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PERSPECTIVE

Impact of gut-peripheral nervous system axis on the development  
of diabetic neuropathy
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Diabetes is a chronic metabolic disease caused by a reduction in the production and/or action of insulin, with consequent 
development of hyperglycemia. Diabetic patients, especially those who develop neuropathy, presented dysbiosis, with an 
increase in the proportion of pathogenic bacteria and a decrease in the butyrate-producing bacteria. Due to this dysbiosis, 
diabetic patients presented a weakness of the intestinal permeability barrier and high bacterial product translocation to the 
bloodstream, in parallel to a high circulating levels of pro-inflammatory cytokines such as TNF-α. In this context, we propose 
here that dysbiosis-induced increased systemic levels of bacterial products, like lipopolysaccharide (LPS), leads to an increase 
in the production of pro-inflammatory cytokines, including TNF-α, by Schwann cells and spinal cord of diabetics, being crucial 
for the development of neuropathy.
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Diabetes is a chronic metabolic disease characterized 
by hyperglycemia due to a reduction in the production 
and/or action of insulin.(1) Currently, diabetes is one of 
the most serious and frequent chronic diseases in world-
wide. Uncontrolled diabetes is accompanied by the de-
velopment of several disabling and costly complications, 
which reduce patients’ life expectancy and can be fatal.
(2) In 2021, the global prevalence of diabetes reached pan-
demic proportions with 537 million people living with 
diabetes in the world, accompanied by an expense of 
699 billion USD in global healthcare. In addition, future 
projections suggest that up to 2045 the number of people 
with diabetes will increase by 46%, with an estimate of 
health expenditures for the care of this disease that will 
exceed one trillion USD.(3)

Neuropathy is the most prevalent complication of di-
abetes, occurring in up to half of all people living with 
this disease.(4) In addition, neuropathy is responsible 
for frequent hospitalization compared to other diabetes 
morbidities,(5) and it is the most common reason for non-
traumatic amputation.(6) Neuropathic pain is manifested 
as spontaneous or induced pain, such as hyperalgesia and 
allodynia.(7,8) Although neuropathy is the strongest predic-
tor of mortality in diabetes, it remains without specific 
treatment.(4) This scenario leads to high individual costs 
for patients, including pain, inability to work, poor quality 
of life, multiple hospitalizations for ulcers and eventual 
amputations. Therefore, we performed a narrative review 
with the aim of increasing knowledge about the role of 
gut dysbiosis in the development and/or progression of 
neuropathy in diabetic patients, besides how essential this 
microenvironment is for better control of the disease.
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Pathogenesis of diabetic neuropathy

In diabetic patients, the development of neuropathy 
is multifactorial and involves uncontrolled glycemia, 
diabetes duration, and age-related neuronal attrition.(4,6) 
Although the precise order of cellular injury in diabe-
tes is unknown, the alterations in the peripheral nervous 
system that culminate in diabetic neuropathy are well 
established. These changes include (i) progressive loss 
of neurofilament polymer, which are essential structur-
al scaffolds of the axon;(9) (ii) modification in the key 
plasticity molecules in the dorsal root ganglia (DRG), 
including decrease in the synthesis of growth-associated 
protein 43 (GAP43) and β-tubulin and increase in the 
expression of heat shock proteins (HSP) and poly(ADP-
ribose) polymerase (PARP);(10,11,12,13) (iii) axonal degen-
eration;(14) (iv) reduction in the Schwann cells to support 
axons, through decrease in the provision of cytoskeletal 
support, trophic factors or ribosome transfer that allows 
intra-axonal mRNA translation within distal axons;(15) 
(v) demyelination, which occurs in more severe cases 
of diabetic neuropathy;(16,17,18) (vi) reduction in the blood 
flow in the DRG(19) (Fig. 1).

The exact mechanism that promotes alterations in 
the peripheral nervous system and, consequently, neu-
ropathic pain in diabetic patients is not fully elucidated. 
Nonetheless, several evidences showed that hypergly-
cemia and dyslipidemia induce pathological changes 
in neurons, glia, and vascular cells that culminate in 
nerve dysfunction and neuropathy.(4) Hyperglycemia 
increases glycolysis, polyol, advanced glycation end 
products, protein kinase C, and hexosamine pathways 
in Schwann cells, DRG neurons and axons.(16,17,18,20) 
These metabolic changes result in increased reactive 
oxygen species (ROS) formation and release of pro-
inflammatory mediators. In parallel, the dyslipidemia 
observed in diabetic patients also induced a rise in ROS 
production and systemic and local inflammation.(21,22)
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In diabetes, the overproduction of ROS induces ac-
tivation of PARP-1 with a concomitant decrease in ATP 
formation.(23) Altogether, high levels of ROS and loss of 
ATP production cause mitochondrial failure and meta-
bolic and oxidative damage in Schwann cells and DRG 
neurons.(24,25) The increase in ROS formation, dysfunc-
tional mitochondria, and microvascular insufficiency 
result in axonal degeneration in the peripheral nervous 
system.(26,27,28,29) In addition, the oxidative damage in-
duces hyperexcitability in the axons and DRG neurons, 
causing neuropathic pain.(30)

Several pre-clinical and clinical studies showed up-
regulation of pathways involved in inflammation in 
peripheral nerves.(31,32,33,34) Furthermore, numerous ex-
perimental models of diabetic neuropathy showed an 
inflammatory response, characterized by infiltration 
of macrophages and T cells and increased levels of pro-
inflammatory cytokines, in the sciatic nerve and DRG.
(35,36,37,38) The inflammatory response was accompanied by 
loss of myelinated and unmyelinated nerve fibers and ax-
onal damage in diabetic animals with neuropathy.(39) The 
presence of inflammation biomarkers was also associ-
ated with onset and progression of neuropathy in diabetic 
patients.(40,41) Moreover, diabetes-induced inflammation 
altered mitochondrial bioenergetics in DRG neurons(42,43) 
and HSP content in sensory neurons.(44,45) Besides, the 
systemic low-grade inflammation has been implicated in 
neuropathic pain observed in diabetic patients, since some 
circulating inflammatory mediators was positive related 
to the severity of neuropathic pain in a subgroup of pa-
tients with distal symmetrical polyneuropathy.(46)

Diabetes and gut microbiota

The human gut microbiota contains up to 100 tril-
lion of microbes, including commensal, symbiotic, and 
pathogenic bacteria, as well as archaea, fungi, and vi-

ruses.(47,48) Gut microbiota has various physiological 
functions in the host, including strengthening epithelial-
intestinal barrier integrity,(49) maintenance of energy ho-
meostasis,(50) protection against pathogens,(51) and regu-
lation of host immunity.(52)

Diet, early-life microbiota exposure, antibiotic ther-
apy, changing hygiene status, pollution, socioeconomic 
status, and other environmental factors can directly in-
fluence the composition of gut microbiota and its meta-
bolic products, making it unique to each individua.(53,54) 
Furthermore, patients with some pathologic conditions, 
for instance inflammatory diseases, infections, neu-
rodegenerative diseases, and metabolic diseases, pre-
sented an imbalance in the microbes’ composition into 
the gut with the predominance of pathogenic bacteria, 
known as dysbiosis.(55,56)

In early stages of life, the extensive exposure to an-
tibiotics may lead to dysbiosis, resulting in underweight 
or overweight.(57,58,59) Moreover, the large consumption of 
antibiotics is usually been related to the development of 
metabolic disorders in later stages of life.(60) In addition, 
the intake of sweeteners, as sugar substitute, also has 
considerable impact over microbiota population, induc-
ing glucose intolerance.(61,62) These observations suggest 
that an imbalance in the composition of the gut micro-
biota may be related to the development of metabolic 
diseases. In fact, the composition of gut microbiota can 
alter the immune response of non-obese diabetic (NOD) 
mice, a classical model of autoimmune diabetes. Germ-
free (GF) NOD mice showed an acceleration in the in-
sulitis in parallel to a rise in the Th1 and Th17 cells in 
the mesenteric and pancreatic lymph nodes,(63) however, 
the incidence of diabetes was not modified.(63,64) Fur-
thermore, the administration of probiotics in NOD mice 
decreased the incidence of diabetes, through reduction 
of insulitis and gut permeability and modulation of cy-

Fig. 1: alterations observed in the peripheral nervous system in diabetic neuropathy. In the dorsal root ganglion (DRG), localization of the cell bod-
ies of sensory neurons, diabetes induced alterations in the key plasticity molecules, including reduction in growth-associated protein 43 (GAP43) 
and β-tubulin in parallel with an increase in the heat shock proteins (HSP) and poly(ADP-ribose) polymerase (PARP) expression. Furthermore, 
diabetics showed loss of neurofilament polymer, decrease in the Schwann cells-axon support, axonal degeneration, and ischemia in the sensory 
nerves, in addition to a demyelination in more severe cases of diabetic neuropathy. Altogether, these alterations evoked pain in diabetic patients.
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tokine profile, Treg cells and T helper cell polarization.
(65,66,67) These data indicate that gut microbiota is impor-
tant to the development of diabetes.

It is well known that diabetic patients showed dys-
biosis.(68,69) Although the composition of gut microbiota 
is diverse among diabetic patients, the relationship be-
tween Firmicutes and Bacteroidetes is unbalanced in 
these patients.(70,71,72) In addition, patients with type 1 
diabetes presented a clear depletion of species like Pre-
votella copri and Bifidobacterium longum, probiotic 
bacteria, and enrichment of families like Ruminococ-
caceae, Clostridiaceae, Clostridiales, and Oscillibacter, 
bacteria associated with infection and inflammation.(73)

The maintenance of homeostasis in gut environment 
is important not only to slow-down diabetes develop-
ment but it is also central in the control of its compli-
cations.(74) Dysbiosis in diabetic patients and animals 
lead to an increase in the intestinal permeability(75,76) in 
parallel to a rise in the bacterial content to the blood-
stream, as lipopolysaccharide (LPS).(68,77) Interestingly, 
the supplementation of diabetic mice with a microbial 
anti-inflammatory molecule, which is a metabolite of a 
commensal bacteria Faecalibacterium prausnitzii, im-
proved the intestinal barrier permeability and reduced 
circulating levels of LPS.(78)

In diabetic patients, the gut leakiness is accompanied 
by a low-grade inflammation, with increased levels of IL-
1β, IL-6, and TNF-α in the blood.(79) Furthermore, type 1 
and type 2 diabetic patients as well as NOD mice showed 
a reduction in the abundance of butyrate-producing bac-
teria.(80,81) Butyrate is a short-chain fatty acid (SCFA) that 
induce mucin production, regulating the permeability of 
the intestinal barrier, and reduce translocation of bacte-
ria and their products, oxidative stress, and inflamma-
tion.(82) The reduction of butyrate-forming bacteria, with 
consequent inadequate butyrate secretion, aggravates the 
pathogenesis of diabetes,(83) through increase of inflam-
mation and oxidative stress. Treatment with butyrate 
decreased ROS production and the homeostatic levels of 
inflammatory markers in diabetic mice.(84)

Remarkably, treatment with probiotics is one of the 
most used strategies to modulate intestinal microbiota and 
their used can prevent diabetes establishment and is effec-
tive as adjuvant in insulin resistance therapies.(85,86,87,65,66,67) 
According to Food and Agriculture Organization (FAO) 
and World Health Organization (WHO), probiotics are de-
fined as live micro-organisms which when administered 
in adequate amounts confer a health benefit on the host.
(88) Furthermore, treatment of diabetic rats with probiotics 
slow down the progression of diabetes in clear association 
with a decrease in the plasma levels of LPS.(89) Besides, 
the treatment of diabetic animals with probiotics contain-
ing the Lactobacillus rhamnosus NCDC17 improved the 
insulin resistance, in parallel to a reduction in IL-6 and 
TNF in the epididymal fat.(90) Although the use of adju-
vant therapy with probiotics seems to be interesting to 
treat some comorbidities of diabetes related to dysbio-
sis, some effects of them are controversy in diabetic pa-
tients. In general, the treatment with probiotics is useful 
to control insulin resistance and improved the intestinal 
barrier permeability in type 2 diabetic patients, however, 

it is ineffective in reducing systemic inflammation. Fur-
thermore, the use of probiotics to reduce the glycemia and 
serum insulin levels in these patients is very controversy. 
Although the studies with type 1 diabetic patients are still 
scarce, it was observed that treatment with probiotics re-
duced glycemia and systemic inflammatory markers as 
compared to placebo (Table).

Gut microbiota and neuropathic pain

The gut microbiota plays a role in the maintenance 
of nervous system function, through immunological, 
hormonal, and neuronal signals.(103,104) Several studies 
showed the participation of gut microbiota in the devel-
opment of pain, since GF mice exhibited visceral hyper-
sensitivity that was controlled by postnatal colonization 
with conventional microbiota.(105,106,107,108) In addition, the 
transference of fecal microbiota from irritable bowel 
syndrome patients to GF mice increased visceral hyper-
sensitivity.(109) Likewise, probiotic treatment improves 
stress- and inflammation-induced visceral hypersensi-
tivity.(110,111,112,113) In addition, gut dysbiosis has been de-
scribed in patients with irritable bowel syndrome who 
present abdominal pain.(114,115,116,117)

Furthermore, the gut microbiota is also involved in 
the pathophysiology of neuropathic pain. For instance, 
some chemotherapy drugs, including paclitaxel and ox-
aliplatin, cause chemotherapy-induced peripheral pain 
(CIPN) during anti-cancer treatment,(118) and affects up 
to 48% of patients undergoing chemotherapy.(119) Sev-
eral chemotherapy drugs that induced neuropathic pain 
change the composition of gut microbiota, inducing dys-
biosis.(120) Likewise, oxaliplatin-induced mechanical hy-
peralgesia is decreased in GF mice or in animals treated 
with antibiotics,(121) suggesting that CIPN depends on 
dysbiosis. Another case of gut microbiota participating 
in neuropathic pain is observed in a murine model of 
chronic constriction injury (CCI).(104) In this model, the 
oral treatment with antibiotics resulted in gut microbiota 
changes and decreased the development of CCI-induced 
neuropathic pain, through a skewing from a pro-inflam-
matory to an anti-inflammatory immune profile,(122) 
indicating that dysbiosis is an important factor in the 
development of CCI-induced neuropathic pain. In ad-
dition, the transplantation of fecal microbiota from rats 
with spared nerve injury to pseudo-GF mice increased 
mechanical stimulus-induced pain,(123) suggesting that 
gut microbiota possess a significant role in the spared 
nerve injury-induced neuropathic pain.

Since the development of neuropathic pain can be 
related to changes in the gut microbiota and diabetic 
patients presented dysbiosis in association with neu-
ropathy, a central question arises: can dysbiosis and the 
consequent pro-inflammatory status be critical for the 
development of neuropathic pain in diabetes?

Dysbiosis is important to the establishment and 
aggravation of diabetic neuropathy

In diabetes, dysbiosis occurs in parallel to a break in 
the epithelial-intestinal barrier and translocation of bacte-
rial contents to the bloodstream.(68) In addition, the hyper-
glycemia observed in diabetic patients is followed by an 
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increase in the pro-inflammatory cytokines IL-1β, IL-6, 
and TNF-α, marking low-grade inflammation.(79) Further-
more, the reduction in the butyrate-producing bacteria in 
the gut microbiota of diabetic patients is related to the 
high permeability of the epithelial-intestinal barrier.(124)

Interestingly, the incubation of Schwann cells in a 
high glucose environment induced an increase in the 
apoptosis of those cells in association with overexpres-
sion of TLR4, the receptor activated by LPS, and a rise 
in the TNF-α production.(125) In addition, the expression 
of TLR4 mRNA and the protein levels TNF-α were in-
creased in the spinal cord of streptozotocin-induced 
diabetes. These raises in TLR4 and TNF-α were posi-
tively correlated with mechanical/thermal hypersen-
sitivity in diabetic rats.(126) Reinforcing the hypothesis 
that the increase in TLR4 expression in the Schwann 
cells and spinal cord is important to diabetic neuropa-
thy, the inhibition of TLR4 signaling in the spinal cord 
attenuated mechanical hyperalgesia in diabetic rats 
with neuropathy and downregulated the local levels of 
TNF-α.(127) Furthermore, the continuous delivery of IL-
10 in the nerve fibers of DRG blocked the nociceptive 
response in diabetic animals, in parallel to a decrease 
in the expression of TLR4.(128)

TNF-α is produced primarily by endoneurial mac-
rophages and Schwann cells,(129) and is increased at the 
injury site after CCI of the sciatic nerve in rats.(130,131) 
The administration of TNF-α inhibitor or antibodies to 
TNF-α reduced nerve injury- and CCI-induced hyper-
sensitivity, respectively.(132,133) Furthermore, the IL1R1/
TNFR1 double knock-out mice showed a decrease in 
the nociceptive sensitivity after nerve injury compared 
to wild-type littermates.(134) In addition, direct injection 
of TNF-α into the sciatic nerve induced painful neurop-
athy.(135,136) It is well known that patients with diabetic 
peripheral neuropathy showed elevated levels of both 
TNF-α and soluble TNF-α receptors in their serum.
(137,138,139) The inhibition of TNF-α, using a recombinant 
human TNF-α receptor-antibody fusion protein, recov-
ery lower nerve conduction velocity, demyelination of 
nerve fibers, disorganization of lamellar and axonal 
structures, and decreased expression of myelin basic 
protein in the nerve tissue of diabetic rats that developed 
peripheral neuropathy.(140) Furthermore, the blockage of 
TNF-α signaling using either TNF-α knockout mice or 
anti-TNF-α monoclonal antibody improved neuropathy 
in diabetic mice.(141)

Sodium butyrate has anti-inflammatory and neu-
roprotective effects in spinal cord injury, including the 
improvement of motor function and the reduction of 
neutrophils accumulation and pro-inflammatory cyto-
kine expression.(142) Furthermore, sodium butyrate and 
sodium propionate improved nitroglycerin-induced pain 
attacks, reducing the damage in the trigeminal nerve nu-
cleus and the expression of pro-inflammatory mediators.
(143) Likewise, the pain and discomfort in healthy human 
were reduced after intraluminal administration of butyr-
ate into the distal colon.(144) Altogether, these evidences 
suggested that the decrease in the butyrate-producing 
bacteria in diabetic patients can be related to the devel-
opment of neuropathic pain.

The composition of the gut microbiota can change 
during the development of diabetes. Interestingly, the di-
versity of gut microbiota from patients with type 2 dia-
betes with gastrointestinal autonomic neuropathy was 
modified compared to type 2 diabetic patients without 
this condition. Diabetic patients with neuropathy pre-
sented an increase in the relative abundance of patho-
genic bacteria of phyla Proteobacteria,(145) a LPS-produc-
ing bacteria phylum.(146) Jinmaitong, a natural compound 
rich in flavonoid and its glycosides, triterpenoids, and 
phenolic acids,(147) improves nerve conduction velocity, 
pain, and temperature sensation in diabetic rats with 
neuropathy,(148,149) as well as markedly ameliorated clini-
cal symptoms of pain in the extremities of diabetic pa-
tients with peripheral neuropathy.(150) In parallel, Jinmai-
tong enriched nine species of gut microbiota of diabetic 
rats with neuropathy, avoiding dysbiosis.(151)

Furthermore, the flavonoid quercetin reversed me-
chanical pain and intraepidermal nerve fiber density in 
streptozotocin-induced diabetic rats, in clear associa-
tion with the reduction of pathogenic bacteria species 
and the enrichment of two prebiotic species.(152) These 
data suggest that both Jinmaitong and quercetin improve 
neuropathy in diabetic subjects by modulating pheno-
type-associated gut microbiota. In agreement with the 
proposition that dysbiosis can be important to the devel-
opment of neuropathy in diabetes, a case report showed 
that fecal microbiota transplantation decrease limb pain 
and paresthesia in a diabetic patient with neuropathy that 
did not use any painkillers or drugs for alleviating the 
pain. In addition, this patient showed an improvement 
of motor conduction velocity in tibial nerve, attested by 
electromyogram, and a reduction in the visual analogue 
scale pain score from severe pain to mild pain after the 
treatment with fecal microbiota transplantation.(153)

In conclusion

In conclusion, we postulate that the increase in the 
richness of pathogenic bacteria and a reduction in the 
abundance of butyrate-producing bacteria in the gut 
microbiota of diabetic patients may be responsible for 
the onset of peripheral neuropathy. The dysbiosis in 
diabetes triggers a break in the intestinal barrier with 
consequent increase in the bacterial products, such as 
LPS, into the bloodstream. Possibly, the activation of 
TLR4 in the Schwann cells and spinal cord of diabet-
ics induces an overproduction of TNF-α, resulting in 
the increase of pain (Fig. 2). In this respect, new thera-
peutic strategies founded on probiotics or bacterial me-
tabolites, as butyrate, seem to be potentially practical 
approaches for adjuvant treatment of neuropathy in dia-
betic patients.
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