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The continental shelves are the most biologically dynamic regions of

the ocean, and they are extensive worldwide, especially in the

western North Pacific. Their area has varied dramatically over the

glacial/interglacial cycles of the last million years, but the effects of

this variation on ocean biological and chemical processes remain

poorly understood. Conversion of nitrate to N2 by denitrification in

sediments accounts for half or more of the removal of biologically

available nitrogen (“fixed N”) from the ocean. The emergence of

continental shelves during ice ages and their flooding during

interglacials have been hypothesized to drive changes in sedi-

mentary denitrification. Denitrification leads to the occurrence of

phosphorus-bearing, N-depleted surface waters, which encourages

N2 fixation, the dominant N input to the ocean. An 860,000-y record

of foraminifera shell-bound N isotopes from the South China Sea

indicates that N2 fixation covaried with sea level. The N2 fixation

changes are best explained as a response to changes in regional

excess phosphorus supply due to sea level-driven variations in shal-

low sediment denitrification associated with the cyclic drowning

and emergence of the continental shelves. This hypothesis is consis-

tent with a glacial ocean that hosted globally lower rates of fixed N

input and loss and a longer residence time for oceanic fixed N—a

“sluggish” ocean N budget during ice ages. In addition, this work

provides a clear sign of sea level-driven glacial/interglacial oscilla-

tions in biogeochemical fluxes at and near the ocean margins, with

implications for coastal organisms and ecosystems.

denitrification | nitrogen fixation | nitrogen isotopes | glacial cycles

Biological productivity in much of the ocean is limited by the
supply of biologically available nitrogen (“fixed N”) (1). Bi-

ological processes are central to the input and output of fixed N
to and from the ocean: N2 fixation by cyanobacteria in surface
waters appears to dominate the input of N to the ocean, whereas
the main sink is biological reduction to N2 (generalized here as
“denitrification”) in sediments and in suboxic zones of the water
column (2). Given this biologically determined input/output
budget, the variation or constancy of the oceanic fixed N reser-
voir has broader implications for the potential of ocean life to
regulate environmental conditions on a global scale. Because the
“major nutrients” N and phosphorus (P) fuel the biological se-
questration of CO2 in the deep ocean, changes in the oceanic
fixed N reservoir have also been proposed as a driver of glacial/
interglacial CO2 change (3, 4).
Sediment records show N isotopic evidence of reduced water

column denitrification during the Last Glacial Maximum (LGM)
and other cold phases of the glacial cycles relative to the current
interglacial (the “Holocene”) and past warm time intervals (5, 6).
“Benthic” denitrification (that which occurs in seafloor sedi-
ments) is equally as or more important than water column de-
nitrification in the removal of N from the global ocean, and it has
been hypothesized to decrease during glacials (times of high land

ice volume) as well (7). This hypothesis is based on the generally
rapid rate of denitrification in continental shelf sediments and on
calculations that indicate the importance of shelf denitrification in
the global ocean rate of denitrification (8). The continental
shelves are characterized by high fluxes of organic matter to the
sediments both because their shallow depth allows sinking matter
to reach the bottom quickly and because the breakdown of organic
matter in the shallow sediments returns nutrients immediately to
the sunlit upper ocean. As a result, the nutrients supplied to the
waters overlying the continental shelf drive multiple rapid cycles of
productivity, sedimentation, and remineralization over its broad
extent of shallow seafloor. During glacial maxima, the ∼120-m
decline in sea level converted the continental shelves into coastal
land, removing much of this environment as a site of oceanic N
loss. The greater mean depth and steepness of the seaward con-
tinental slope should render the slope far less efficient at returning
the nutrients released from the sediments to the upper ocean.
Thus, upon sea level lowering, the coastal environment would be
less favorable as an environment for both coastal productivity and
benthic N loss. However, because the direct impact of benthic N
loss on the N isotopes is typically nil or very weak (9, 10), there
have been, as yet, no direct tests of this hypothesis.
Since the first studies of the ocean N budget, it has been rec-

ognized that a balance is required between inputs (dominantly N2
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fixation) and losses (dominantly denitrification) on the timescale
of the residence time of fixed N in the ocean [currently ∼3,000 y
(2)], such that changes in N2 fixation should be coupled to, and
thus provide evidence of, changes in denitrification. It has been
argued that denitrification generates a selective advantage to N2

fixers by increasing the occurrence of phosphorus-bearing, N-
depleted surface waters (i.e., excess phosphorus) (11). The resulting
N2 fixation response may thus yield spatial and temporal coupling
between denitrification and N2 fixation that balances the ocean’s
N budget, for which there are multiple lines of evidence (12–14).
However, it has been pointed out that N2 fixers have other sensi-
tivities as well. In particular, both iron availability and temperature
may be important constraints on N2 fixation (3, 15).
The South China Sea (SCS) repeats end of paragraph is a

marginal sea characterized by a high ratio of shelf area to basin
area (∼1.2). Deep SCS water has oceanographic characteristics
similar to the western Pacific open ocean (16), with continuous
exchange with the open western Pacific mainly through the
Luzon Strait, which is ∼2,200 m deep, too deep for the exchange
of thermocline and deeper water masses to have been affected by
glacial/interglacial sea level change. The warm tropical surface
waters of the SCS and the adjacent Asian dust sources and ocean
margins appear to leave N2 fixation unconstrained by tempera-
ture or iron (17). The extensive East Asian and Sunda shelves
host rapid sedimentary denitrification (8), which effectively
removes fixed N and lowers the fixed nitrogen-to-phosphorus
ratio (N/P) of the shallow water column in the region. These
features suggest that the SCS may be prone to coupling between
benthic denitrification and N2 fixation.
The nitrogen isotopes can be used to reconstruct past changes in

N2 fixation in environments where the nitrogen isotopic signature

of N2 fixation can be clearly observed in the thermocline. N2 fix-
ation introduces N with a δ15N of ∼−1‰ versus atmospheric N2

(18), which is distinctly lower than the δ15N of oceanic nitrate (Fig.
1B). Mean ocean nitrate δ15N is elevated above that of the newly
fixed N (9) because water column denitrification removes nitrate
(NO3

−) that is depleted in 15N (19). As a result, the reminerali-
zation of newly fixed N to nitrate causes regional lowering of ni-
trate δ15N underneath the surface waters in which N2 fixation
occurs. This lowering is most intense in the shallow thermocline for
two reasons. First, organic N is remineralized rapidly as it sinks,
causing most of the sinking N and its isotopic signal of N2 fixation
to be emplaced at shallow depths. Second, nitrate concentration
decreases upward across the thermocline, helping the nitrate that
derives from local or regional N2 fixation to represent a greater
proportion of the total nitrate in the water. The lowering of nitrate
δ15N by N2 fixation is perhaps most obvious today in the tropical
and subtropical North Atlantic (20). However, a nitrate δ15N
minimum in the shallow thermocline is also observed in the North
Pacific (21), including the SCS (22) (Fig. 1C).
The upward decline in nitrate δ15N in the SCS thermocline is

not observed everywhere in the tropical and subtropical North
Pacific; for example, it is not observed in the equatorial or sub-
arctic North Pacific (23, 24). Thus, it must be a reflection of N2

fixation occurring in the western tropical/subtropical North
Pacific. The shallow thermocline (i.e., the depth range of 100 m
to 200 m) of the modern SCS has a much higher nitrate con-
centration (10 μM to 15 μM) than the same water depth or
density level in the open subtropical North Pacific (<5 μM; Fig.
1B and Fig. S1). As a result, lateral exchange of the upper 200 m
of the water column with the open western North Pacific has
minimal capacity to change the δ15N of nitrate in this depth
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remineralization of newly fixed N is taken as the dominant contributor to the subsurface nitrate δ15N minimum and also lowers the nitrate δ15N throughout

the water column (22). The FB-δ15N of both G. ruber and O. universa measured at the surface sediment are 4.9‰ (black arrow), similar to the δ15N of the

shallow thermocline nitrate being supplied to the photic zone.
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range of the SCS. Therefore, the upward decline in nitrate δ
15N

observed in the SCS thermocline (Fig. 1C) is probably mostly
generated within the SCS.
Nitrate from the shallow thermocline supplied by vertical mixing

is the dominant N source to the tropical and subtropical surface
ocean on an annual basis (25). Thus, the δ

15N of the shallow
thermocline nitrate is the dominant control on the δ

15N of net
biomass production in the surface ocean each year, which, in turn,
sets the δ

15N of the various species of planktonic foraminifera, the
shells of which can be analyzed for the δ

15N of their fossil-bound
organic N (26). As a consequence, foraminifera-bound N has a
lower δ15N in the modern SCS than in, for example, most of the
equatorial Pacific (Fig. 2). Moreover, a higher rate of N2 fixation in
the SCS would cause a further decline in foraminifera-bound δ

15N
(FB-δ15N), whereas slower N2 fixation would cause a δ

15N rise.

Results and Discussion

Here we report a record of FB-δ15N in the SCS over the last
860 ky, covering eight major glacial cycles (Methods). The sedi-
ment core is from site MD97-2142 on the slope off Palawan
Island (Fig. 1A, 12°41′N, 119°27′E, water depth of 1,557 m,
sedimentation rate of 10 cm/ky, age model shown in Fig. S2).
The full record uses a single planktonic species, Orbulina uni-
versa. To test the generality of the O. universa FB-δ15N record,
the FB-δ15N of Globigerinoides ruber was also analyzed over the
last glacial cycle (back to ∼125 ka). FB-δ15N is expected to be
similar for these two euphotic zone-dwelling species (26), and
the data fit this expectation (Figs. 2 and 3). Slightly lower δ15N is

observed for G. ruber than for O. universa during the last ice age,
with an average offset of 0.39‰ for 20 ka to 60 ka compared with
0.25‰ for the entire overlapping period (Fig. 2). The same sense
of divergence (with the δ

15N of O. universa greater than that of
G. ruber) is also observed in LGM samples from the Caribbean
Sea (13), where it was tentatively interpreted to provide sec-
ondary support of the idea of reduced N2 fixation during the
LGM (13); a similar explanation may apply in the SCS. In any
case, the changes in interspecies FB-δ15N difference are minor
relative to the FB-δ15N changes shared by the two species.
The FB-δ15N records have no clear correspondence with the

bulk sediment records from the SCS, which do not show sys-
tematic glacial/interglacial changes (Fig. 2). Several of the ex-
isting bulk sediment records from the SCS are substantially
dissimilar from one another (Fig. 2A) (27). Moreover, although
foraminifera-bound N content is low and stable over glacial cy-
cles, bulk sediment N content varies substantially over time and
across records (Fig. 2B). Similar observations regarding SCS bulk
sedimentary N records have previously been attributed to dia-
genesis and to multiple sources of N to the bulk sediment (28).
Variation in terrigenous input at our study site has been docu-
mented to be associated with sea level change over the glacial
cycles, for example, with higher concentrations of n-alkanes co-
inciding with lower sea level (29). A general disconnect between
FB-δ15N and bulk sediment δ

15N has been observed in the
Caribbean Sea as well, where sedimentological data also point to
terrestrial/shelf N inputs to the bulk sediments, especially in
glacial intervals (13, 14). These findings argue against the utility
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of bulk sediment δ
15N records for reconstructing the δ

15N of
export production in marine environments such as the SCS and
Caribbean Sea, where terrestrial and shelf inputs are significant,
export production is modest, and sedimentary organic matter
preservation is not exceptionally high.
The FB-δ15N record from MD97-2142 indicates an increase in

the δ15N of subsurface nitrate of the SCS during the glacials (Fig. 3).
Throughout the ocean, the δ

15N of subsurface nitrate is affected by
lateral communication with other regions. Accordingly, one might
propose that Pacific-wide processes raised the δ15N of the nitrate in
the SCS by ∼3‰ during glacials. This might be driven by a whole
ocean nitrate δ15N rise. Alternatively, it might be driven by a change
in the rate of circulation in and out of the SCS and/or a change in
N-cycle processes outside the SCS.
With regard to changes in lateral circulation, as described above,

there is no clear mechanism by which communication with open
western North Pacific waters shallower than ∼200 m could have a
strong influence on SCS nitrate δ

15N. Accordingly, this scenario
must involve waters deeper than ∼200 m. However, modern oceanic
nitrate isotope data do not indicate that a change in lateral circu-
lation by itself would significantly change intermediate-depth nitrate
δ
15N in the SCS. For the western expanse of subtropical, subpolar,
and tropical Pacific, even when including the western equatorial
Pacific and existing measurements from the central South Pacific,
the δ

15N of nitrate in intermediate-depth waters falls between
5.5‰ and 7.0‰, with most measurements in a still narrower range
(23, 24, 30–35). Intermediate-depth nitrate in the modern SCS falls
squarely in this range (Fig. 1 and Fig. S1), in part because of the
rapid lateral exchange of the SCS with the neighboring open
western North Pacific through the Luzon Strait. If this weak vari-
ation in intermediate-depth nitrate δ

15N also applied in the past,
even major changes in the circulation of intermediate or mode
waters would have had only modest effects on the δ

15N of the ni-
trate imported into the SCS.
We next consider the possibility of global and/or Pacific-wide

changes in nitrate δ
15N that are communicated into the SCS. To

compare with our record, we generated a 120-ky FB-δ15N record
using Globigerinoides sacculifer from western tropical North Pacific
([Ocean Drilling Program (ODP) 807]. This new record as well as
paired LGM and Holocene FB-δ15N data from the central equa-
torial Pacific (36) show only small δ15N differences between the
LGM and the Holocene (Fig. 2). Bulk sediment records from the
eastern Pacific show the opposite sense of δ15N change compared
with that in the SCS (Fig. 4) (5, 37, 38). These and other records
from across the global ocean argue against the possibility that the
elevated FB-δ15N observed in the SCS during the LGM reflects a
change in the δ

15N of subsurface nitrate imported laterally from
the open Pacific.
One might hypothesize greater vertical mixing in the SCS

during ice ages, which might weaken the δ
15N decline upward

through the SCS thermocline, thus increasing the δ
15N of the

nitrate supply to the euphotic zone. However, this mechanism
would predict simultaneous changes in productivity and FB-δ15N
in the oligotrophic SCS, and yet the productivity proxies are not
particularly well correlated with FB-δ15N (Fig. S3). Moreover,
because deep thermocline waters have a substantially lower N/P
ratio than the shallow thermocline waters (16), an increase in the
supply of deeper-held nutrients to the surface would have en-
couraged an increase in N2 fixation, which would have worked to
lower the δ

15N of the sinking flux and of the shallow subsurface
nitrate. This increase in N2 fixation would have countered the
tendency for increased vertical mixing to raise the δ

15N of the
nitrate supply and, in turn, FB-δ15N. Finally, if changes in vertical
mixing were the dominant driver of the δ

15N changes, we would
expect synchronous changes in the sea surface temperature (SST)
and δ

15N, which is not supported by our data (Figs. 3, 4, and 5A).
Similarly, it is observed that a planktonic foraminiferal index of
vertical mixing (39) changes early in the deglaciation and then

stabilizes, whereas FB-δ15N evolves through the deglaciation and
Holocene (Fig. 2) (40). As the effect of vertical exchange on ni-
trate δ

15N would be essentially instantaneous (decadal at most),
this lag argues against SCS hydrographic conditions as the domi-
nant signal in FB-δ15N.

Nitrogen inputs from river and atmospheric sources are also
unlikely to explain the FB-δ15N variations. Clear signs of riverine
N input are confined to the inner shelf above 30 m, and our
preliminary data from two summer cruises show high δ

15N values
for the shallow shelf nitrate (up to 12‰). Atmospheric N de-
position is low in δ

15N relative to oceanic nitrate (41), so an
increase in deposition would have been required during inter-
glacials to explain the low FB-δ15N. However, the interglacial δ15N
impact, when neglecting the recent rise in anthropogenic N, is far
too low for its removal to have caused a 3‰ rise in FB-δ15N
during ice ages (42, 43).
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Fig. 4. Records of N2 fixation, sea level, sea surface temperature, water col-

umn denitrification, and atmospheric iron supply. (A) Within the SCS, N2 fix-

ation is generally higher (FB-δ15N is lower) in the interglacials (red; FB-δ15N

increases downward). N2 fixation increases upon each termination and is

tightly correlated with the mean relative sea level stack (black) generated

using seven independent sea level reconstructions (49). (B) The structure of N2

fixation variability is also similar to changes in sea surface temperature at

MD97-2142 (29) but lags behind temperature changes, especially during the

latter half of the record. Among the three records sensitive to water column

denitrification from (C) the California margin (37), (D) eastern Equatorial Pa-

cific (65), and (E) Arabian Sea (66), the bulk δ
15N record from the California

margin is (negatively) correlated with FB-δ15N in the SCS (note reversal of δ15N

scales between A and C−E). (F) A Chinese loess record shows generally higher

iron flux in the glacials (67), which would increase N2 fixation during glacials if

iron availability were the primary control for N2 fixation, inconsistent with the

FB-δ15N data. The light gray bars indicate the glacial terminations.
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A changing rate of N2 fixation is the sole remaining mechanism
with the potential to explain the cycles in FB-δ15N at this site in the
SCS. We conclude that the δ15N of the shallow thermocline nitrate
was lowered less by N2 fixation during glacials, due to an ice age re-
duction in the rate of this process. The amplitude of the SCS δ

15N
rise in the glacials is similar to that observed in the tropical western
North Atlantic (13, 14), where N2 fixation also has a strong imprint
on thermocline nitrate δ15N (20). The 3‰ amplitude of the glacial/
interglacial FB-δ15N change in the SCS is comparable to the largest
regional declines in ocean nitrate δ

15N attributed to N2 fixation in
the modern ocean (44, 45); this suggests that the ice age decline in
N2 fixation rate was dramatic, most likely to less than half of the
modern rate based on a two end-member mixing calculation (Es-
timate for Glacial–Interglacial Changes in N2 Fixation Rate).

A question that arises is how FB-δ15N glacial−interglacial
variations of ∼3‰ could result when the modern nitrate δ

15N
decline from ∼500 m depth into the shallow SCS thermocline is
only 1 to 2‰ (Fig. 1B). First, the Holocene does not represent
the minimum observed FB-δ15N, so shallow thermocline nitrate
δ
15N is reconstructed to have been still lower during previous
interglacials. Second, the role of N2 fixation in lowering the δ

15N
of subsurface nitrate is greater than indicated by the local ver-
tical gradient in nitrate δ

15N alone, as low δ
15N N from N2 fix-

ation spreads horizontally and vertically, as nitrate and sinking
particulate nitrogen (45). This latter point also reinforces the
arguments above against a hydrographic (e.g., vertical mixing)
explanation for the observed FB-δ15N changes.
At all nine glacial terminations covered by our FB-δ15N re-

cord, a reconstructed increase in N2 fixation in the SCS coincides
with decreases in planktonic and benthic δ18Oc, a rise in sea level
and thus an increase in shelf area (Fig. 4 and Figs. S4 and S5), a
rise in SST, and an apparent deglacial increase in water column
denitrification in the eastern tropical Pacific (Figs. 3 and 4). The
length of the SCS FB-δ15N record allows for the use of time
series analysis to identify the correlations that are most consis-
tent with a causal connection.
Variability in SST is highly coherent with that in FB-δ15N (Fig.

5A). However, FB-δ15N lags SST by more than 4 ky in the dominant
41- and 100-ky bands for the latter half of the record (Fig. 5A).
Because the physiological and biochemical response of N2 fixers to
SST would be effectively instantaneous, the lag argues against SST
as the driver of the greatest FB-δ15N variations. Moreover, based
on observed sensitivities (15), the reconstructed SCS SSTs fall into
the optimal range for N2 fixation, and a 3 °C cooling would be far
too small to explain the dramatic reduction in N2 fixation during
glacials. Dust fluxes are lowest when reconstructed N2 fixation is
highest, arguing against iron supply as the explanation for the
reconstructed N2 fixation changes (Fig. 4F). This lack of positive
correlation between N2 fixation and dust supply is consistent with
high iron availability in the SCS even during interglacials, both from
the margins and from atmospheric deposition.
There are three bulk sediment δ

15N records from near water
column zones of suboxia and that are adequately long to compare
with our SCS FB-δ15N record (Figs. 4 C−E and 5B). These envi-
ronments are characterized by high export production and relatively
good preservation of sedimentary organic matter, such that the
potential of bulk sediment δ15N to robustly record the δ

15N of N
export is greater than in most other ocean regions (46). Of these
records, only ODP Site 1012 (37) from the California margin shows
significant coherency (Figs. 4C and 5B). The anticorrelation of the
records might be taken to suggest that enhanced water column de-
nitrification in the eastern tropical North Pacific during interglacials
was responsible for coincident N2 fixation in the SCS. However, the
coherency is limited to periods near 100 ky, suggesting that observed
similarities in the records reflect independent but similarly timed
responses to glacial cycles.
The SCS FB-δ15N and δ

18Oc records are similar in large-scale
structure (Figs. 3 B and C), suggesting a connection between N2

fixation and sea level. A stack of sea level records (47–49) shows
high coherency with the SCS FB-δ15N over a wide range of fre-
quencies (Fig. 5C; significant against red noise with 95% confi-
dence), as strong as the coherency between independent sea level
reconstructions (Figs. S6−S8). Thus, the reconstructed glacial/in-
terglacial changes in N2 fixation appear to require a mechanism that
involves ice volume and/or sea level change. The correlation of
markers of terrigenous input with FB-δ15N in MD972142, with
greater terrigenous material when FB-δ15N is high (29), provides
additional support for this interpretation (Fig. S3D). As no rela-
tively direct, low-lag connection between ice volume and N2 fixation
appears plausible for the SCS, the data argue for sea level as the
dominant driver of N2 fixation change.
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Fig. 5. Cross-wavelet coherence and phase relationship among records of N2

fixation, sea level, sea surface temperature, and water column denitrification.

Squared wavelet coherence between two time series was computed using the

methods of ref. 68. The 95% confidence level against red noise was calculated

using the Monte Carlo method and is shown as a thick contour that encloses

the significant sections. The light shading indicates the region possibly influ-

enced by edge effects. Black arrows indicate the phase relationship between

the two time series, with in-phase pointing right, FB-δ15N leading a given cli-

mate variable pointing down, and FB-δ15N lagging pointing up. The different

records have been interpolated to an evenly spaced time series of 2 ky before

the spectral analysis. (A) The SST record (29) from the same sediment core has

high coherency with, but leads, the FB-δ15N of O. universa by around 4 ky

during the last 400 ky at the dominant 41- and 100-ky bands, as indicated by

the direction of the arrows, which is inconsistent with a causal connection in

this case. (B) The bulk δ
15N record from California margin (37) is coherent with

FB-δ15N in the SCS at the period near 100 ky. (C) The sea level record stack (47–

49) shows high coherency with FB-δ15N at a wide range of frequencies.

Ren et al. PNAS | Published online July 31, 2017 | E6763

E
A
R
T
H
,
A
T
M
O
S
P
H
E
R
IC
,

A
N
D
P
L
A
N
E
T
A
R
Y
S
C
IE
N
C
E
S

P
N
A
S
P
L
U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701315114/-/DCSupplemental/pnas.201701315SI.pdf?targetid=nameddest=SF3


The extensive continental shelf area of the tropical western
North Pacific adjacent to the SCS, the Sunda shelf in particular,
appears to be an important locus of benthic denitrification (8).
This shelf area was nearly completely lost during peak glacials
(Fig. 1A). The reduction in shelf area has been proposed to reduce
shelf sedimentary denitrification in the glacials (7), which, in turn,
would lead to higher N/P (less excess P) in the upper water col-
umn. This change would have discouraged N2 fixation in the SCS
and neighboring regions, explaining the remarkable coherency of
the sea level records and our SCS FB-δ15N record (Fig. 6).
The SCS FB-δ15N record thus provides the most direct evidence

to date for the long-hypothesized scenario in which sea level drives
glacial cycles in benthic N loss along the continental margins. Such a
mechanism implies that SCS N2 fixation responded to changes in
nearby shelf area, as changes in N loss on distant shelves should
have been compensated by N2 fixation in those regions. N2 fixation
compensation for N loss might be confounded by changes in iron
availability in other tropical/subtropical ocean regions. However, for
regions such as the SCS that are characterized by high iron supply,
local compensation for N loss changes is arguably to be expected.
Continental slopes are known to deposit substantial quantities

of margin-derived organic matter at their base (50), and the
resulting accumulation drives denitrification on the slope (31, 51,
52). It is possible that this process was accelerated during ice
ages and, in part, replaced the sedimentary denitrification on the
continental shelves. N loss on the slope may not lead to syn-
chronous changes in N2 fixation because the N deficit would
accumulate in deep water, not directly affecting the N/P of the
nutrient supply to the locally overlying surface ocean. However,
the funneling of organic matter into the deep ocean prevents the
upper ocean nutrient recycling and other processes that render N
loss so rapid on the shelves. Therefore, any increased N loss by
denitrification on the slope is unlikely to have substantially
compensated for the reduced N loss on the shallow margins.
N2 fixation slowed substantially during ice ages, as recon-

structed here for the western tropical Pacific and previously for
the North Atlantic, in both cases consistent with the response of
N2 fixation to excess P supply as the dominant driver of the
changes (13, 14). The correlation between SCS N2 fixation and
sea level provides data-based support for the hypothesis of re-
duced sedimentary denitrification during ice ages (7, 53, 54), and
bulk sediment δ15N records argue for reductions in water column
denitrification as well (5, 6). With these lower rates of both input
and loss, the residence time of fixed N in the ocean [currently
∼3 ky (55, 56)] would have become longer and thus less distinct
from the residence time of phosphorus [15 ky to 40 ky (57)],
although the latter may also have changed over glacial cycles.
Benthic N loss on the continental margins reflects the high flux of

organic matter to the coastal seabed (50–52), a consequence of both
the shallow continental shelf and the high productivity of the coastal
water column (Fig. 6). The high productivity is, in turn, supported by
the shelf, which traps sinking organic matter and quickly returns
nutrients to the sunlit surface ocean. Thus, the reduction in benthic
N loss during ice ages implies a net decline in the organic matter
supply to coastal ecosystems, especially those organisms that rely on
the benthos. In part because of their extraordinarily high productivity
and benthic activity, the modern continental shelves have tremen-
dous importance for seafloor fauna, fish, and marine mammals. The
reconstructed biogeochemical changes imply that these higher tro-
phic levels would have suffered a notable decline in food supply
during the low sea level stands of ice ages (Fig. 6), potentially
impacting the evolution and current characteristics of coastal species
and ecosystems (e.g., ref. 58).

Methods

FB-δ15N Analyses. The protocol follows and is modified from that of refs. 13 and

14. The individual foraminifera species (250- to 425-μm-size fraction, ∼5 mg per

sample) are picked manually and gently crushed under a dissecting microscope.

Samples are first sonicated for 5 min in an ultrasonic bath using 2% poly-

phosphate solution to remove clay particles. To remove metal coatings,

bicarbonate-buffered dithionite−citric acid solution is then added to each

sample, and the samples are placed in a water bath at 80 °C for 1 h. The final

cleaning step is oxidative: Basic potassium persulfate solution is added to each

sample, and the samples are autoclaved (at 121 °C) for 1 h. The cleaned samples

are rinsed in deionized water and dried overnight at 55 °C. This cleaning pro-

tocol typically preserves 60 to 75% of the initial foraminifera weight.

Cleaned foraminifera (∼3 mg to 4 mg per sample) are weighed into a

previously combusted glass vial and dissolved in 3N HCl. To convert the re-

leased organic N to nitrate, purified basic potassium persulfate oxidizing

solution is added to the vials, which are then autoclaved for 1 h on a slow-

vent setting. To lower the N blank associated with the oxidizing solution, the

potassium persulfate is recrystallized three times. At the time of processing,

0.8 g of NaOH and 0.5 g of potassium persulfate are dissolved in 100 mL of

deionized water. Organic standards are used to constrain the δ15N of the

persulfate reagent blank. Three different organic standards were used: US

Geological Survey (USGS) 40 (δ15N = −4.5‰ vs. air), USGS 41 (δ15N = 47.6‰

vs. air), and a laboratory standard made of a mixture of 6-aminocaproic acid

Fig. 6. Inferred glacial/interglacial changes along the SCS margin. (A) Dur-

ing interglacial high sea level stands, organic matter decomposition on the

shallow shelf promotes high coastal ocean productivity and rapid shelf de-

nitrification. The denitrification, by consuming fixed N, causes the shelf

water to have excess P. When this water is transported into the open SCS,

phytoplankton growth draws down its nutrients, and its excess P causes N to

become depleted before P. The availability of P in the absence of N enhances

N2 fixation, which is reflected in a lowering of thermocline nitrate δ15N and

thus lower FB-δ15N. (B) The sea level-driven loss of the shallow shelf during

glacials reduces productivity and sedimentary denitrification along the

margin. The reduction in sedimentary denitrification rate is compensated by

slower offshore N2 fixation, causing thermocline nitrate δ15N and FB-δ15N to

rise. Along the margin, the glacial reduction in shallow seafloor nutrient

recycling and thus phytoplankton production would impact the upper trophic

levels that thrive on the modern (interglacial) shelf. This mechanism, which

explains the observed coupled changes in sea level and N2 fixation in the SCS,

should also apply along other ocean margins.
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and glycine (δ15N = 5.4‰ vs. air). A minimum of 18 organic standards and

three to five blanks were analyzed per batch of samples.

To determine the N content of the samples, nitrate concentration is

measured in the oxidation solution after autoclaving. The nitrate analysis is

by reduction to nitric oxide using vanadium (III) followed by chem-

iluminescence detection (59). The blank is also quantified in this way. Con-

sistent with our previous findings, O. universa and G. ruber had an average

N content of 3 mmol to 4 mmol N per gram of cleaned calcite, yielding ni-

trate concentrations in the oxidation solutions of 10 μM to 20 μM, whereas

the nitrate concentration of the blanks ranged between 0.3 μM and 0.7 μM

(less than 5%, typically less than 2%, of the total N per sample).

The δ
15N of the samples is determined using the denitrifier method in

conjunction with gas chromatography and isotope ratio mass spectrometry

(60, 61). The denitrifier method involves the transformation of dissolved

nitrate and nitrite into nitrous oxide gas (N2O) via a naturally occurring

denitrifying bacterial strain that lacks an active form of the enzyme N2O

reductase. Before adding the foraminifera samples to the bacteria, the

sample solution is acidified to pH 3 to 7. The denitrifier Pseudomonas

chlororaphis was used for this work. Normally, 5-nmol samples are added to

1.5 mL of bacterial concentrate after degassing of the bacteria. Along with

the samples, the organic standards as well as replicate analyses of nitrate

reference material International Atomic Energy Agency NO3 reference

(IAEA-N3) (δ15N = 4.7‰ vs. air) and a bacterial blank are also measured. The

IAEA-N3 standards are used to monitor the bacterial conversion and the

stability of the mass spectrometry, and the oxidation standards are used to

correct for the oxidation blanks. If possible, samples were oxidized in du-

plicate, and oxidized samples were also sometimes analyzed by the de-

nitrifier method in duplicate. The denitrifier method typically has a SD (1σ)

of less than 0.1‰ and is not reported here. The reported error is the SD

estimated from the means of separate oxidations of cleaned foraminiferal

material, which averaged 0.22‰ (57% were less than 0.2‰, and 93% were

less than 0.5‰).

The data reported in this work will be accessible at National Centers for

Environmental Information (NOAA) once the paper is published online.

The δ
18O Analyses on Cibicidoides wuellerstorfi. Approximately 15 Cibicidoides

wuellerstorfi individuals were picked from each sample. The samples were

ultrasonicated first in 1 mL of deionized water for 3 s to 5 s, then in 0.2 mL of

methanol for 3 s to 5 s. The samples were rinsed with deionized water two to

three times and dried in an oven at 60 °C overnight. The cleaned forami-

nifera samples were crushed, and 35 mg to 80 mg weighed into 4.5-mL vials.

The δ18O were analyzed with a Thermo GasBench II coupled to a Thermo

Delta V Plus mass spectrometer at Eidgenössische Technische Hochschule

Zürich (62). The average of the SD of single δ18O measurements is ∼0.04%.

Nitrate Sampling and δ
15N Analyses at the South East Asian Time-Series Station

and in the Open Western Pacific. The South East Asian Time-Series (SEATS)

station is located at 18°N and 116°E (Fig. 1A) in about 3,800 m of water. It

was sampled four times between August 2012 and December 2013 in ap-

proximately seasonal intervals aboard R/V Ocean Researcher I. Two casts

during August 2012 and eight casts from each of the other three cruises

were sampled for nitrate δ15N analyses. The western subtropical Pacific

transect is located along 23.5°N from 122.25°E to 126°E. Discrete water

samples were collected from five open ocean stations in 2013 July on R/V

Ocean Research V. All water samples were collected with General Oceanics

GO-FLO bottles bottles mounted onto a Rosette sampling assembly. From

each depth, seawater was collected unfiltered in a rinsed 60-mL high-density

polyethylene bottle and immediately frozen at −20 °C.

The concentration of nitrate plus nitritewas analyzed by reduction to nitric

oxide using vanadium (III) followed by chemiluminescence detection (59). The

δ15N of nitrate was determined using the denitrifier method, as described

above. We use two international nitrate isotope reference materials, IAEA-

N3 (δ15N = 4.7‰ vs. air) and USGS-34 (δ15N = −1.8‰ vs. air), to correct the

data. The analytical precision for δ15N was 0.08‰. The error bars in Fig. 1C

represent 1 SD of the nitrate δ15N analyzed at the same depth from the

different casts, which averaged 0.20‰.
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