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Impact of global structure on 
diffusive exploration of organelle 
networks
Aidan I. Brown  1, Laura M. Westrate2,3 & Elena F. Koslover  1*

We investigate diffusive search on planar networks, motivated by tubular organelle networks in cell 
biology that contain molecules searching for reaction partners and binding sites. Exact calculation of 
the diffusive mean first-passage time on a spatial network is used to characterize the typical search time 
as a function of network connectivity. We find that global structural properties — the total edge length 
and number of loops — are sufficient to largely determine network exploration times for a variety of 
both synthetic planar networks and organelle morphologies extracted from living cells. For synthetic 
networks on a lattice, we predict the search time dependence on these global structural parameters by 
connecting with percolation theory, providing a bridge from irregular real-world networks to a simpler 
physical model. The dependence of search time on global network structural properties suggests that 
network architecture can be designed for efficient search without controlling the precise arrangement 
of connections. Specifically, increasing the number of loops substantially decreases search times, 
pointing to a potential physical mechanism for regulating reaction rates within organelle network 
structures.

Network models have been employed to describe and understand a wide variety of phenomena1, ranging from 
transparently physical processes such as �ow2 and conductivity3 to the more abstract examples of human phys-
iology4,5, social interactions6, and mortality7. Random walks on networks8 can model the dynamics of epidemic 
spreading9, animal foraging10, brain signaling11, and electron transport12. �e rate at which such random walkers 
�nd target sites within the networks is known to depend on factors such as dimensionality13, target connectivity14, 
and number of shortest paths passing through the target15.

In comparison to generalized complex networks, spatial networks have physical constraints that limit con-
nections to spatially proximal nodes16. In addition, physical di�usion along network edges gives rise to broadly 
distributed non-exponential waiting times that depend on edge length17, in contrast to classic models of random 
walks on networks8,15,16. �us, di�usive search on spatial networks is perhaps better described by physical vari-
ables such as fractal dimensionality18,19 or tortuosity20, rather than the number of nodes and edges o�en used to 
characterize general network structures. Random walks on spatial networks have similar dynamical properties to 
those in complex, porous, or crowded media21–23. Although there has been progress in calculating how geometry 
a�ects di�usive search times on complex domains19,22,23, and understanding the impact of distinct search strate-
gies24, there is little guidance on how to structure spatial networks to accelerate di�usive search.

Intracellular structures provide a key example where di�usive processes over complex geometries have an 
important role to play in cellular function. Reticulated organelles, such as the peripheral endoplasmic reticu-
lum (ER)25,26 and mitochondria27,28, are composed of membranous tubules enclosing a single connected luminal 
volume, whose physical structure has recently been mapped in extensive detail29,30. �ese organelles constitute 
spatial networks that span throughout the cell interior, comprising hundreds of nodes and edges connected in 
a highly looped architecture31,32. Within these networks, proteins and other molecules di�use to �nd reaction 
partners and binding targets. For instance, secretory proteins must encounter an exit site in order to leave the 
ER33 and DNA-binding proteins must �nd mitochondrial nucleoids to participate in DNA maintenance and 
replication34.
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�e structure of these living networks is heavily regulated and likely functionally important32,35. Mitochondrial 
network structure changes36 during the cell cycle37, di�erentiation38, and disease39, suggesting mitochondrial 
morphology plays a role in physiological functions such as ATP production40,41. ER structure varies with cell 
specialization26 and with mutations in morphogenic proteins associated with human pathologies25,42. Prior work 
analyzed the structure and morphogenesis of mitochondrial32,43 and ER networks31, and mapped some basic 
parameters of molecular di�usion within these networks32,44,45. However the connection between network mor-
phology and search e�ciency has not been systematically addressed.

We investigate di�usive search on two network types. Firstly, we construct a variety of synthetic planar net-
works, with nodes on a lattice or homogeneously scattered and connected into a single component with varying 
arrangements of edges. Secondly, we use spatial networks extracted from imaging of yeast mitochondria and 
mammalian ER. We �nd that typical search times on these biological structures are largely predicted by simple 
global structural parameters: the total edge length and loop number, which encompass network density and 
connectivity.

Model
To explore search e�ciency, we analytically calculate the di�usive mean �rst-passage time (MFPT)17 between an 
initial and a target node, given the connectivity and physical length of the network edges. Particle di�usion 
between nodes is governed by the propagator Gij(t), which gives the probability that a particle starting at node i 
will be at node j a�er time t, without passing through the target node. Gj ij∑  is the probability that the particle has 
never reached a target node. �e MFPT to reach the target node k is 
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where Ĝ s( )ij  is the Laplace-transform of Gij(t). Adapting recent work46, the propagator is given by 

 I Ps Q( ) [( ) ] , (2)ij ij j
1

Ĝ = − −

where I is the identity matrix, Pnm
  is the Laplace-transform of the �ux of particles from node n directly to a con-

nected node m without any intervening steps to other nodes, and Qn is the Laplace-transformed probability that 
a particle starting at node n has not arrived at another node. Paths that reach the target are assumed to leave the 
network entirely, so =P 0nk . Equation (2) generalizes earlier work8 to networks with distinct, non-exponential 
distributions for di�usion time along each edge. It di�ers from �rst-passage time calculations which assume all 
node-node transitions correspond to identical time steps13,47 or with in�nitesimal time spent on edges23, and from 
the numerical integration previously used to evaluate di�usion on systems of containers connected with tubes48.

Inserting Eq. (2) into Eq. (1) gives the MFPT between source node i and target node k. �e elements  =P s( 0)nm  
correspond to the probability that a particle starting at node n will next step to node m, which depends only on 
the lengths ℓnm of the connecting edges: 
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where node m and nodes w are directly connected to node n. Similarly, Q s( 0)n =  gives the mean �rst passage time 
for a particle to arrive at any of the directly connected nodes from node n, with 
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where D is the particle di�usivity and nodes w are directly connected to node n (derivations in Methods).

Results
Visualizing mean first-passage times. Global mean �rst-passage time (GMFPT) is de�ned as the MFPT 
to a single target node averaged over all possible source nodes49. Figure 1a shows GMFPTs for a ‘decimated’ 
honeycomb network: a complete honeycomb network is constructed inside a circle of unit radius, and edges are 
removed while maintaining a single connected component. �e radius of the circular domain R sets the length-
scale of the system, and the particle di�usivity D sets the time-scale. Here, and in all subsequent results with 
synthetic networks, the �rst passage times are nondimensionalized by R2/D.

Figure 1b shows GMFPTs for a particle di�using in an example ER network from a COS-7 cell (see Methods). 
Both networks in Fig. 1 have higher GMFPT for nodes nearer the network periphery, as compared to centrally 
located nodes. Better-connected (higher degree) nodes are found more quickly (Fig. 1b inset).

Loops and total edge length constrain TA-GMFPT. Given the substantial GMFPT variation between 
target nodes on each network, we de�ne a single metric characterizing the e�ciency of target search processes on 
a particular network. Namely, the target-averaged GMFPT (TA-GMFPT) is de�ned as the GMFPT averaged over 
all possible target nodes in the network, and we use the TA-GMFPT as a typical ‘search time’ herea�er.

We investigate the impact of network structure on di�usive search over planar networks with nodes placed 
homogeneously throughout a circular domain. Decimated honeycomb networks are generated with di�erent 
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node densities and numbers of edges randomly removed, keeping only networks with all nodes connected. �ese 
networks all have the same spatial extent (set by domain radius R = 1), but di�erent connectivities and node 
densities.

�e choice of decimated lattice planar network structures, with homogeneously distributed nodes, is moti-
vated by suggestions that yeast mitochondrial networks are evenly spread along the cell surface32 and ER networks 
in several adherent cell types span throughout the relatively �at periphery of the cell31,50. We choose honeycomb 
networks because their three-way junction structure matches ER51 and mitochondrial32 networks, and the 120° 
angles between edges at network junctions match the peak angle for ER junctions31. �is construction enables the 
generation of a varied family of planar networks that connect well-distributed nodes while retaining some of the 
geometric and topological features of cellular network structures.

Each network is characterized by the sum of all edge lengths (‘total edge length’) L and the cyclomatic num-
ber16, which is the number of elementary cycles in the network, herea�er termed ‘loop number’. Loop number is 
given by Γ = Ne − Nn + 1, with Ne the number of edges and Nn the number of nodes. We use the loop number as 
a simple measure of redundant connectivity.

Figure 2a shows mean TA-GMFPT vs. total edge length L and loop number Γ, averaged over many distinct 
decimated honeycomb networks. Larger L increases search time, by increasing the one-dimensional volume of 
the search space. Higher Γ substantially decreases search time — for some L values the mean search time varies 
by more than an order of magnitude over the explored range of Γ.

�e TA-GMFPT coe�cient of variation cv (ratio of standard deviation to mean) for a given total edge length 
L and loop number Γ does not exceed 0.3, with typical cv substantially lower (Fig. 2b). For most L values, the cv 
given both L and Γ is signi�cantly smaller than the cv given L alone (Fig. 2c), demonstrating that both total edge 
length and loop number are necessary to accurately predict search times on a decimated lattice network. �ese 
parameters (L and Γ) incorporate the number of nodes and edges on a network within a �xed spatial region, in a 
manner that highlights the network density and connectivity, respectively.

Figure 1. Spatial variation of global mean �rst-passage time. Global mean �rst-passage time (GMFPT) 
represented by node color for an example (a) decimated honeycomb and (b) endoplasmic reticulum network. 
Times in (a) are nondimensionalized by R2/D, where R is the domain radius and D is the particle di�usivity; 
times in (b) are given for a particle di�usivity of D = 1 µm2/s. Inset of (b) shows GMFPT vs. node degree for 
both networks, normalized by the overall target-averaged GMFPT (TA-GMFPT).
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To establish the utility of total edge length L and loop number Γ in predicting network search times, we con-
sider several alternate network architectures, each averaged over many distinct individual networks. Decimated 
Voronoi networks are generated by randomly placing points within a circle with an exclusion radius around each 
preceding point, constructing a Voronoi tessellation using these points, and removing edges while maintaining 
all nodes in the single connected component. �ese decimated Voronoi networks maintain the three-way junc-
tion geometry of honeycomb networks, and their mean search times are very similar to decimated honeycomb 
networks with the same L and Γ (Fig. 2d). We also generate decimated square networks, which have node degrees 
up to 4. �e ratio of search times between these square networks and decimated honeycomb networks, matched 
by L and Γ, shows greater variation (Fig. 2e). Nonetheless, search times on these square networks are generally 
within 40% of comparable honeycomb networks – this deviation is small in comparison to the orders of magni-
tude variation in the TA-GMFPT over the network structures in Fig. 2a. Figure 2 thus highlights the importance 
of total edge length and loop number in determining di�usive search times over a broad variety of planar network 
structures with well-distributed nodes.

Search on cell biology networks. We also analyze search times on intracellular reticulated organelle net-
work structures. Figure 3a shows an example �uorescent image of a yeast mitochondrial network32. Figure 3b 
shows TA-GMFPT from 350 mitochondrial networks32, which exhibit features similar to the honeycomb net-
works in Fig. 2a: approximate prediction of TA-GMFPT by total edge length L and loop number Γ, and a sub-
stantial decrease in search time as Γ increases and L decreases. Mitochondrial networks from wild-type cells 
and mutant cells with mitochondrial �ssion and fusion proteins knocked out occupy distinct regions of the Γ 
vs. L plane. However, for given values of these two structural parameters, the two network types (wild-type and 
mutant) exhibit similar search times. �e �uorescent image in Fig. 3d shows an example ER network. We calcu-
lated the TA-GMFPT for regions of 103 such peripheral ER networks (Fig. 3e). Although ER network structures 
are restricted to relatively high looping number for each total edge length, the search times vary similarly to hon-
eycomb networks (Fig. 2a) and mitochondrial networks (Fig. 3a).

While the synthetic honeycomb, Voronoi, and square networks in Fig. 2 are planar, mitochondrial and ER 
networks exist in three-dimensional intracellular volumes. However, imaging of peripheral ER networks in COS7 
cells indicates that these structures are relatively �at, with rarely observed crossing of tubules outside the typical 
3-way junction nodes42,45,50. �ree dimensional deformation in the paths of individual edges would reduce the 
overall e�ective di�usion coe�cient in a planar projection52, but would not substantially alter the global search 
trends described here. Mitochondrial networks in budding yeast cells tend to remain at the cell surface, with 
little incursion into the three-dimensional bulk of the cell32. �ese networks are thus essentially con�ned to a 
two-dimensional manifold in the shape of a spherical shell. For simplicity we also approximate them as planar, 
neglecting the large-scale curvature of the spherical surface.

e
ffi

Figure 2. Geometric characteristics control typical search time. (a) Target-averaged global mean �rst-passage 
time (TA-GMFPT) for honeycomb networks. Each network is sorted into a total edge length and loop number 
bin and mean TA-GMFPT is shown for each bin. (b) TA-GMFPT coe�cient of variation cv for each bin in 
(a). (c) �e mean of the cv in each loop number bin in (b) at a given total edge length bin (Total edge length 
and Loop number, blue) and the cv across all loop numbers for a given total edge length bin (Total edge length 
only, red) — details described in Methods. (d) Average TA-GMFPT ratio between Voronoi networks and the 
honeycomb networks in (a), and (e) between square networks and the honeycomb networks in (a).
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Investigation of how network structural characteristics facilitate searches must account for the expected search 
time increase as domain size increases. To compare the mitochondrial and ER networks to idealized lattice-like 
structures, the cellular networks are scaled to the same physical area as the unit circle containing honeycomb 
networks. �ree-dimensional mitochondrial network coordinates extracted from imaging are projected onto a 
spherical surface. �e network area is estimated using a convex hull of both ER nodes on the plane and projected 
mitochondrial nodes on the sphere (details in Methods). �is allows comparison of search times between net-
works with the same spatial extent but di�erent node density and connectivity.

 Figures 3c,f plot the ratio of each mitochondrial and ER network search time, respectively, to the honeycomb 
network search time at the corresponding total edge length and loop number. �e ratios for both mitochondrial 
and ER networks are near unity, suggesting these organelle network structures have similar search characteristics 
and dependence on total edge length and loop number as synthetic lattice-like networks.

Dependence of search times on network morphology. Using decimated honeycomb and square lat-
tice network structures (Fig. 2), we explore the dependence of search time on total edge length L and loop number 
Γ (Fig. 4). Increasing loop number at a constant total edge length corresponds to networks with less dense nodes 
that are more completely connected (Fig. 4a). �e search time varies distinctly for low vs. high loop numbers Γ. 
Search time weakly depends on Γ for low Γ (Fig. 4b,c), indicating that adding a few loops, within a primarily 
tree-like structure, will not substantially a�ect the search process. In contrast, search time steeply decreases with 
rising Γ for higher Γ values (Fig. 4b,c). �is suggests that once a threshold number of loops is reached, further 
added loops can signi�cantly decrease search time. High search time variability in Fig. 2b,d,e aligns with the 
neighborhood of these thresholds in Fig. 4b,c, suggesting that at the threshold where loop number begins to per-
turb global transport, the precise arrangement of the loops can have a substantial impact on search time.

By contrast, increasing total edge length L at a constant loop number corresponds to denser, less well con-
nected networks (Fig. 4d). �e dependence of search time on total edge length L becomes more steep as loop 
number increases (Fig. 4e,f).

�e decimated honeycomb and square lattice networks resemble percolation systems, where the fraction of 
bonds retained is above the critical percolation value pc. Random walks in such systems are e�ectively di�usive 
above a certain correlation length, and for planar networks should have the same scaling properties as 
two-dimensional di�usion53,54. In particular, we expect the search time to be largely independent of node density 
and to scale as T ~ D−1, where D is the e�ective di�usivity (see Methods for details). Near the percolation thresh-
old, − µ~D p p( )

c
, where p is the fraction of lattice bonds remaining and µ ≃ 1.30 for two-dimensional lattices54.

Figure 3. Search on cell biology networks is described by geometric characteristics. (a) Fluorescence image 
of yeast mitochondrial network32. (b) Target-averaged global mean �rst-passage time (TA-GMFPT) on 
mitochondrial networks32, for particles with di�usivity D = 1 µm2∕s. (c) Ratio between TA-GMFPTs on 
mitochondrial networks, scaled to unit spatial extent, and the expected values at equivalent loop number and 
total edge length on honeycomb networks in Fig. 2a. Only mitochondrial networks with scaled total edge 
length and loop number that overlap honeycomb networks are shown. (d) Fluorescence image of endoplasmic 
reticulum (ER) in COS-7 cell, with a region of peripheral ER network indicated. (e) TA-GMFPT on ER 
networks, for particles with di�usivity D = 1 µm2∕s. (f) Similar ratio to (c) between TA-GMFPTs on scaled ER 
and honeycomb networks.
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By treating our synthetic networks as large clusters in a two-dimensional system approaching percolation, we 
derive the expected dependence of search times on total edge length and loop number (see Methods section). 
Namely, when loop number is very low (Γ ≪ L), then search times are expected to be independent of Γ but 
to scale with total edge length as T ~ Lµ. Both of these expected relationships are consistent with the observed 
dependence of search times on L and Γ for synthetic networks with low loop numbers (Fig. 4).

We note that the L1.30 dependence is intermediate between two extreme cases of loopless networks within a 
�xed-area domain. One extreme includes linear structures that snake through the domain without branching, or 
comb-like networks with a single backbone connecting many individual branches, which both exhibit MFPTs 
scaling as ~L217. �e other extreme is self-similar tree-like networks17,55, which have MFPTs that vary as  ~ L when 
scaled down to unit physical extent (see Methods).

For high loop numbers (Γ ≫ L), search times in a cluster close to the percolation transition are expected 
to depend on both total edge length and loop number as T ~ L2µΓ−µ (see Methods). In Fig. 4b,c, this T ~ Γ−1.30 
dependence is consistent with search times for low total edge lengths, but does not entirely explain search time 
behavior at the highest total edge lengths and high loop numbers. Similarly, in Fig. 4e,f, the predicted T ~ L2.60 
dependence is consistent with search times for intermediate loop numbers, but does not entirely explain search 
time behavior for the highest loop numbers. �e transition from intermediate connectivity to poor connectivity 
(Γ ≲ L) is evident in the top right corner of Fig. 4e,f, where the search time dependence on total edge length 
begins to shi� from T ~ L2µ to T ~ Lµ. We note that networks with the lowest total edge length for a given loop 
number (or highest loop number for a given total edge length) correspond to the most fully connected lattices, 
which are far from the percolation transition. We would thus expect the aforementioned scaling relationships 
to break down in this regime, as is seen for the data points with highest L and Γ in Fig. 4c, and for the lowest L, 
highest Γ in Fig. 4e,f.

Discussion
We have investigated the characteristics that control diffusive search time on planar networks connecting 
homogeneously distributed nodes over a compact domain. To this end, we employ an exact calculation of mean 
�rst-passage time on a spatial network (Eqs.(1)–(4)) based on network connectivity and edge lengths.

Search times in a complex medium are known to depend not only on the spatial structure of the domain but 
also on the dynamic nature of the search process, with the dimensionality of the walk (de�ned by ~x t d2 2/ w) 

Γ

Γ

Figure 4. Variation of search time with geometric quantities. (a) Example honeycomb networks showing 
increasing loop number while total edge length is held �xed. Using target-averaged global mean �rst-passage 
time (TA-GMFPT) from honeycomb networks in Fig. 2a, TA-GMFPT vs. loop number Γ for �xed total edge 
length range for (b) honeycomb networks from Fig. 2a and (c) square networks from Fig. 2d. Each colored point 
indicates the search time and loop number for an individual network, with di�erent colored points indicating a 
di�erent total edge length range. Solid black lines show Γ−1.3 power laws predicted from percolation theory. (d) 
Example honeycomb networks showing increasing total edge length while loop number is held �xed. Similar to 
(b) and (c), TA-GMFPT vs. total edge length L for �xed loop number range for (e) honeycomb and (f) square 
networks. Each colored point indicates the search time and total edge length for an individual network, with 
di�erent color points indicating a di�erent loop number range. Dashed red lines show L1.3 power laws, and solid 
black lines show L2.6 power laws predicted from percolation theory. Prefactors for all power-laws were selected 
arbitrarily to serve as a guide to the eye.
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determining a phase transition between compact and non-compact search processes19,22,23,56. In the analysis pre-
sented here, changing the dimensionality for particle dynamics would alter how splitting probabilities and waiting 
times for node-to-node transitions depend on edge length (Eqs. (3), (4)), as well as likely modifying the scaling 
behavior of search times with network structure near the percolation transition (as discussed in Methods). Such 
extension to di�erent dynamical processes is outside the scope of this work and is le� as a fruitful area for further 
study.

�roughout our calculations, particle motion along network edges is assumed to be purely di�usive (dw = 2). 
�is assumption of di�usive transport is consistent with past analyses of large-scale particle spreading on both 
ER and mitochondrial structures, as measured by �uorescence recovery a�er photobleaching44,57–59. More recent 
single-particle tracking studies in the ER indicate that membrane proteins move di�usively, while luminal pro-
teins may in some cases be driven by random processive �ows along the network edges45. Subdi�usive behavior 
(dw > 2), commonly attributed to fractional Brownian motion in a viscoelastic medium, has been observed for 
a variety of intracellular particles of size comparable to organelles or RNA-protein complexes (r ≳ 50 nm)60–62. 
However, smaller particles such as individual proteins (~5 nm) o�en exhibit di�usion-like motion63. �ese obser-
vations motivate our choice to focus on di�usive exploration for proteins in the ER and mitochondrial networks.

We assess typical search time on each network by averaging all combinations of source and target nodes. 
Di�usive search time on networks with homogeneously distributed nodes, including both synthetic networks and 
those from intracellular structures, is found to be largely predicted by simple geometric characteristics: total edge 
length and loop number (Figs. 2, 3), which characterize network density and connectivity. Increasing loop num-
ber substantially decreases di�usive search time, while increasing total edge length can steeply increase the search 
time (Figs. 2–4). Search times on ER and mitochondrial networks are comparable to those computed for idealized 
planar lattice structures with equivalent loop number and edge length (Fig. 3c,f), emphasizing the su�ciency of 
these two global structural parameters for determining di�usive search e�ciency on real-world networks.

Using percolation theory to predict di�usivity, which is inversely related to the search time, largely describes 
the dependence of search time on total edge length and loop number for networks constructed from decimated 
planar lattices. �is link to percolation theory highlights the importance of network connectivity, in the form of 
the bond fraction p, for determining search times. Although the bond fraction is well-de�ned for idealized regu-
lar planar lattices, it is not a meaningful parameter for realistic cellular networks, such as ER and mitochondrial 
structures. For these and other o�-lattice networks, we show that the simply measurable parameters of total edge 
length and loop number can be used to predict di�usive search behavior. We have outlined how these network 
parameters can be connected to an e�ective bond fraction and thus to the wide range of results available for per-
colation systems.

Typical mitochondrial and ER networks have many loops, which accelerate search (Fig. 3b,e). These 
search-accelerating loops align with Murray’s law for vasculature radius64,65 or the balance of competing con-
straints in fungi66,67, suggesting biology is capable of optimizing transport networks and that networks with many 
loops may have been partly selected for e�cient di�usive transport.

Mitochondrial and endoplasmic reticulum networks extend through much of the cellular volume to interact 
and form direct contacts with other organelles68–70, providing connections between various subcellular systems. 
A well-connected reticulated network structure enables proteins within these organelles to explore many contact 
sites without requiring export or relying on the slower dynamics of the organelles themselves. Mitochondrial and 
endoplasmic reticulum network morphology can vary based on cell specialization and the functional state of the 
organelle71,72, possibly modulating signals carried by di�usion through mitochondrial and endoplasmic reticulum 
networks. Our results indicate that higher loop numbers in the network would decrease di�usive search times 
and thereby may speed transmission of di�usive signals to organelle contact sites. �is potential for organelle 
functional and signaling modulation through network structural properties is similar to the in�uence of topology 
and signi�cance of time delay for organismal states described by network physiology4,5,73.

Our �nding that loops speed di�usive search points towards key structural criteria for spatial networks whose 
function relies on e�cient di�usive transport, including the intracellular networks studied here. Earlier work on 
random walks in complex networks showed that tree networks maximize the TA-GMFPT (i.e., lead to the slowest 
search)23, which suggested that some loops may lead to more e�cient di�usive search.

By contrast to networks designed for diffusive transport, the optimal spatial network structure for 
potential-driven �ow in a variety of scenarios is a loopless tree2,74–77. However, loops can assist network �ow-based 
transport outside of steady state, providing resiliency to damage and �uctuations77–79. Mitochondrial43 and ER 
networks29 are very dynamic, and resiliency to edge removal may be another bene�t of the many loops in these 
cell biology networks. Although we do not include edge or loop production cost78,79, our analysis can establish the 
utility of these network components for improving transport.

�e connection between network structure and di�usive distribution e�ciency indicates a potential link 
between architecture and functionality for cellular organelles such as the ER and mitochondria. �e dependence 
of search e�ciency on global structural properties of the network suggests that cells may be able to regulate bio-
chemical kinetics without precise local arrangement of network connections.

Methods
Deriving P and Q. Equations (1) and (2) give the MFPT between source node i and target node k, 

⟨ ⟩ = − ⋅ .−
→

=
 T QI P[( ) ] (5)ik i s

1
, 0
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To find P and Q
→

, we consider, as an example, a particle at a degree-three node 0 with edges of length 
ℓ1 ≤ ℓ2 ≤ ℓ3 connecting to other nodes (1,2,3). Trajectories that reach node 1 before nodes 2 or 3 can be con-
structed from excursions a distance ℓ1 from the initial node, with �rst-passage time distribution 

P t f t dt dt

f t t F t t f t

( )
1

3
( )

1

3
( ) ( )

1

3
( )

(6)

t t
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For a di�using particle that starts at position ℓ1 on an interval with absorbing boundaries at x = 0 and x = d, 
the function fd(t) gives the total �ux out of the interval at time t and the function Fd(t) gives the �ux at the x = 0 
boundary. �e �rst term of Eq. (6) represents a trajectory that �rst reaches a distance ℓ1 from the initial node 
when it arrives at node 1. �e second term of Eq. (6) is for a particle that reaches ℓ1 from the initial node along the 
edge to node 2, returns to the initial node without �rst reaching node 2, and then di�uses to node 1. A Laplace 
transform t → s converts the convolutions over sequential steps into products, giving 
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with the last line from the in�nite summation of a geometric series.
�e Laplace-transforms of fd(t) and Fd(t) are17

ɵ ℓ= −f s s D d s D d( ) 2sinh[ / ( )]/[sinh( / )], (8a)d 1

F s s D d s D d( ) sinh[ / ( )]/[sinh( / )], (8b)d 1= −ɵ ℓ

where D is the particle di�usivity. Inserting Eq. (8) into Eq. (7c) and taking s → 0, 

P s( 0) /( ) (9)01 2 3 1 2 2 3 1 3
ɵ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ= = + + .
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where the sum is over the nodes directly connected to node j.
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Expanding for small s gives, 
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More generally, P
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where node m and nodes w are directly connected to node n.
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Generating networks. Synthetic networks. We generate ‘decimated’ networks by constructing a complete 
network and removing a set of edges, subject to the condition that all initial nodes remain attached to all other 
nodes in a single connected component when edges are removed. Many network variations can be constructed 
from one complete network by varying the number and identity of removed edges.

For honeycomb and square networks, initial complete networks are constructed as a lattice within a circle of 
radius one, with nearest neighbors connected by an edge. �e lattice size is varied to obtain complete networks 
with di�erent node densities. 6.2 × 104 honeycomb networks are generated for data in Fig. 2a, 3.6 × 104 Voronoi 
networks for Fig. 2d, and 6.5 × 104 square networks for Fig. 2e.

To construct a Voronoi network, we �rst randomly place points within a circle of radius one, subject to the 
condition that each subsequent point cannot be within an exclusion radius of all preceding points. When nodes 
can no longer be placed (as the entire circle is blocked with the exclusion radius of at least one point), a Voronoi 
tesselation is constructed around these points. �e boundaries of the Voronoi tesselation cells form the network. 
�e exclusion radius around the initial points is varied to obtain networks with di�erent node densities.

Mitochondrial networks. Spatial coordinates and network connections for 350 mitochondrial networks from 
Saccharomyces cerevisiae budding yeast cells, obtained using Mitograph so�ware, were generously provided 
by Matheus Viana and Susanne Rafelski32. �e networks we analyze include wild-type cells and ∆dnm1∆fzo1 
mutant cells lacking proteins for mitochondrial �ssion and fusion. For each cell, we used the largest connected 
component.

Mitochondrial networks have relatively few nodes and edges in comparison to the synthetic networks. Nodes 
with degree two were added along edges to ensure individual edge lengths were approximately homogeneous, 
facilitating comparison with decimated lattice networks. Speci�cally, su�cient nodes were added to make all 
individual node-to-node edges shorter than the shortest full edge in the original network, and shorter than a 
1 µm length ceiling. �is procedure does not change the geometry or topology of the original network, but does 
rede�ne the set of target nodes used for the calculation of the TA-GMFPT.

Endoplasmic reticulum networks. COS-7 cells were purchased from ATCC (Catalog # ATCC-CRL1651) and 
were grown in Dulbecco’s modi�ed Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS) 
and 1% penicillin/streptomycin (P/S). Prior to imaging experiments, COS-7 cells were seeded in 6-well, plastic 
bottom dishes at 1 × 105 cells/mL about 18 hours prior to transfection. Plasmid transfections were performed 
as described previously80. For all imaging experiments, the ER was �uorescently labeled with 0.2 µg KDEL 
venus transfected into each well of a 6-well dish81. Live cells were imaged at 37 °C in Fluorobrite imaging media 
(Invitrogen) supplemented with 10% FBS. Confocal Z-stack images of the peripheral ER were collected using 
Micromanager Imaging So�ware with a step size of 0.2 µm. All images were acquired on an inverted �uores-
cent microscope (TE-2000-U; Nikon) equipped with a Yokogawa spinning-disk confocal system (CSU-Xm2; 
Yokogawa CSU X1)80. Images were taken with a 100 × NA 1.4 oil objective on an electron-multiplying 
charge-coupled device (CCD) camera 50 × 50 (Andor). Images were acquired with Micromanager Imaging 
So�ware and then analyzed, merged and contrasted using Fiji (ImageJ)82.

A large continuous region of the peripheral endoplasmic reticulum network was selected from each image. 
�e endoplasmic reticulum from this region of each image was skeletonized, and node and edge data from the 
skeleton extracted, using Fiji (ImageJ). Node and edge data was analyzed to extract a network structure, assuming 
nodes within 0.001 µm of one another are the same node. For each cell, the largest connected component was 
used. We obtained 103 ER networks.

Coefficient of variation. �is section describes how Fig. 2c was obtained.
In Fig. 2b, network structures are sorted into bins according to their total edge length (bin size of 2) and loop 

number (bin size of 4). For each bin there is a mean search time mij (mean of the TA-GMFPTs for all networks 
falling into the bin) and a variance of the search time ij

2
σ , where i, j indicate the bin indices for total edge length 

and loop number, respectively.
In the Fig. 2c the red curve labeled ‘Total edge length only’ is the coe�cient of variation over all loop numbers 

given a total edge length bin i. �is coe�cient depends both on the variance within individual bins and the overall 
variability from bin to bin. It is given by 

c
m

m
1

var ( ) ,
(15)

i
i

i iv,
2
σ= +

where = ∑m mi n j ij
1

i

 is the search time averaged over all bins with a given edge length, 
i n j ij

2 1 2

i

σ σ= ∑  is the 

average of variance within each bin, and = ∑ −m m mvar ( )i n j ij i
1 2 2

i

 is the variance of mean search times across 

all bins for the given edge length. For each edge length, the averages are done over ni bins containing at least 10 
networks.

In the Fig. 2c the blue curve labeled ‘Total edge length and Loop number’ gives the average of the coe�cients 
of variance for each individual bin �xing both edge length and loop number. �e average is carried out over all 
bins corresponding to a particular total edge length: 

∑
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Network size scaling. To make a direct comparison between search times for synthetic networks con-
strained to a circle of radius one, and search times for networks from cell biology, we scale lengths in the cellular 
networks such that the e�ective area spanned by the network matches the synthetic network area of π (circle of 
radius one). Search times are scaled by the length scaling factor squared, as di�usive processes in one dimension 
occur in a time proportional to length squared.

�ree-dimensional points along the largest connected component of each mitochondrial network skeleton are 
projected onto a sphere, whose center and radius are set to minimize the mean square residual of network points 
from the surface of that sphere. A convex hull of points is then constructed from these projected positions on the 
sphere, using the convhulln routine in Matlab, yielding a set of triangles. Triangles are rejected if their center is 
more than 0.3 µm from the sphere surface or the orientation of their normal vector is more than 40° from the 
radial direction. �is procedure e�ectively removes triangles spanning across large sphere regions not covered 
by the mitochondrial network. �e areas of the remaining triangles are summed and used as an e�ective area 
spanned by the mitochondrial network.

For the ER structures, a convex hull is found from the two-dimensional points along the largest connected 
component of each network. �e total area of the convex hull is then used for the e�ective area of the endoplasmic 
reticulum network.

Approximating search times with percolation theory. We consider a fully connected n × n square 
lattice of network nodes on a unit square, giving N = n2 total nodes connected to nearest neighbors by edges of 
length ℓ = 1/(n − 1). �e complete lattice has E n n2 ( 1)max = −  total edges. Edges are removed from the network 
until a number Γ of loops remain, without disconnecting any nodes. The number of edges remaining is 
E = n2 − 1 + Γ. �e fraction of edges that remain is p = E/Emax, 

p
n n n

1

2

1

2 2 ( 1) (17)
= + +

Γ
−

.

�e critical bond probability for percolation on a square lattice is pc = 1/254, such that our lattice has p > pc. For 
p > pc but remaining near pc, the di�usivity depends on the bond probability as D p p( )

c
− µ~ , where µ ≃ 1.3054. 

�e di�usivity on the network is 
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Note that for a �xed loop number Γ, increasing the total edge length corresponds to increasing the lattice density 
n, and hence decreasing the e�ective di�usivity. Speci�cally, the total edge length for the network is given by 
L = ℓE = n + 1 + Γ∕(n − 1). We can then express the lattice density in terms of our control parameters L and Γ 
according to, 
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L L
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1 1
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Assuming a dense lattice system with L ≫ 1 and Γ ≪ L2, we get the scaling n ~ L. �is can be plugged into the 
di�usivity (Eq. (18b)) to show 




+ Γ



µ

D
L

L (20a)2
~

For a highly disconnected system with low loop number (Γ ≪ L), the di�usivity scales as D ~ Γ0L−µ. In the oppo-
site extreme of high loop number (L ≪ Γ ≪ L2), the di�usivity scales as D ~ ΓµL−2µ.

Random walks on the largest connected component of a planar lattice above the percolation transition are 
expected to show the universal scaling behavior associated with di�usion in two dimensions, at su�ciently large 
length scales54. �e target-site search time for a two-dimensional random walk with unit time steps is known to 
scale with the number of sites Tstep ~ N, neglecting a logarithmic correction term19,83. For our system, the particles 
di�use with di�usivity D along edges of length ℓ, so that the characteristic time to traverse each edge scales as ℓ2∕D. 
Consequently, the overall expected search time is 

−
.

−
~ ~ ~T

D
N

n

D
n

D

( 1) 1
(21)

2 2
2

We thus expect the search time to vary as T ~ Lµ for nearly loop-less networks, and T ~ Γ−µL2µ for networks 
with high loop numbers.

A similar argument can be used to relate the �rst passage time T and the e�ective di�usivity D for a compact search 
process where the underlying particle dynamics is subdi�usive, with α~x t2  on each edge. Namely, if the dimen-
sionality of the walk (dw = 2∕α) is less than the dimensionality of the domain (df) then we have ~T N d d

step
/w f19.  

For a planar network above the percolation transition, df = 2 and Eq. (21) can be modi�ed to 
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�e coe�cient D in this case characterizes the large-scale spreading of particles over the network structure. �e 
dependence of D on network connectivity in a cluster near percolation (i.e.: the scaling exponent µ) is likely to 
be altered for subdi�usive motion. However, we do not address this behavior here, focusing instead on di�usive 
search processes that are expected to be relevant for a variety of proteins in the ER and mitochondrial networks.

Search times on simple loop-less network topologies. Self-similar, hierarchically branched tree net-
works are constructed iteratively by attaching m additional branches to the center of each branch in an existing 
tree. �e number of steps S to �nd a central target on a tree generated by g iterations scales as 

S N , (23)g g
m1 log 2/log ( 2)+ +~

where Ng = (m + 2)g + 1 is the number of nodes in the tree55. �e number of tree edges is given by Kg = (m + 2)g, 
so Kg ~ Ng.

If such a hierarchical tree network is constrained to a domain of unit radius, the edge lengths of the tree must 
become shorter with each iteration, scaling as ℓg = 2−g. �e total edge length will then be Lg = Kgℓg ~ [(m + 2)/2]g. 
�e time required to di�use across each edge is tg g

2∆ ~ . Overall, the total time for di�usive search to the target 
will scale as 
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Consequently, the time for di�usive search over a fractal tree network scaled to �t within a domain of �xed 
spatial extent should scale as T ~ L, as indicated in the main text.

Data availability
Datasets generated and analysed during the current study are available from the corresponding author upon 
request. So�ware for computing mean �rst passage times is available in a GitHub repository at: https://github.
com/lenafabr/networkMFPT.
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