
Frontiers in Immunology | www.frontiersin.

Edited by:
Mark C. Siracusa,

Rutgers Biomedical and Health
Sciences, United States

Reviewed by:
Meera G. Nair,

University of California, Riverside,
United States

Elia Tait Wojno,
Cornell University, United States

*Correspondence:
Alisha Chetty

alisha.chetty@uct.ac.za
Laura Layland

laura.layland@sbcomputing.de
William Horsnell

wghorsnell@gmail.com

Specialty section:
This article was submitted to

Microbial Immunology,
a section of the journal

Frontiers in Immunology

Received: 29 June 2020
Accepted: 27 October 2020

Published: 23 November 2020

Citation:
Chetty A, Omondi MA, Butters C,

Smith KA, Katawa G, Ritter M,
Layland L and Horsnell W (2020)
Impact of Helminth Infections on
Female Reproductive Health and

Associated Diseases.
Front. Immunol. 11:577516.

doi: 10.3389/fimmu.2020.577516

REVIEW
published: 23 November 2020

doi: 10.3389/fimmu.2020.577516
Impact of Helminth Infections on
Female Reproductive Health and
Associated Diseases
Alisha Chetty1*, Millicent A. Omondi1, Claire Butters1, Katherine Ann Smith1,2,
Gnatoulma Katawa3, Manuel Ritter4, Laura Layland4* and William Horsnell 1,5*

1 Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town,
South Africa, 2 School of Biosciences, Cardiff University, Cardiff, United Kingdom, 3 Ecole Supérieure des Techniques
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A growing body of knowledge exists on the influence of helminth infections on allergies
and unrelated infections in the lung and gastrointestinal (GI) mucosa. However, the
bystander effects of helminth infections on the female genital mucosa and reproductive
health is understudied but important considering the high prevalence of helminth
exposure and sexually transmitted infections in low- and middle-income countries
(LMICs). In this review, we explore current knowledge about the direct and systemic
effects of helminth infections on unrelated diseases. We summarize host disease-
controlling immunity of important sexually transmitted infections and introduce the
limited knowledge of how helminths infections directly cause pathology to female
reproductive tract (FRT), alter susceptibility to sexually transmitted infections and
reproduction. We also review work by others on type 2 immunity in the FRT and
hypothesize how these insights may guide future work to help understand how
helminths alter FRT health.
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BURDEN OF DISEASE

Helminth infections are widespread and are characterized by sophisticated host immune
modulation and evasion. Helminth infections are a global health concern, with more than 1.7
billion affected worldwide, particularly in tropical and subtropical regions (1). A feature of helminth
infections are the parasites’ ability to alter immunity and susceptibility to unrelated diseases (2–7).
Of particular interest is the potential impact of helminth immune-regulation on susceptibility to
sexually transmitted infections (STIs), given their high incidence in developing regions and
detrimental impact on public health (8). For example, Ivan et al. (9) studied a cohort of 328
Rwandan pregnant women on anti-retroviral therapy, 38% of whom were stool positive for
helminth infections (9). Mkhize-Kwitshana et al. (10) reported 66% of HIV+ study participants
from an helminth endemic region of South Africa, were helminth egg positive and/or helminth-
specific IgE seropositive (10). Likewise, Abossie and Petros (11) reported 68% of study participants
in Ethiopia were co-infected with helminths and HIV, 35% were women (11). In this review we
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address how the geographical overlap between helminth
exposure and STIs can result in parasite-induced changes to
female reproductive health (12–14).
HELMINTH IMMUNITY

Host immunity to helminths has been studied in depth using
mouse models reflective of human infection and immunity (15–
18). Typically, helminths induce a type 2-skewed immune
response, associated with the production of the canonical
cytokines interleukin (IL)-4, IL-5, and IL-13 (19–26). These
cytokines amplify alternatively activated macrophages (AAMs;
M2) (27–29), eosinophilia (30–32), smooth muscle contraction
and goblet cell hyperplasia; cellular and physiological responses
that underlie the ‘weep and sweep’ worm expulsion from the
intestine (21, 23, 24, 26, 33, 34). Consistent with in vivo studies,
epidemiological studies also report type 2-biased immune
responses in humans infected with roundworm Ascaris
lumbricoides (35–37), whipworm Trichuris trichiura (36–38),
and hookworm Necator americanus (39). Furthermore,
experimental infections of participants with hookworm has
been shown to result in strong mucosal and systemic type 2
cytokine responses (40). Helminth infections also elicit
regulatory immune responses, characterized by transforming
growth factor-b (TGF-b), IL-10 and expansion of FoxP3-
expressing regulatory T cells, involved in immune polarization
and controlling inflammation (2, 41–48).

Antagonism between type 1 and type 2 immunity is central to
our understanding of the T helper (Th) 1 cells (Th1)- T helper 2
cells (Th2) immune paradigm: Mosmann et al., first described
Th1 and Th2 CD4+ T cell differentiation and cytokine responses
(49, 50), and Fernandez-Botran et al. (51) first demonstrated Th
subtype regulation of each other (51). Furthermore, Reese et al.
(52) demonstrated that IL-4 and STAT6 signaling can
competitively inhibit interferon (IFN)-g production (52). This
paradigm has been expanded beyond T cell responses, as what is
known as type 1 and type 2 immunity and regulation. For
example, AAMs are a key feature of helminth infection
induced by IL-4, -13 and -10. AAMs synthesize high levels of
the enzyme arginase-1, which inhibits nitric oxide (NO)
production (53) . In addit ion, AAMs downregulate
inflammatory Th1 immune responses mediated by TGF-b (54),
which induce the development of regulatory T cells (41).
Considering the opposing responses of type 1 and type 2
immunity, it is hypothesized that canonical type 2 immunity
induced by helminths, can influence Th1- and Th17-mediated
immune protection against STIs in the female reproductive
tract (FRT).
HELMINTH-INDUCED IMMUNE
MODULATION

Co-evolution of parasitic worms with the host is thought to have
resulted in their ability to evade host’s immunity through
Frontiers in Immunology | www.frontiersin.org 2
highly sophisticated responses. Helminths actively promote the
expansion of regulatory T cell populations, promoting helminth
persistence as well as host survival following infection (41, 44, 45,
55, 56). This can be achieved by the helminths release of
excretory/secretory products, which effectively target and
inhibit specific components of anti-parasite immune
mechanisms or induce favorable immune regulation (43).
For example, Heligmosomoides polygyrus excretory/secretory
products (HES) contain a TGF-b mimic, the importance
of this is supported by blockade of HES TGF-b mimic in vivo
resulting in parasite expulsion in susceptible C57BL/6 mice (41).
Bancroft et al. (57) recently identified the immunomodulatory
molecule p43, a major secreted protein by murine whipworm
T. muris, which binds to and inhibits IL-13 activity (57).
Helminth-induced immune modulation benefits parasite
survival by supporting asymptomatic or chronic infections.
This has been demonstrated by individuals with asymptomatic
lymphatic filariasis who display regulatory T and B cell
responses (58), as well as skewed Th2 and regulatory T cell
cytokine profiles i.e. favorable IL-4 and TGF-b, over IFN-g and
IL-17 production (46, 59–61). Alternatively, symptomatic
patients had dominant pro-inflammatory responses, i.e.
Th1, Th17 inflammatory responses and uncontrolled Th2
responses, resulting in immune-mediated damage of colonized
tissue leading to severe symptoms like dermatitis in
hyperreactive onchocerciasis or elephantiasis in lymphatic
filariasis (62, 63).

Importantly, helminth-induced immune modulation has
bystander effects on unrelated conditions such as allergies,
autoimmune and inflammatory disorders, and unrelated
infections. McSorley et al. (2) reported the suppression of type
2 allergic lung inflammation from treatment with HES (2),
associated with TGF-b-like activity (41). Furthermore,
Johnston et al. (42) demonstrated the suppression of skin
allograft rejection by treatment with a TGF-b mimic isolated
from HES (42). In support, Li et al. (64) demonstrated
suppression of allograft rejection with H. polygyrus-induced
Th2 and regulatory T cell bystander immunity (64).
Recombinant hookworm anti-inflammatory proteins have been
shown to reduce inflammation during experimental colitis (65)
and asthma (66), associated with the induction of regulatory T
cells. Layland et al. (67) demonstrated the suppression of allergic
airway inflammation mediated by S. mansoni-induced regulatory
T cells in vivo (67). Furthermore, Straubinger et al. (68) showed
reduced susceptibility to ovalbumin (OVA)-induced allergic
airway inflammation in mice born to mothers infected with S.
mansoni during pregnancy. Osbourn et al. (69) described the
ability of H. polygyrus Alarmin Release Inhibitor (HpARI)
secreted protein to bind to and suppress IL-33 activity,
reducing ILC2 and eosinophil responses, and promoting
parasite survival (69). Interestingly, Zaiss et al. (70)
demonstrated that infection with GI H. polygyrus resulted in
changes to host intestinal microbiota and increased microbial-
derived short chain fatty acids, which contributed to helminth-
induced suppression of allergic lung inflammation (70).
Conversely, Pinelli et al. (71) reported exacerbated ova-induced
November 2020 | Volume 11 | Article 577516
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allergic airway inflammation in mice infected with Toxocara
canis (71). In humans, Jõgi et al. (5) reported increased risk of
allergy manifestations in Norwegian children with anti-T. canis
IgG4 seropositivity (5).

In addition to modulation of allergies and autoimmunity,
Darby et al. (72) recently demonstrated how pre-conception
maternal helminth exposure influences offspring immunity to
helminth infection. Prior murine hookworm, Nippostrongylus
brasiliensis infection imprinted Th2 immunity in female mice,
which was transferred via breast milk and conferred protection
against the parasite in their offspring. Protection was associated
with maternally-derived Th2 primed CD4+ T cells (72).
Helminth-induced bystander immunity has also been
implicated in altered vaccine responses (73–77) and immunity
to unrelated infections. This highlights the potential significance
of a transgenerational axis of influence on immunity by
helminth infections.

Helminth-induced bystander immunity has also been
implicated in altered vaccine responses and immunity to
unrelated infections (73–77). For example, mouse infection
with T. spiralis and H. polygyrus can impair immunity to
murine norovirus (MNV) in the co-colonized intestine,
mediated through impaired type 1 responses by type 2
activation of macrophages (78). Changes to lymphoid lineage
function are demonstrated by Rolot et al. (7), who show
helminth-mediated expansion of virtual memory CD8+ T cells
which enhance control of subsequent murine g-HV respiratory
infection (7). McFarlane et al. (79) showed that infection with
murine nematode H. polygyrus, altered gut microbiota, which
systemically increased proinflammatory type I IFN, and
protected against subsequent respiratory viral infection (79).
Additionally, in vivo infection with T. spiralis reduced
pathological inflammation of the airways following influenza A
virus infection (80). Helminth infection also impacts on control
of bacterial infections. N. brasiliensis infections have been shown
to impair natural and vaccine elicited T cell and B cell responses
against Salmonella typhimurium infection in vivo (4). Protection
against bacterial infections has also been reported; with reduced
pulmonary mycobacterial burdens during concurrent nematode
infection in mice, that required helminth-modified alveolar
macrophage responses (3). Human studies have also identified
helminth-associated changes to myeloid responses that relate to
protection against MTb. For example, a negative association
between hookworm infection and latent Mtb infection in
Nepalese immigrants to the UK, was associated with elevated
eosinophil numbers (6). Coincidence of filarial infection has also
been associated with moderate protective immunity during
latent Mtb infection (62, 81) and in a recent study, S.
stercoralis infection in latent tuberculosis patients, was
associated with down-regulated chemokine responses (82).
Associations between soil-transmitted helminth (STH)
infection and higher risk of concurrent bacterial and protozoal
infections, and lower risk of concurrent viral infections in
children and adults have also been reported (83). Recent
studies have also demonstrated that prior nematode infection
can confer resistance to subsequent infection by a different
Frontiers in Immunology | www.frontiersin.org 3
nematode species (84, 85). Together this existing body of work
shows that helminths infections can have diverse influences on
unrelated disease at sites distal to the anatomical location of the
helminth in the host.
HELMINTHS, FEMALE REPRODUCTIVE
TRACT, AND SUSCEPTIBILITY TO STIS

Immune imprinting on helminth infected hosts is therefore a
feature of tissues not colonized by the parasite (86), including the
FRT (87). The impact of helminth infection on immunity in the
FRT and subsequent immune responses to sexually transmitted
infections is not well studied, but it is apparent that significant
effects on disease control in the FRT are likely.

Immune Control of STIs
The vaginal mucosa, the entry point for most STIs, is a unique
and dynamic mucosal site under the cyclic influence of female
sex hormones, and is made up of stratified squamous epithelial,
lined by mucous, commensal bacteria and other anti-microbial
defenses (88–91). In addition, the vaginal submucosa is surveyed
by resident immune cells such as dendritic cells (DCs), which
mount the response against invading pathogens (92–95). Host
immune control of STIs is strongly correlated with the pattern of
cytokine production in the host. Differential activation of Th1
cells, producing IL-2 and IFN-g, mediate cellular immune
responses, whereas Th2-like cells producing IL-4, IL-5, and IL-
13, facilitate humoral immunity (96). Persistence of STIs can also
be influenced by the production of IL-10 (97) and activation of
regulatory T cells (98). While many STIs are initially
asymptomatic, lack of treatment can result in an increased risk
of acquiring another STI, infertility, organ damage, cancer,
or death.

The most common sexually transmitted viral infections
(STVIs) of the FRT are Herpes Simplex Virus type II (HSV-2),
Human Papillomavirus (HPV) and Human Immunodeficiency
Virus (HIV). Control of STVIs is typically associated with type 1
immune responses (99, 100). With the exception of HIV, killing
of virally infected cells requires Th1 polarization of CD4+ T cells
(101), production of type 1 cytokines such as IFN-gamma
(IFN-g) (102, 103) and cytotoxic T cell responses (104–106)
(Figure 1). Th1 immunity is also critical for early control of HIV,
however, this response is insufficient to resolve infection (110),
due to the virus’ ability to rapidly mutate and evade CD8+ T cell
responses (107). Pre-existing inflammation and increased
presence of CD4+ target T cells in the FRT are major risk
factors for increased susceptibility to HIV infection (111).
Elimination of CD4+ T cells by HIV is a hallmark of acquired
immune deficiency syndrome (AIDS), resulting in increased
susceptibility to opportunistic infections (112) and viral-
associated cancers (113).

Similarly to STVIs, bacterial infections of the FRT require a
Th1 and/or Th17 response to clear the infection (114, 115).
Chlamydia trachomatis is a common bacterial STI worldwide,
with women carrying the burden of this disease (116). IFN-g
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production by Th1 CD4+ T cells have been shown to be
important for the resolution of C. trachomatis infections (117,
118). Cytotoxic T lymphocyte (CTL) responses are not required
for clearance of this infection and instead have been shown to
Frontiers in Immunology | www.frontiersin.org 4
promote tissue pathology in the upper genital tract (108, 109).
Another common bacterial STI is Neisseria gonorroeae, the
causative agent of gonorrhea. In a murine model of infection,
Th17 immune responses were shown to be favorable for
FIGURE 1 | The dichotomy of helminth-induced Th2/type 2 and regulatory immunity, and protective responses against sexually transmitted infections (STIs) in the
female reproductive tract (FRT): Helminth infections (e.g. A lumbricodes, T. trichiura, Schistome eggs) commonly induce a potent Th2/type 2 immune response
characterized by type 2 cytokines IL-4, IL-9, and IL-13, which induce a potent type 2 effector cells and functions (e.g. eosinophils, alternatively activated
macrophages(AAMs), “weep and sweep” responses) (20, 21, 35, 36, 38–40). Prevalent viral [Herpes Simplex Virus type II (HSV-2), Human Immunodeficiency Virus
(HIV), and Human Papillomavirus (HPV)] and bacterial (C. tranchomatis and N. gonorrhoeae) vaginal infection are a serious health concern for women in low- and
middle-income countries (LMICs). Protective immunity against these pathogens can be classified a Th1/type 1 and Th17 responses i.e. cytotoxic killing of infected
cells or phagocytosis of extracellular pathogens (101–107–109). How helminth exposure and immune modulation may influence susceptibility and control of STIs, is
not fully understood. Created with BioRender.com.
November 2020 | Volume 11 | Article 577516
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N. gonorrhoeae clearance (114). Considering the established
counterbalance between Th2/Treg immunity and Th1/Th17
responses (50, 52, 119, 120), it is important to understand the
consequence of helminth-induced immunity on susceptibility to
co-endemic STIs (Figure 1).

Genital Schistosomiasis
Schistosoma haematobium infections have profound effects on
female genital health. S. haematobium larvae (cercariae) emerge
from aquatic snails and infect the human host through skin
penetration. The larvae develop into schistosomula and migrate
through the vasculature. Eventually, these mature into adult
parasites, pair up and reside for years in the pelvic venous
plexus. S. haematobium eggs produced here lodge in the
urinary bladder wall and FRT, causing urogenital schistosomiasis
(121). In chronically infected individuals, vaginal pathology here is
acute with reported itching, pain, hematuria and ulceration in S.
haematobium-infected individuals (122–125). Pathology is driven
by eggs traversing host tissue and the formation of calcified
granulomas in the female urinary and reproductive tract. The
World Health Organization (WHO) International Agency for
Research on Cancer (IARC) declared S. haematobium a group 1
carcinogen, as the correlation between urogenital schistosomiasis
and the occurrence of bladder cancer has been extensively
proven (126).

In the mouse model of urinary schistosomiasis, injection of
eggs into the urinary bladder results in formation of a granuloma
around the eggs made up of neutrophils, eosinophils and
macrophages, as well as the onset of fibrosis in the surrounding
bladder tissue (127). Furthermore, in this model S. haematobium
eggs induced a strong type-2 response characterized by
eosinophilia and elevated IL-4, IL-13 and IL-5 in the tissue
surrounding the eggs. A compromised FRT epithelium is
associated with increased HIV risk (128). The bystander tissue
damage resulting from S. haematobium egg-induced
inflammation (129, 130), increased immune activation (131) and
lesions in the FRT is reasonably hypothesized to increase host risk
of HIV infection, by providing routes for viral entry and increased
number of target cells at the site of infection (132) (Figure 2).
Furthermore, the type 2 response induced during S. haematobium
infection (127) may dampen type 1 responses required for
protection against viral pathogens such as HIV. These
hypotheses are supported by clinical findings, where women
infected with S. haematobium may have up to a 3-fold increased
risk of acquiring HIV (133–135).

Following treatment with the anti-helminthic drug,
praziquantel, the immune response in treated individuals shifts
from a type 2 and regulatory T cell immune response (131, 136,
137) to a pro-inflammatory state, with elevated levels of egg
antigen-specific TNF-a, IL-6, IFN-g, IL-12p70, IL-8 and Th17
cytokines (IL-17, IL-21, and IL-23) post-treatment (138). If this
inflammatory state results in reduced susceptibility to HIV
infection is yet to be explored.

Filariasis
Filarial-driven immune modulation (i.e. induction of Th2,
regulatory immune responses and suppression of inflammatory/
Frontiers in Immunology | www.frontiersin.org 5
Th1 responses) may increase susceptibility to viral and bacterial
infections in the FRT, as Th1/inflammatory responses are
important for the defense against these pathogens (139, 140).
This is supported by identification of an association between
infection with the filarial nematode Wuchereria bancrofti and
increased risk of HIV infection (141). This increased HIV
susceptibility may be associated with systemic increase in
proportions of CD4+ T cells expressing HLA-DR and HLA-DR/
CD38, as well as effector memory CD4+ T cells in lymphatic
filariasis patients, i.e. an increase in HIV target cells in these
patients (142). This supports in vitro findings demonstrating
increased HIV infection of PBMC from lymphatic filariasis
patients in comparison to uninfected individuals (12). Increased
inflammation has also been reported in lymphatic filariasis patients
(62, 143), with systemic IL-17 and IFN-g elevated in response to
PBMC stimulation with filarial antigen in these individuals. With
chronic filarial infections, a type 2 immune signature, i.e. elevated
IL-4 and IL-5, is detected in antigen-stimulated host PBMCs (143,
144). In contrast to schistosomiasis, regulatory T cells were reduced
in lymphatic filariasis cases (62, 144) however type 1 responses
(IFN-g production) were suppressed in these patients (144). These
studies suggest that chronic filarial infections could alter
susceptibility to common FRT pathogens requiring type 1-
mediated immune control. Surprisingly, genital manifestations of
W. bancrofti infection have not been associated with any changes to
fertility or pathology in the FRT (145).

Soil-Transmitted Helminths
Unlike schistosomiasis that causes direct pathology to the FRT,
evidence has emerged of the potential systemic effect of
helminths at sites that are not colonized by these pathogens. In
a STH endemic region of Peru, Gravitt et al. (87) reported an
increased prevalence of HPV among older women (30–45 years
old) infected with STHs, which included T. trichiura, A.
lumbricoides, Ancylostoma duodenale and Strongyloides
stercoralis. Importantly, the life cycle of these helminths does
not involve any larval transit through, or egg deposition in the
FRT. The type 2 cytokine IL-4 was detected in cervicovaginal
lavages of these women and IL-4 levels correlated positively with
other cytokines involved in anti-helminth immunity; IL-25, IL-
21, IL-5, IL-10, IL-8, and IL-31 (87). The authors hypothesized
that the increased HPV prevalence among older women in STH-
endemic regions, is mediated by helminth-induced immune
regulation which may impair viral control, supported by a in
vivo studies which demonstrate IL-4-mediated impairment of
anti-viral immunity (52, 78, 146) (Figure 3). This study therefore
suggests a systemic skewing of the immune response towards a
type 2 phenotype detectable in the FRT impairing host ability to
control HPV via type 1-mediated mechanisms. In contrast,
murine hookworm N. brasiliensis antigen has been shown to
inhibit HPV-16 pseudovirion uptake by human cervical cell
lines. Furthermore, murine hookworm antigen exposure and in
vivo infection decreased expression of cell surface vimentin or
total vimentin expression in the cell line or the FRT, respectively
(152). Cell surface vimentin has previously been described as a
restriction factor that mediates internalization of HPV
pseudovirion particles (153). This suggests that helminth
November 2020 | Volume 11 | Article 577516

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chetty et al. Helminths and Female Reproductive Health
exposure may alter cervical epithelial susceptibility to HPV
infection. Further, N. brasiliensis L3 somatic antigen decreased
migration of cervical cancer cells in motility assays, suggesting a
possible downmodulation of cancer cell metastasis by this
helminth. Further studies are required to fully understand the
complex consequences of helminth infection on HPV infection
and pathogenesis.

HPV, Cancer, and Type 2 Immunity
Persistent HPV strains evade protective host immune responses,
which are the first steps to the development of high-grade
cervical lesions and cancer (154–156). Interestingly, type 1/type
2 antagonism can be manipulated by oncogenic HPV, to suppress
anti-viral responses, promote persistence and tumor development
(157). For example, Lepique et al. (147) described an association
between M2-like macrophages and the suppression of anti-tumor
responses and tumor progression during HPV-related cancer
(147). Here, they identified tumor-associated macrophages
(TAMs) as a dominate population in tumors, with high baseline
Arginase I and IL-10 expression, and low iNOS activity, when
stimulated with LPS/IFN-g. Additionally, Petrillo et al. (148)
reported a correlation between increased ratio of M2:M1
macrophages and poor responses to treatment and survival
(148). Regulatory cytokines IL-10, TGF-b and prostaglandin E2
(PGE2) produced by M2-like TAMs, promote the accumulation of
regulatory T cells, which are associated with viral persistence and
Frontiers in Immunology | www.frontiersin.org 6
tumor development (158–160). Production of type 2 cytokines
(e.g. IL-4, IL-13) by M2-like TAMs promotes Th2 polarization,
reducing Th1 and CTL responses (149, 161–164). Moreover, Xie
et al. (150) reported high levels of eosinophils in cervical cancer
lesions and demonstrated that thymic stromal lymphopoietin
(TSLP)-mediated eosinophil infiltration and activation promoted
proliferation of cancer cells in vitro (150). Considering the
significance of type1/type 2 imbalances during HPV persistence
and related cancer progression, we hypothesize that helminth-
induced type 2 immunity may impair anti-viral and anti-tumor
immune responses, resulting in the promotion of tumor
progression in the FRT (Figure 3).

Type 2 Immunity in the FRT
The role of type 2 immunity in modulating immune responses in
the FRT has been demonstrated by Oh et al. (165), where
induction of the type 2-associated ‘alarmin’ IL-33 in the genital
mucosa, increased susceptibility to the HSV-2 pathology in vivo
(165). The mediator of this effect was vaginal dysbiosis, which
promoted IL-33 and impaired recruitment of memory T cells
and reduced IFN-g production in the FRT. These mice also
demonstrated marked eosinophil accumulation and elevated IL-
5 in the FRT (165). Furthermore, administration of recombinant
IL-33 or protease-mediated induction of IL-33 in the vagina
resulted in heightened susceptibility to HSV-2 (165). Oh et al.
(166) elaborated on this model of IL-33-mediated type 2 immune
FIGURE 2 | Genital Schistosomiasis: In S. haematobium infected women, eggs can become lodged in the cervix, resulting in inflammation around the schistosome
eggs (granula) and bystanders tissue damage. Genital schistosomiasis is common and can impair vaginal immunity and increase Human Immunodeficiency Virus
(HIV) risk (129–133). Created with BioRender.com.
November 2020 | Volume 11 | Article 577516
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induction in the FRT, through administration of the serine
protease papain. Here, papain-induced IL-33 in the vagina lead
to the accumulation of vaginal eosinophils and production of
canonical type 2 cytokines IL-4, IL-5, and IL-13 in genital lymph
node T cells (166). Furthermore, elevated levels of type 2-
associated IgE and IgG1 were detected in vaginal washes of
papain-treated mice. Although elevated levels of IL-5 and
eosinophils were detected in the FRT, papain induction of type
2 immunity in the FRT was not dependent on eosinophil
recruitment, but rather on myeloid differentiation primary
response gene 88 (MyD88) signaling and PDL2+CD301b+

dendritic cells under the control of interferon regulatory factor
4 (IRF4) (166).

Conversely, Vicetti Miguel et al. (151) demonstrated the
protective role of type 2 immunity during in vivo C.
trachomatis infection. Chlamydia-induced damage of the upper
genital tract was prevented by IL-4 producing eosinophils, which
promotes proliferation of endometrial stromal cells and tissue
repair (151). Together, these studies demonstrate the significance
of type 2 immunity in the FRT during STI infections and
highlight potential differences in the role of type 2 responses at
different sites in the FRT.
Frontiers in Immunology | www.frontiersin.org 7
Helminths and Fecundity
The dichotomy of type 1: type 2 immune responses has been
studied during the stages of pregnancy and labor, with a type 2
bias contributing to immune tolerance and a successful
pregnancy (167). This would suggest that type 2-inducing
helminth infections may systemically influence pregnancy in
infected mothers in a positive manner. Interestingly, in vivo
studies have demonstrated that helminth infection can result in
pregnancy loss and failure of implantation of fertilized eggs
(168), as well as reduced fecundity in parasitized hosts (169).
Using a Schistosoma mansoni mouse model, Straubinger et al.
(68) demonstrated that infected female mice gave birth to pups
with lower birth weights during the Th2 phase of the immune
response, as opposed to uninfected mice (68). In humans, Kurtis
et al. (170) reported an association between maternal
schistosomiasis and increased levels of inflammatory cytokines
in mothers’, placental and cord blood (170). As mother-to-child
transmission of the schistosomes has not been reported in
humans, the authors hypothesized the inflammatory response
is likely due to helminth antigen movement across the placenta
(170, 171). Furthermore, McDonald et al. (171) measured
increased levels of pro-fibrotic proteins in the cord blood of
FIGURE 3 | Systemic influences of soil-transmitted helminths on uncolonized female reproductive tract (FRT): Prevalent soil-transmitted helminth (STH) infections,
which transit the lung and GIT, can systemically alter host immunity in biological compartments not directly colonized by the parasite. For example, STH exposure
was associated with increased HPV risk and a helminth-associated type 2 cytokine profile in vagina fluid of women in a STH endemic region (87). We hypothesize
that the induction of type 2 immunity in the FRT e.g. type 2 cytokines activating M2 macrophages, eosinophils an Th2 differentiation of CD4+ T cells, could impair
protective type 1 immune responses and increased susceptibility to viral STIs (52, 147–151). Created with BioRender.com.
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neonates born to S. japonicum-infected mothers (171). Clinical
trials by Ndibazza et al. (172) and Olveda et al. (173) reported
that treatment of pregnant women in endemic regions with anti-
Schistosome drug praziquantel, did not significantly alter birth
outcomes (172–174).

For maternal STH infections, Blackwell et al. (175) reported
an association between hookworm infection and delayed age of
first pregnancy and lower odds of successive pregnancies after
the initial pregnancy. The converse was observed with Ascaris
infection, which positively associated with conception at a
younger age and shortened intervals of subsequent pregnancies
after the first, among women younger than 32 years of age living
in helminth endemic regions (175). The authors hypothesized
that the opposing observations in fecundity between hookworm
and Ascaris infections, is associated with the differing immune
responses to the parasites; A. lumbricoides is associated with a
polarized Th2 response (37) whereas hookworm infections may
induce a mixed Th1/Th2 response (176). Together these studies
suggest that helminth infections can have profound effects on
female reproductive health, experimental investigation is
required to better understanding of these effects.
CONCLUDING REMARKS

In this review, we have outlined the local and potential systemic
effects of helminth infections on female reproductive health and
Frontiers in Immunology | www.frontiersin.org 8
susceptibility to STIs. Considering the great geographical overlap
between STI and helminth prevalence, as well as the reduced
access to health care and poor female health in helminth endemic
regions, the study of helminth influences on the FRT should be a
priority going forward, with focus on systemic effects of these
parasites on uncolonized mucosal sites. Importantly, further
comprehension on the systemic effects of GI helminths is
needed, to direct health care strategies to mitigate the burden
of helminth infections on the female reproductive health in those
most at risk.
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Oliveira R. Cellular responses and cytokine profiles in Ascaris lumbricoides
and Trichuris trichiura infected patients. Parasit Immunol (2002) 24(11-
12):499–509. doi: 10.1046/j.1365-3024.2002.00600.x

38. Jackson JA, Turner JD, Rentoul L, Faulkner H, Behnke JM, Hoyle M, et al. T
helper cell type 2 responsiveness predicts future susceptibility to
gastrointestinal nematodes in humans. J Infect Dis (2004) 190(10):1804–
11. doi: 10.1086/425014

39. Quinnell RJ, Pritchard DI, Raiko A, Brown AP, Shaw MA. Immune
responses in human necatoriasis: association between interleukin-5
responses and resistance to reinfection. J Infect Dis (2004) 190(3):430–8.
doi: 10.1086/422256

40. Gaze S, McSorley HJ, Daveson J, Jones D, Bethony JM, Oliveira LM, et al.
Characterising the mucosal and systemic immune responses to experimental
human hookworm infection. PLoS Pathog (2012) 8(2):e1002520–e. doi:
10.1371/journal.ppat.1002520

41. Grainger JR, Smith KA, Hewitson JP, McSorley HJ, Harcus Y, Filbey KJ, et al.
Helminth secretions induce de novo T cell Foxp3 expression and regulatory
function through the TGF-beta pathway. J Exp Med (2010) 207(11):2331–41.
doi: 10.1084/jem.20101074

42. Johnston CJC, Smyth DJ, Kodali RB, White MPJ, Harcus Y, Filbey KJ, et al.
A structurally distinct TGF-b mimic from an intestinal helminth parasite
potently induces regulatory T cells. Nat Commun (2017) 8(1):1741. doi:
10.1038/s41467-017-01886-6

43. Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by
Helminths: The Expanding Repertoire of Parasite Effector Molecules.
Immunity (2018) 49(5):801–18. doi: 10.1016/j.immuni.2018.10.016

44. McSorley HJ, Harcus YM, Murray J, Taylor MD, Maizels RM. Expansion of
Foxp3+ regulatory T cells in mice infected with the filarial parasite Brugia
malayi. J Immunol (Baltimore Md: 1950) (2008) 181(9):6456–66. doi:
10.4049/jimmunol.181.9.6456

45. Watanabe K, Mwinzi PN, Black CL, Muok EM, Karanja DM, Secor WE,
et al. T regulatory cell levels decrease in people infected with Schistosoma
mansoni on effective treatment. Am J Trop Med Hyg (2007) 77(4):676–82.
doi: 10.4269/ajtmh.2007.77.676

46. Doetze A, Satoguina J, Burchard G, Rau T, Loliger C, Fleischer B, et al.
Antigen-specific cellular hyporesponsiveness in a chronic human helminth
infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming
growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol (2000) 12
(5):623–30. doi: 10.1093/intimm/12.5.623

47. Satoguina J, Mempel M, Larbi J, Badusche M, Löliger C, Adjei O, et al.
Antigen-specific T regulatory-1 cells are associated with immunosuppression
in a chronic helminth infection (onchocerciasis). Microbes Infect (2002) 4
(13):1291–300. doi: 10.1016/S1286-4579(02)00014-X
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