exonic targets was achieved in the exome capture, with
98% of targets covered at a minimum depth of five reads
(Supplementary Data 1). In total, more than 53 and 50 mega
base pairs of annotated exons were covered in subjects 1 and 2,
representing 76–81% of the human annotated exome
(Supplementary Data 1).

Next-generation sequencing data were used to build in silico
the proteome of B-LCLs from our subjects using the in-house-
developed python module pyGeno19 (Fig. 1b). Following
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Figure 1 | High-throughput genoproteomic strategy used for the identification of polymorphic MIPs on B-LCLs from two HLA-identical siblings.

(a) General overview of the personalized approach, which combines next-generation sequencing, MS and bioinformatics. (b) Schematic representation of the

combinatorial method used to translate in silico polymorphic regions containing ns-SNPs. (c) Combining the predicted MHC-binding affinity and Mascot

score enables to discriminate between MIPs and contaminant peptides. The data set of peptides identified with an FDRr5% was filtered according the

Mascot score (which represents the confidence level of a peptide assignation), and the predicted MHC-binding affinity. The red rectangle and lines indicate the

combination of values (IC50r1,250nM and Mascot score Z21) that allowed identifying the maximum number of MIPs with a 5% FDR threshold.
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integration of exome and transcriptome sequencing, similar
number of base pairs and proportions of the human exome were
covered in both siblings (Fig. 2, track 3 blue versus orange and
Supplementary Data 1). Exome and transcriptome sequencing
data of each subject were used to identify SNPs with respect to the
reference genome (GRCh37.p2, NCBI), which were then filtered
according to their quality (see Methods). The majority (93.2–
97.7%) of the identified SNPs are reported in the dbSNP
database41 (Supplementary Data 2). SNPs were combined into a
single set and integrated at their respective position on the
reference human genome to obtain two ‘personalized genomes’,
from which we extracted and translated every transcript (see

Methods section). The translations were then compiled in two
‘personalized protein databases’, one for each subject.

MIPs were eluted from the cell surface by mild acid elution
performed on four biological replicates of 500 million cells for
each subject. Eluted peptides were desalted and separated on
strong cation exchange chromatography before liquid
chromatography–tandem mass spectrometry (LC–MS/MS) ana-
lyses using high-resolution precursor and product ion spectra.
Compared with other methods such as MHC I immunoprecipita-
tion, acid elution has the advantage of harvesting almost all MIPs,
irrespective of their MHC-binding affinity42. However, direct acid
elution can increase the amount of non-MHC contaminant
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peptides that are recovered8. To maximize the sensitivity and
specificity of MIP detection, we have therefore developed an
analysis pipeline that relies on a combination of four parameters:
(i) the canonical MIP length of 8–11 amino acids, (ii) the
predicted MHC-binding affinity given by the NetMHCcons
algorithm43, (iii) the Mascot score, which reflects the quality of
peptide assignation and (iv) the FDR, which indicates the
proportion of decoy (false) versus target (true) identifications
(see Methods section). We found that for an FDR of 5%, the best
coverage of the immunopeptidome was obtained by combining a
Mascot score Z21 and an MHC-binding affinity r1,250 nM
(Fig. 1c and Supplementary Figs 1 and 2).

Next, we compared the number of peptide identifications
obtained by Mascot using the regular human protein database
(UniProt) and personalized databases based on exome and
transcriptome sequencing (Supplementary Fig. 3a). We identified
4,468 unique MIPs from the two personalized databases
(Supplementary Data 3). The numbers of MIPs identified
with the reference database versus personalized databases were
similar with a 96% overlap (Supplementary Fig. 3a). Notably,
replacement of reference with the personalized databases
had no impact on the quality (Mascot score) of identified
peptides (Supplementary Fig. 3b).

The MIP repertoire of HLA-identical siblings. We have pre-
viously shown that the HLA genotype has a major impact on the
MIP repertoire of MHC-mismatched individuals19. Here we
compared the MIP repertoire of HLA-identical siblings to
evaluate the impact of non-HLA genetic polymorphisms on the
immunopeptidome. In addition to having identical HLA
genotypes, the two siblings showed similar expression levels of
the HLA-A, HLA-B and HLA-C genes (Supplementary Data 4)
and of the total amount of MHC class I molecules at the cell
surface (Supplementary Fig. 4). Following mild acid elution of
peptides of comparable efficacy between subjects (Supplementary
Fig. 4), we identified a total of 4,468 MIPs encoded by genes from
all chromosomes (Fig. 2, track 6 and Supplementary Data 3),
detected in a variable number of biological replicates (Fig. 3a) and
associated to HLA-A*03:01, -A*29:02, -B*08:01, -B*44:03 or
–C*16:01. Similar numbers of MIPs were identified from the two
subjects (4,114 in subject 1 and 4,186 in subject 2). As expected,
the majority of the MIPs (86%) were detected in both subjects
(Fig. 3a). Most MIPs (75%) had a predicted binding affinity
o500 nM (Fig. 3b). We found no significant difference in the
average binding affinity of 282 peptides exclusively detected in
subject 1 versus 351 peptides exclusively detected in subject 2
(Fig. 3b). Furthermore, the number of peptides predicted to bind
each of the HLA molecules was similar between the two subjects,
suggesting that both siblings had comparable surface expression
of each of the five HLA allelic products tested (Fig. 3c).
Collectively, these results show that the MIP repertoire of HLA-
identical subjects is similar yet not identical.

MiHAs among MIPs detected exclusively in one subject.
MiHAs are typically encoded by bi-allelic loci22,23. For each locus
where two alleles are present in our subjects, three genotypes are
possible: AA, AB and BB. At the peptidomic level, each allele can
be dominant (generate a MIP) or recessive (a null allele that
generates no MIP). Moreover, by comparing MIPs eluted from
two HLA-identical individuals, dominant MiHAs can be
separated into two groups based on their MS detection: shared
MIPs and MIPs detected exclusively in one subject. MIPs detected
in only one subject derive from different genotypes (for example,
AA versus BB and AA versus AB if only B is a dominant allele),
while shared MIPs can originate from identical genotypes (AB

versus AB) or from different genotypes (for example, BB versus
AB if only B is a dominant allele). Thus, subjects can be similar at
the peptidomic level (display shared MIPs), although they have
different genotypes (Fig. 4).
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In our search for MiHAs, we first performed in-depth analyses
of MIPs detected in only one subject (Fig. 3a). Here the key
finding was that out of 633 MIPs exclusively detected in one
subject, only 14 (2%) were encoded by genomic regions
harbouring ns-SNPs between the two subjects (Fig. 4,
n¼ 10þ 4 and Supplementary Data 3). The origin of 4 of these
14 MIPs was ambiguous (they could derive from several genes),
whereas the other 10 MiHAs were assigned to a single gene
(Fig. 4, n¼ 6þ 4 and Table 1). The genetic polymorphisms
responsible for almost all MiHAs corresponded to reported SNPs
(Table 1). Consistent with previous findings on human MiHAs23,
only one of the two possible variants was detected by MS for each
MiHA locus (Table 1). In other words, at the peptide level, one
allele was dominant (generated a MIP) and one was recessive
(generated no MIP; Table 1). In 5 out of 10 cases, absence of the
variant MiHA at the cell surface could be explained by a
decreased binding affinity of the variant for the corresponding
HLA molecule (IC50 differenceZ2� ). Nine of our best
characterized MiHAs are novel, whereas one (KEFEDGIINW)

corresponds to the allelic variant of a previously reported
MiHA (KEFEDDIINW)44 that has been recently identified45.
Four MiHAs were exclusively detected by MS in one of the
subjects, although they derived from a shared allele (Table 1B and
Fig. 4). In all cases, the MiHA was detected in the subject
homozygous for the corresponding allele but not in the
heterozygous subject (Table 1). This suggests that zygosity
influences MiHA abundance and that low abundance MiHAs
may fall below the MS detection threshold in heterozygous
subjects. Consistent with this, the MS intensity for these four
MiHAs was low in the homozygous subject (Supplementary
Data 3). Six MiHAs were coded by an allele present only in one
subject (Table 1A), and were thus potentially immunogenic for
the other sibling. We further validated the peptide sequence
using MS/MS from their respective synthetic peptide
(Supplementary Fig. 5a). Furthermore, we confirmed the
presence of the ns-SNP in the corresponding DNA and/or
complementary DNA regions of these six MiHAs in both subjects
by Sanger sequencing (Supplementary Fig. 6). Then, we
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Table 1 | MiHAs detected by MS in only one of the two subjects and resulting from ns-SNPs in MIP-coding regions.

MiHA name Detected MiHA

sequence

S Gene

symbol

HLA

allele

IC50

(nM)

aa

sub.1

aa

sub.2

Alternative

MiHA variant

IC50

(nM)

IC50

ratio

dbSNP

(A)

ITGAL-1T* STALRLTAF 1 ITGAL C*16:01 306 TR RR SRALRLTAF 2,969 9.7 rs2230433

IGHV5-51-1V VIYPGDSDTRY 1 IGHV5-51 A*29:02 27 VI SS I/SIYPGDSDTRY 19/31 0.7/1.1 rs199610746

NQO1-1R* AMYDKGPFRSK 2 NQO1 A*03:01 12 WW RW AMYDKGPFWSK 11 0.9 rs1131341

GRP-1R RELPLVLL 2 GRP B*44:03 285 SS RR SELPLVLL 159 0.6 rs1062557

C13orf18-1R* RVSLPTSPR 2 C13orf18 A*03:01 235 GG RR RVSLPTSPG 11,858 50.5 rs1408184

IGLV2-11-1HH* SDVGGHHY 2 IGLV2-11 A*29:02 660 YY-NN HH-HH SDVGGYNY 412 0.6 —

(B)

R3HCC1-1H AENDFVHRI 1 R3HCC1 B*44:03 61 HH HR AENDFVRRI 123 2 rs11546682

NADK-1K AVHNGLGEK 2 NADK A*03:01 229 KN KK AVHNGLGEN 24,349 106.3 rs4751

ACC-2G KEFEDGIINW 2 BCL2A1 B*44:03 49 GD GG KEFEDDIINW 59 1.2 rs3826007

KIF20B-1I QELETSIKKI 2 KIF20B B*44:03 288 IN II QELETSNKKI 615 2.1 rs12572012

HLA, human leukocute antigen.

All MiHAs have one single genetic origin and are coded by an unshared (A) or shared allele (B) between subjects. Selected features of the MiHAs are shown: the detected amino-acid sequence

(polymorphic residues are highlighted in bold underlined), the subject (S) in which the MiHA was detected, the source gene, the HLA molecule for which the MiHA has the best predicted binding affinity

(IC50), the translated genotype of the polymorphic loci shown in amino acids (aa) for each subject, the alternative MiHA variant and its predicted HLA-binding affinity (IC50), the differential predicted

HLA-binding affinity of the variant relative to the detected peptide (IC50 ratio) and the dbSNP identification when the ns-SNP corresponds to a known SNP. IC50 values of the alternative MiHA variants

and IC50 ratios are shown in italics when they show a fold difference Z2 relative to the detected MiHAs. Further features can be found in Supplementary Data 3.

*MiHAs tested in cytotoxicity assays (see Fig. 5a).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4600

6 NATURE COMMUNICATIONS | 5:3600 | DOI: 10.1038/ncomms4600 |www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


determined the immunogenicity of four of these MiHAs by
cytotoxicity assays. Peripheral blood mononuclear cells (PBMCs)
from the MIP-negative subject were stimulated with autologous
dendritic cells (DCs) pulsed with an unshared MIP detected in
the other subject. Primed cells were restimulated with autologous
B-LCLs pulsed with the same peptide, and then tested for in vitro
cytotoxicity activity against autologous B-LCLs (MIP-negative)
and allogeneic B-LCLs (MIP-positive). In all cases, in vitro-
generated MiHA-specific cytotoxic T lymphocytes selectively
killed allogeneic MiHA-positive B-LCLs but not autologous
MiHA-negative B-LCLs (Fig. 5a).

We next sought to determine why some MIPs derived from
non-polymorphic regions were detected by MS in only one
subject (n¼ 633� 14¼ 619; Fig. 3a). Could they be MiHAs
whose presence is regulated by cis- or trans-acting polymorph-
isms (outside the MIP-coding genomic sequence) that would
affect MIP processing22, 24? The MS/MS spectra of each of these
MIPs were manually validated and, to further confirm the

absence of the MIPs in one of the two subjects, we searched these
MIPs in two additional biological replicates from each cell line.
Most non-polymorphic MIPs found in only one subject were
detected in only one or two replicates (Fig. 3a). This suggests that
the presence of these MIPs was inconsistent, perhaps reflecting in
part the limited sensitivity of MS. However, 41 unshared MIPs
could not be discarded so easily because they were detected in
three to six replicates of one sibling and absent in six replicates of
the other sibling. With the exception of two cases, exclusive
detection of these MIPs in one of the siblings was not caused by
interindividual differences in abundance of the MIP source
transcript (Supplementary Fig. 7a) or in the expression of the
MIP-coding exon (Supplementary Fig. 7b), nor by differences in
the expression of genes involved in the antigen processing and
presentation pathway (Supplementary Data 4). We therefore
selected for further analyses the three most enticing MIPs coded
by non-polymorphic regions but detected by MS in only one
subject: MIPs showing the best values for the predicted binding
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Figure 5 | Only polymorphic MIPs are immunogenic. Frozen PBMCs from the MIP-negative subject were thawed and stimulated with autologous DCs

pulsed with an unshared MIP detected in the other individual. Primed cells were restimulated with irradiated autologous B-LCLs pulsed with the same

peptide for another 7 days. Restimulated cells were tested for in vitro cytotoxicity activity against autologous B-LCLs pulsed with the relevant peptide

(positive control, black), unpulsed autologous B-LCLs (negative control, white) or MIP-positive allogeneic B-LCLs (test, grey) at various effector-to-target

(E:T) ratios. The minimal cytotoxic activity against unpulsed autologous B-LCLs is most probably because of recognition of EBV epitopes. Average

and s.d. of three or four independent experiments are shown. Significant differences are indicated by *Po0.05 or **Po0.01, two-tailed Student’s t-test.

(a) MIPs encoded by polymorphic loci and detected exclusively in one subject. (b) MIPs encoded by non-polymorphic loci but detected exclusively

in one subject.
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affinity, MS intensity, reproducibility and Mascot score
(Supplementary Data 3). We further confirmed their absence in
one of the subjects by comparing the corresponding extracted ion
chromatograms (Supplementary Fig. 5b) and validated their MS/
MS spectra with synthetic peptides (Supplementary Fig. 5c). We
reasoned that if these MIPs were MiHAs, they should be
immunogenic, even if their presence was dictated by unidentified
polymorphisms outside the MIP-coding genomic sequence.
None of the tested MIPs could elicit the generation of cytotoxic
T cells in the MIP-negative sibling (Fig. 5b). We therefore failed
to discover a single MiHA among MIPs coded by non-
polymorphic regions. The most parsimonious explanation is
that these MIPs were simply differentially expressed peptides
whose abundance was below the MS detection threshold in
B-LCLs from one subject. A plausible explanation would be that
exclusive detection of these MIPs in one subject reflects cellular
differences caused by EBV infection during the establishment of
the B-LCLs and/or clonal variation46. Accordingly, we conclude
that identification of MiHAs absolutely requires a combination of
MS and genomic data. Reliance solely on MS detection would
overestimate the number of MiHAs. In contrast, the use of
personalized databases based on whole exome and transcriptome
sequencing allows to rapidly identifying genuine MiHAs coded
by polymorphic loci.

The global imprint of ns-SNPs on the MIP repertoire. To assess
the global imprint of ns-SNPs on the MIP repertoire, we asked
the question: what proportion of ns-SNPs between our two
subjects were located in MIP-coding exomic sequences? By
comparing the combination of whole exome and RNA-seq data
from our two subjects, we found a total of 4,833 ns-SNPs, 87% of
which are reported as ‘validated’ in dbSNP (Fig. 2, track 4 and
Supplementary Data 2). Overall, 26 of these ns-SNPs were located
in regions coding for 22 MiHAs identified by MS, of which 13
originated from a single gene (Fig. 4, n¼ 6þ 4þ 3) and are
depicted in the Circos plot (Fig. 2, track 4 versus 7 blue, orange
and pink) and 9 have an ambiguous origin (Fig. 4, n¼ 4þ 0þ 5
and Supplementary Data 3). The 13 unambiguously assigned
MiHAs were exclusively detected (Table 1) or shared (Table 2A)
at the peptidomic level. Thus, from a genomic perspective, only
0.5% of all ns-SNPs (26/4,833) found between our subjects were
represented in their MIP repertoire.

Identification of MiHAs among shared MIPs. Among 3,835
shared MIPs (Fig. 3a), 20 were encoded by bi-allelic loci and
therefore represent MiHAs (Fig. 4, n¼ 8þ 12). These shared
MIPs would not be immunogenic for our subjects but would be
immunogenic for subjects homozygous for the alternative allele.
In eight cases, one subject was homozygous for a dominant
MiHA allele (AA) and the other subject was heterozygous for the
dominant and a recessive allele (AB; Fig. 4). The origin of five of
these eight MiHAs was ambiguous (they could derive from sev-
eral genes), whereas the other three MiHAs were assigned to a
single gene (Fig. 4 and Table 2). The exome of our subjects shared
3,774 heterozygous loci (Fig. 2, track 5). Twelve MiHAs derived
from such bi-allelic loci for which our subjects shared the same
heterozygous genotype (AB). Eight of these 12 MiHAs could be
unambiguously assigned to a single gene (Fig. 2, track 7 in green,
Fig. 4 and Table 2B). The two alleles were co-dominant in one
case, whereas only one allele was dominant (identified by MS) in
the other cases. Notably, in four of the shared MiHAs, the pro-
duct of the recessive allele was predicted to have a lower MHC-
binding affinity than the product of the dominant allele (Table 2).

Differences in the MIP repertoire of HLA-identical siblings.
Comparison of genomic and proteomic data from our subjects
led to the discovery of 34 MiHAs (Fig. 4), of which 21 were
unambiguously assigned to a specific gene (Fig. 2, track 7 and
Tables 1 and 2). Out of 34 MiHAs, 14 were found in only one of
the two subjects, whereas 20 MiHAs were shared MIPs (Fig. 4).
Without considering the 4 MiHAs that were exclusively detected
in one subject but that derived from a shared allele (Table 1B),
this means that out of 4,468 MIPs only 10 (0.22%) would be
immunogenic for one of our subjects. Assuming that non-poly-
morphic MIPs detected exclusively in one subject are not
immunogenic (Fig. 5b), this means that each subject would be
tolerant to about 99.8% of the MIPs found on the B-LCLs of this
sibling. The use of personalized databases for tandem MS
sequencing was instrumental in the discovery of many MiHAs.
Eleven of the 21 MiHAs listed in Tables 1 and 2 would have been
missed in the absence of personalized databases, because these 11
peptides were absent in the Uniprot database.

Polymorphic MIP-coding regions at the population level. We
searched in the dbSNP database for validated ns-SNPs in the

Table 2 | MiHAs detected in both subjects and coded by loci harbouring ns-SNPs.

MiHA name Detected MiHA

sequence

Gene

symbol

HLA

allele

IC50

(nM)

aa

sub.1

aa

sub.2

Alternative

MiHA variant

IC50

(nM)

IC50

ratio

dbSNP

(A)

MCPH1-1R EEINLQRNI MCPH1 B*44:03 503 RR RI EEINLQINI 212 0.4 rs2083914

MDM1-1I VIQERVHSL MDM1 B*08:01 61 IT II VTQERVHSL 401 6.6 rs962976

FAM82B-1K VMGNPGTFK FAM82B A*03:01 23 KN KK VMGNPGTFN 15,374 668 rs6980476

(B)

TMEM132A-1A AAADRVGPAA TMEM132A C*16:01 1,236 AP AP AAADRVGPPA 1,203 1 —

MAGEF1-1A ALAAKALAR MAGEF1 A*03:01 136 AS AS ALAAKSLAR 109 0.8 rs10937187

TRIP11-1K DVQKKLMSL TRIP11 B*08:01 216 KN KN DVQNKLMSL 534 2.5 rs145868557

IMMT-1S KQSASQLQK IMMT A*03:01 65 SP SP KQPASQLQK 421 6.5 rs1050301

DLGAP5-1H KTYHVTPMTPR DLGAP5 A*03:01 27 HQ HQ KTYQVTPMTPR 48 1.8 rs8010791

ZWINT-1R QELDGVFQKL ZWINT B*44:03 366 RG RG QELDRVFQKL* 197 0.5 rs2241666

MIIP-1K SEESAVPKRSW MIIP B*44:03 235 KE KE SEESAVPERSW 245 1.0 rs2295283

For some MiHAs, one subject was homozygous and one subject heterozygous at the MiHA locus (A), whereas for other MiHAs both subjects were heterozygous at the MiHA locus (B). Selected features

of the MiHAs are shown: the detected amino-acid sequence (polymorphic residues are highlighted in bold underlined), the source gene, the HLA molecule for which the MiHA has the best predicted

binding affinity (IC50), the translated genotype of the polymorphic loci shown in amino acids (aa) for each subject, the alternative MiHA variant and its predicted HLA-binding affinity (IC50), the

differential predicted HLA-binding affinity of the variant relative to the detected sequence (IC50 ratio) and the dbSNP identification when the ns-SNP corresponds to a known SNP. IC50 values of the

alternative MiHA variants and IC50 ratios are shown in italics when they show a fold difference Z2 relative to the detected MiHAs. Further features can be found in Supplementary Data 3.

*The alternative MiHA variant was detected by MS.
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genomic sequences coding our 4,468 MIPs. We found that at the
population level, 88% of our MIP-coding sequences were invar-
iant, whereas 12% contained at least one ns-SNP: 670 ns-SNPs
were found in the genomic region coding for 536 MIPs (Fig. 6a,b
and Supplementary Data 5). Hence, at the population level, 536

MiHAs can be presented by the five HLA class I molecules
studied herein: HLA-A*03:01, -A*29:02, -B*08:01, -B*44:03 and
-C*16:01. Further studies will be required to determine the
number of dominant and recessive peptide variants encoded by
these 536 MiHA loci.

Outermost to inermost tracks:
1. Chromosomal position
2. Genes per 500 kb
3. All identified MIPs
4. MIPs deriving from regions with ns-SNPs
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Figure 6 | Frequency of ns-SNPs in the MIP-coding exome. (a) Circos plot illustrates the relative proportion of polymorphic MIPs (n¼ 536) in the

immunopeptidome and the genomic location of their coding loci. (b) Histogram showing the number and percentages of MIP-coding regions containing

ns-SNPs in the global population. We used dbSNP to find validated ns-SNPs in the exomic sequences encoding the 4,468 MIPs identified in our subjects. In

the case of MIPs deriving from multiple source regions, the average number of ns-SNPs of all possible MIP source regions was calculated. (c) The 4,468

MIPs of our subjects were encoded by 13,404 nucleotides. We performed 10,000 random samplings of 4,468 exomic sequences (containing a

total of 13,404 nucleotides) from the human reference exome (Ensemble GRCh37.65). In all samplings, the frequency of exomic sequences coding for

8-,9-,10- and 11-mers was identical to the frequency found in the 4,468 MIP-coding sequences from our subjects. The histogram depicts the distribution of

validated ns-SNPs (dbSNP) in exomic sequences from the global population found in 10,000 random samplings of the whole exome. The average

number of ns-SNPs of all random samplings was 708 (s.d.: 30.4, 95% confidence interval: 650–768 shown in orange). The blue dotted line shows the

number of ns-SNPs (n¼ 670) in the exomic sequences coding for the MIPs detected in our subjects.
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Bias in favour or against ns-SNPs in MIP-coding regions. We
next wished to compare, in the global population, the frequency
of ns-SNPs in the whole exome versus the frequency in the 4,468
exomic sequences coding for the MIPs identified herein. To this
end, we designed a bootstrap procedure (10,000 iterations) based
on random samplings of 4,468 peptide-coding regions (13,404
base pairs/sampling) from the human reference exome (Ensemble
GRCh37.65). For each sampling, we then calculated the number
of validated ns-SNPs reported in dbSNP (Fig. 6c). Each sampling
contained the same proportion of exomic sequences coding for
8-,9-,10- and 11-mers as the MIP-coding sequences from our
subjects. We found that the number of ns-SNPs in the
MIP-coding exome (n¼ 670) fell in the range of ns-SNPs found
in 10,000 random samplings of the whole exome (average¼ 708;
95% confidence interval¼ 650–768). We therefore conclude that
the MIP-coding exome reflects the frequency of ns-SNPs in the
whole human exome.

Discussion
MS is the sole method that enables direct identification of MIPs
and large-scale analyses of the MIP repertoire1,15. Indirect
predictions based on reverse immunology approaches are
fraught with FDRs that may reach 95%47,48. Currently, MS
sequencing has been largely limited to peptides represented in the
reference UniProt database. Our work demonstrates that the
universe of peptides identified by MS can be expanded and
refined by using personalized databases that include whole exome
and transcriptome sequencing data.

As well stated by Princiotta et al. ‘Despite the fact that
quantitative aspects of systems are critical to their understanding,
they are frequently ignored’49. In line with this concept, our data
provide the answer to a longstanding question: what is the
proportion of invariant versus polymorphic MIPs presented by
MHC molecules? In other words, to what extent do non-MHC
genomic polymorphisms enhance the interindividual variability
of the immunopeptidome? We found that, at the population level,
at least one ns-SNP is found in 12% of exomic sequences coding
the MIPs presented by five common HLA class I allotypes. That
about 88% of the genomic landscape of the MHC class I
immunopeptidome is invariant in the global population illustrates
the overwhelming importance of the HLA genotype in defining
the content of the MHC class I immunopeptidome.

In-depth analyses of genomic and proteomic data revealed that
about 0.5% of ns-SNPs between the exome of our subjects were
represented in their MIP repertoire. Consequently, 10 MIPs
coded by an unshared allele were unique to one subject and might
elicit allogeneic T-cell responses from his sibling, as demonstrated
for four of them. Integration of personalized genomic and
proteomic data was absolutely essential for identification of these
rare polymorphic MIPs interspersed among thousands of non-
polymorphic MIPs. Since the MIP repertoire is moulded by the
transcriptome, some MIPs are ubiquitous and others are cell
lineage specific8,50. Accordingly, various cell types present non-
identical MIP repertoires. MIPs derive mostly from transcripts
expressed at medium to high levels (as opposed to very low or low
levels), and about 8,500 transcripts are expressed at medium to
high levels in B-LCLs19. We therefore posit that, at the
organismal level, the total number of MiHAs derived from
unshared ns-SNPs between two HLA-identical siblings would be
about 2.5-fold the number found in B cells, assuming a total
number of 21,000 human transcripts (that is, 10� (21,000/
8,500)¼ 25). Unrelated individuals share fewer gene sequences
than siblings. As a consequence, it has been calculated that the
frequency of unshared MiHAs is increased by about 1.8-fold in
unrelated (HLA-matched) subjects relative to siblings23. Thus,

two unrelated HLA-identical subjects would display about 45
unshared MHC class I-restricted MiHAs. Of note, these numbers
might increase with better sequencing coverage of difficult
regions (for example, GC-rich) and more sensitive MS
instruments. As illustrated here, four low abundance MiHAs
could only be detected in the homozygous but not in the
heterozygous individual. Furthermore, our estimate could vary
depending on the cell type and it does not take into account
MiHAs presented by MHC class II proteins. Although only six
MHC class II-restricted MiHAs have been discovered in
humans24,51, a fair estimate of their repertoire will require
systems-level studies using methods such as the one described
herein.

All MHC antigens are dominant. Our data show that this is not
the case for MiHAs. With a single exception, all MiHA loci had
one dominant (MIP generating) and one recessive (no MIP
generated) allele (Tables 1 and 2). This observation is clearly
consistent with population analyses of 10 well-characterized
autosomal MiHA loci: only one locus has two dominant alleles23.
For slightly less than 50% of our recessive alleles, the absence of
MIP could be explained by a decreased MHC-binding affinity of
peptides. For the other recessive alleles, the absence of MIP must
be due to interference of the polymorphism with some step in
MIP processing that precedes MHC binding (for example,
cleavage by the proteasome or other proteases)3,38. With tens of
thousands of proteins, mammalian cells are the most complex
entity in the antigenic universe faced by our immune system52.
Theoretical estimates suggest that the immunopeptidome
contains 0.1% of the 9-mer sequences present in the proteome1.
Few peptides win the fierce competition for inclusion in the
immunopeptidome. Thus, if we consider MiHAs coded by
dominant alleles as winners, it follows that in most cases a
single ns-SNP is sufficient to transform winners into losers (the
recessive alleles). This is an eloquent reminder that we cannot
predict the molecular composition of the immunopeptidome
based on our limited understanding of the complexity of the MIP
processing pathway.

Allogeneic haematopoietic cell transplantation has led to the
discovery of the allogeneic graft-versus-leukemia effect, which
remains the most widely effective strategy for cancer immu-
notherapy in humans. The graft-versus-leukemia effect is
mediated mainly, if not exclusively, by donor T cells that
recognize host MiHAs. In line with recent progress in the field of
cell therapy, MiHAs are therefore attractive targets for adoptive
T-cell immunotherapy of cancer, particularly haematologic
cancers31–36. However, because of the low number of
molecularly defined human MiHAs, less than 30% of patients
would currently be eligible for immunotherapy targeted to
specific MiHAs53. Our report reveals a strategy for high-
throughput MiHA discovery that could greatly accelerate the
development of MiHA-targeted immunotherapy.

Our genoproteomic method combining next-generation
sequencing and MS shows how it is possible to accurately
identify by MS any MIP, provided that its source DNA or RNA
has been sequenced. The personalized protein databases could be
further refined by including other types of polymorphisms such
as indels and using linkage disequilibrium information to
diminish the number of possible proteins that will be expressed
in an individual, given his SNPs. This approach opens new
avenues in systems immunology and should be invaluable for
exploration of several ‘black holes’ in the immunopeptidome. One
particularly important black hole is the ‘cancer immunome’54.
Compelling evidence suggests that the most immunogenic
antigens present on cancer cells are mutant peptides derived
from the numerous mutations found in neoplastic cells55–57.
However, tumour-specific mutant peptides (alike MiHAs) are not
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detected by standard large-scale MS approaches. We posit that
our method should enable discovery of tumour-specific peptides
(the product of somatic mutations) with the same accuracy as
MiHAs (the product of germline genetic polymorphisms).
Accordingly, our next priority will be to use this method to
explore the impact of the cancer mutations on the
immunopeptidome of cancer cells.

Methods
Cell culture and HLA typing. This study was approved by the Comité d’Éthique
de la Recherche de l’Hôpital Maisonneuve-Rosemont and all subjects provided
written informed consent. As fresh blood samples were required for cytotoxicity
assays, we elected to generate new B-LCLs from available donors, instead of
studying the highly characterized B-LCLs from the Centre d’Etude du Poly-
morphisme Humain. PBMCs were isolated from blood samples of two non-twin
HLA-identical Caucasian female siblings (54 and 56 years old). B-LCLs were
derived from PBMCs with Ficoll-Paque Plus (Amersham) followed by EBV
infection as described58. Ten million PBMCs in 2.5ml complete RPMI-10 medium
were incubated with 1ml EBV (strain B95-8) suspension as obtained from the
supplier (ATCC VR-1492) for 2 h in a 37 �C water bath. Complete RPMI-10
containing 1 mml� 1 of cyclosporine A (Sigma-Aldrich) was added to the cell
suspension for a total volume of 10ml) and incubated for 3–5 weeks in a
humidified 37 �C, 5% CO2 incubator. High-resolution HLA genotyping was
performed at the Maisonneuve-Rosemont Hospital. The two siblings are
HLA-A*03:01,*29:02; B*08:01,*44:03; C*07:01,*16:01; DRB1*03:01,*07:01.

RNA extraction and preparation of transcriptome libraries. Total RNA was
isolated from 5 million B-LCLs using RNeasy mini kit including DNase I treatment
(Qiagen) according to the manufacturer’s instructions. Total RNA was quantified
using the NanoDrop 2000 (Thermo Scientific) and RNA quality was assessed with
the 2100 Bioanalyzer (Agilent Technologies). Transcriptome libraries were gener-
ated from 1 mg of total RNA using the TruSeq RNA Sample Preparation Kit v2
(Illumina) following the manufacturer’s protocol. In brief, poly-A messenger RNA
was purified using poly-T oligo-attached magnetic beads using two rounds of
purification. During the second elution of the poly-A RNA, the RNA was frag-
mented and primed for cDNA synthesis. Reverse transcription of the first strand
was performed using random primers and SuperScript II (Invitrogen). A second
round of reverse transcription was done to generate a double-stranded cDNA,
which was then purified using Agencourt AMpure XP PCR purification system
(Beckman Coulter). End repair of fragmented cDNA, adenylation of the 30 ends
and ligation of adaptors were completed following the manufacturer’s protocol.
Enrichment of DNA fragments containing adapter molecules on both ends was
done using 15 cycles of PCR amplification and the Illumina PCR mix and primers
cocktail.

DNA extraction and exome capture. Genomic DNA was extracted from 5 mil-
lion B-LCLs using the PureLink Genomic DNA Mini Kit (Invitrogen) according to
the manufacturer’s instructions. DNA was quantified and quality assessed using the
NanoDrop 2000 (Thermo Scientific). Genomic libraries were constructed from 1 mg
of genomic DNA using the TruSeq DNA Sample Preparation Kit (v2) (Illumina)
following the manufacturer’s protocol. We used 500 ng of DNA-Seq libraries for
hybrid selection-based exome enrichment with the TruSeq exome enrichment kit
(Illumina) according to the manufacturer’s instructions.

Sequencing and mapping of whole transcriptome and exome. Paired-end
(2� 100 bp) sequencing was performed using the Illumina HiSeq2000 machine
running TruSeq v3 chemistry. Two RNA-Seq or four exomic libraries were
sequenced per lane (eight lanes per slide). Cluster density was targeted at around
600–800 k clustersmm� 1 (ref. 2). The Illumina chastity quality filter was used to
remove the low-quality reads. The chastity of a base call is the ratio of the intensity
of the greatest signal divided by the sum of the two greatest signals. Reads passed
this filter if no more than one base call in the first 25 cycles had a chastity o0.6.
More than 96% of the reads passed this filter (Supplementary Data 1). Sequence
data were mapped to the human reference genome (hg19) using the Casava 1.8.1
and the Eland v2e mapping softwares (Illumina). First, the *.bcl files were con-
verted into compressed FASTQ files, followed by demultiplexing of separate
multiplexed sequence runs by index. Single reads were aligned to the human
reference genome using the multiseed and gapped alignment method. Multiseed
alignment works by aligning the first seed of 32 bases and consecutive seeds
separately. Gapped alignment extends each candidate alignment to the full length
of the read and allows for gaps up to 10 bases. The following criteria were applied:
(i) a read contains at least one seed that matches with at most two mismatches
without gaps and (ii) gaps were allowed for the whole read, as long as they correct
at least five mismatches downstream. For each candidate alignment, a probability
score, which is based on the sequencing base quality values and the positions of the
mismatches, was calculated. The alignment score of a read, which is expressed on
the Phred scale, was computed from the probability scores of the candidate

alignments. The best alignment for a given read corresponded to the candidate
alignment with the highest probability score and was kept if the alignment score
exceeded a threshold. Read alignments were further filtered out if they contained
adjacent insertion/deletion events or if paired-end anomalies were present. Reads
that mapped at two or more locations were not included in further analyses. For
the exome paired-end libraries, the best scoring alignments for each half of the pair
were computed and compared to find the best paired-read alignments according to
the estimated insert size distribution. In the case of RNA-seq libraries, an addi-
tional alignment was performed against splice junctions and contaminants
(mitochondrial and ribosomal RNA). Sequences mapping to contaminants were
discarded, whereas reads uniquely mapping to splice junctions were kept and
converted back to genome coordinates.

Quantification of transcript expression. We used two methods to estimate and
compare transcript expression between subjects. In the first method, the Casava
1.8.1 software (Illumina) was used to estimate gene or exon expression levels
(RNA-seq) measured as read per kilobases of exon model per million mapped
reads using the following formula: gene or exon RPKM¼ 109�Cb/Nb� L, where
Cb is the number of bases that fall on the feature, Nb is the total number of
mapped bases and L is the length of the feature in base pairs. We also used the
DESeq package59, which is based on raw counts, to compare transcript expression.
Transcript expression level was not considered in SNP calling.

Identification of SNPs and read counting. Variant call, indel detection and read
counting were done using the Casava 1.8.1 software (Illumina). Reads were re-
aligned around candidate indels to improve the quality of variant calls and site
coverage summaries. Individual base calls were further filtered based on mismatch
density or ambiguity and the remaining base calls were used to predict site gen-
otypes. Casava was also used to retrieve all SNPs observed between the reference
genome (GRCh37.p2, NCBI) and the sequenced transcriptome and exome of our
subjects. SNPs and indel calls near centromeres and within high copy-number
regions were removed. For each called SNP, Casava calculates the most probable
genotype (max_gt) and a Q-value expressing the probability of the most probable
genotype (Qmax_gt). The Q-value is a quality score that measures the probability
that a base is called incorrectly and was used to filter out low-quality SNPs
(see ‘In silico-generated proteomes and personalized databases’ section). SNPs
sequenced with at least 5� coverage were kept. This information (.txt files) was
loaded into an in-house python module, pyGeno19, for further processing.

In silico-generated proteomes and personalized databases. We used various
in-house scripts that rely on pyGeno for data retrieval, parsing and processing. We
integrated the exome sequencing data to the transcriptome sequencing data. For
every SNP found by transcriptome sequencing, we retained the most probable
genotype if the Q-value (Qmax_gt) wasZ20, which corresponds to a 1% error rate
(a higher quality score indicates a smaller probability of error). If the SNP was also
covered by the exome sequencing, we included not only the most probable gen-
otype found by RNA-seq but also all bases in common with the exome sequencing.
We also included the genotypes of SNPs that were only found by exome sequencing
and that had a Q-value Z20. Finally, we included all bases of SNPs called by both
the transcriptome and exome sequencing regardless of the Q-value. The retained
genotypes of all SNPs were then integrated in the reference genome (GRCh37.p2,
fasta file) at their right position to construct a ‘personalized genome’ for each
subject. These personalized genomes were used to extract all transcripts reported in
the Ensembl gene set (GRCh37.65, gtf file) for all chromosomes except for the Y
chromosome and mitochondrial DNA. These transcripts were then in silico
translated into proteins using the reading frame specified in the Ensembl gene set.
Considering that the vast majority of MIPs have a maximum length of 11 amino
acids, we established a window of 21 amino acids centred at each heterozygous ns-
SNP. When a window contained more than one SNP, we translated in silico all
possible combinations and included them in the personalized databases (Fig. 1b).
Finally, we compiled all translation products into two fasta file databases (one for
each subject) that were used for the identification of MIPs (see ‘MS/MS sequencing
and peptide clustering’ section). Both resulting databases had a similar size, in
terms of number of residues (36,007,210 in subject 1 and 36,010,026 in subject 2)
and number of entries (95,806 in subject 1 and 95,687 in subject 2). Moreover, their
size is comparable to the size of the reference UniProt human database used
(43,384,120 residues and 75,530 entries).

MS/MS sequencing and peptide clustering. On the basis of our previous studies
on MS data reproducibility across technical and biological replicates8, we prepared
four biological replicates of 5� 108 exponentially growing B-LCLs from each
subject. MIPs were released by mild acid treatment, desalted on an HLB cartridge
30 cc, filtered with a 3,000-Da cutoff membrane and separated into seven fractions
by cation exchange chromatography using an off-line 1,100 series binary LC system
(Agilent Technologies) as previously described8,9. Fractions containing MIPs were
resuspended in 0.2% formic acid and analysed by LC–MS/MS using an Eksigent LC
system coupled to a LTQ-Orbitrap ELITE mass spectrometer (Thermo Electron).
Peptides were separated on a custom C18 reversed phase column (150 mm i.d. X
100mm, Jupiter Proteo 4 mm, Phenomenex) using a flow rate of 600 nlmin� 1 and
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a linear gradient of 3–60% aqueous ACN (0.2% formic acid) in 120min. Full mass
spectra were acquired with the Orbitrap analyser operated at a resolving power of
30,000 (at m/z 400). Mass calibration used an internal lock mass (protonated
(Si(CH3)2O))6; m/z 445.120029) and mass accuracy of peptide measurements was
within 5 p.p.m. MS/MS spectra were acquired at higher energy collisional
dissociation with a normalized collision energy of 35%. Up to six precursor ions
were accumulated to a target value of 50,000 with a maximum injection time of
300ms and fragment ions were transferred to the Orbitrap analyser operating at a
resolution of 15,000 at m/z 400.

Mass spectra were analysed using Xcalibur software and peak lists were
generated using Mascot distiller Version 2.3.2 (http://www.matrixscience.com).
Database searches were performed against UniProt Human database (43,384,120
residues, released on 2 April 2013), databases specific to subjects 1 and 2
(34,976,580 and 34,990,381 residues, respectively, see ‘in silico-generated proteome
and personalized databases’ section) and EBV_B95.8 database (40,946 residues),
using Mascot (Version 2.3.2, Matrix Science). To calculate the FDR, we performed
a Mascot search against a concatenated target/decoy database using the human
UniProt or subject-specific databases. The target represents the forward sequences
and the decoy its reverse counterparts. Mass tolerances for precursor and fragment
ions were set to 5 p.p.m. and 0.02Da, respectively. Searches were performed
without enzyme specificity with variable modifications for cysteinylation,
phosphorylation (Ser, Thr and Tyr), oxidation (Met) and deamidation (Asn, Gln).
Raw data files were converted to peptide maps comprising m/z values, charge state,
retention time and intensity for all detected ions above a threshold of 8,000 counts
using in-house software (Proteoprofile)9. Peptide maps corresponding to all
identified peptide ions were aligned together to correlate their abundances across
sample sets and replicates. The MS/MS spectra of MIPs detected exclusively in one
subject were validated manually.

Identification of MIPs. MIP identification was based on four criteria: (i) the
canonical MIP length of 8–11 amino acids, (ii) the predicted MHC-binding affinity
given by the NetMHCcons algorithm43, (iii) the Mascot score, which reflects the
quality of peptide assignation, and (iv) the FDR, which indicates the proportion of
decoy (false) versus target (true) identifications. First, we evaluated the correlation
between these parameters. We found a strong correlation (0.88) between FDR
values o60% and MHC-binding affinity values r1,750 nM for all 8–11-mers
(Supplementary Fig. 1). Indeed, the proportion of peptides with an MHC-binding
affinity r1,750 nM increases as the FDR decreases (Supplementary Fig. 2a). This
correlation was specific to MIPs, since no correlation was found for random
peptides (Supplementary Figs 1 and 2b). These results show that low FDR values
allow enrichment of high-affinity peptides (MHC-binding affinityr1,750 nM) and
thus of MIPs. However, the drawback of using a stringent low FDR as the main
filter is that the total number of identifications considerably decreases
(Supplementary Fig. 2a) as well as the proportion of small peptides (8–9-mers)
identified (Supplementary Fig. 2c). Accordingly, the relative proportion of peptides
found in target versus decoy decreased with increasing peptide length60, in
accordance with the notion that short peptides such as MIPs generally require
higher Mascot scores to achieve a low FDR. Moreover, the tandem MS fragment
ions of MIPs are less predictable and evenly distributed than those of tryptic
peptides that further complicate their assignment by database search engines such
as Mascot. To set a more suitable Mascot score threshold for high-throughput MIP
detection, we evaluated the relationship between the Mascot score and the
predicted binding affinity for all 8–11-mer peptides identified with an FDRr5%
(Fig. 1c). Then, we calculated the number of MIPs identified with all combinations
of Mascot score and predicted binding affinity. We found that the highest number
of MIP identifications was obtained by combining a Mascot score Z21 and an
MHC-binding affinity r1,250 nM at a 5% FDR (Fig. 1c).

MS/MS validation of a subset of MIPs. Polymorphic and non-polymorphic
MIPs exclusively detected in one of the two subjects (Table 1 and Supplementary
Data 3) were synthesized by Bio Basic Inc. and JPT peptide technologies. Subse-
quently, 500 fmols of each peptide were injected in the LTQ-Orbitrap ELITE mass
spectrometer using the same parameters as those used to analyse the biological
samples.

Ns-SNPs found in MIP-coding regions in the population. For each MIP, we
retrieved the coordinates of the peptide-coding DNA region. These coordinates
were then used to extract both the corresponding reference sequence and all non-
synonymous validated SNPs reported by dbSNP (Build 137) for that region. For
MIPs deriving from multiple source regions, the number of ns-SNPs reported
corresponds to that of the MIP source region possessing the maximal number of
ns-SNPs.

Random peptide sampling. We constructed a genome-wide index. To do so, we
indexed every coding sequences reported in the Ensembl gene set (GRCh37.65),
except for those located in the Y chromosome or the mitochondrial DNA, into a
segment tree. Next, we kept only the first layer of the tree and removed the gaps
between the indexed regions, effectively transforming the tree into a coding DNA
sequence list, which was used for the random peptide sampling. For each of the

4,468 identified peptides, a random peptide of the same length and that fell entirely
into a single coding DNA sequence, was chosen. Next, for each randomly selected
peptide, we counted the number of ns-SNPs reported in dbSNP137 (validated and
missense). The distribution was obtained after repeating the sampling of 4,468
random peptides 10,000 times.

PCR and Sanger sequencing. PCR amplification of the MiHA-encoding DNA
and cDNA regions was performed with the Phusion High-Fidelity PCR kit (New
England BioLabs). For each candidate, 1–2 pairs of sequencing primers were
designed manually and with the PrimerQuest software (Integrated DNA Tech-
nologies, Supplementary Table 1), and were synthesized by Sigma. PCR products
were purified with the PureLink Quick Gel Extraction Kit (Invitrogen). Sanger
sequencing was performed on candidate DNA and cDNA at the IRIC’s Genomics
Platform. Sequencing results were visualized with the Sequencher software v4.7
(Gene Codes Corporation).

Cytotoxicity assays. DCs were generated from frozen PBMCs, as previously
described61. To generate cytotoxic T cells, autologous DCs were irradiated (4,000
cGy), loaded with 2 mM of peptide and cultured for 7 days with freshly thawed
autologous PBMCs at a DC:T-cell ratio of 1:10. From day 7, responder T cells were
restimulated for seven additional days with irradiated autologous B-LCLs pulsed
with the same peptide (B-LCL:T-cell ratio 1:5). Expanding T cells were cultured in
RPMI 1,640 (Invitrogen) containing 10% human serum (Sigma-Aldrich) and
L-glutamine. IL-2 (50Uml� 1) was added for the last 5 days of the culture.
Cytotoxicity assays were performed as described9, with minor modifications. In
brief, B-LCLs were labelled with carboxyfluorescein succinimidyl ester (CFSE;
Invitrogen), extensively washed, irradiated (4,000 cGy) and then used as targets in
cytotoxicity assays. Target cells were plated in 96-well U-bottom plates at 5,000
cells per well. Effector cells were added at different effector-to-target ratios in a final
volume of 200 ml per well. Plates were centrifuged and incubated for 18–20 h at
37 �C. Flow cytometry analysis was performed using a LSRII cytometer with a
high-throughput sampler device (BD Biosciences). The percentage of specific lysis
was calculated as follows: [(number of CFSEþ cells remaining after incubation
with unpulsed target cells� number of CFSEþ cells remaining after incubation
with peptide-pulsed target cells)/number of CFSEþ cells remaining after
incubation with unpulsed target cells]� 100.

Statistical analysis and data visualization. The two-tailed Student’s t-test was
used to identify differentially expressed MIPs and MiHAs that induced cytotoxicity.
The two-tailed Mann–Whitney test was used to compare the MHC-binding affinity
of MIPs detected exclusively in one subject. Differentially expressed transcripts
were identified with the DESeq package that uses a model based on the negative
binomial distribution59. The Spearman correlation was used to evaluate the
relationship between differences in MIP abundance and differences in MIP-coding
gene or exon expression. The genomic location of identified MIPs including
MiHAs and the RNA-seq and exome sequencing coverage were visualized with the
Circos software62. The Integrative Genomics Viewer v2.0 (ref. 63) was used to
visualize and inspect regions coding MIPs including MiHAs.
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GSE48918, Exome data were deposited in the NCBI Sequence Read Archive (http://

www.ncbi.nlm.nih.gov/sra) under accession code PRJNA210790.
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