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Hepatitis C is a worldwide liver disease caused by hepatitis C virus (HCV) infection.

The virus causes acute and chronic liver inflammation, and it is transmitted mainly by

exposure to contaminated blood. HCV is capable of infecting hepatocytes and peripheral

blood mononuclear cells, causing complications and disease progression. This mini

review provides an overview of HCV infection, including details on the virological aspects,

infection of the immune cells, and its impact on the immune system.
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INTRODUCTION

Over 30 years have passed since the discovery of hepatitis C virus (HCV) infection in 1989,
which is one of the most common causes of liver disease worldwide (1). HCV infection causes
acute and chronic hepatitis and is the main cause of post-transfusion hepatitis. It is transmitted
mainly by exposure to contaminated blood, contaminated needles or razors, hemodialysis, organ
transplantation, and, to a lesser extent, by sexual intercourse (1, 2). HCV is highly heterogeneous
and is susceptible to ongoing mutation. It has been estimated that over 170 million people are
currently infected with HCV, and over three million people are estimated to be infected annually.
Moreover,∼85% of newly infected individuals develop chronic hepatitis, whichmay lead to further
complications such as liver cirrhosis and hepatocellular carcinoma. To date, seven main HCV
genotypes (genotypes 1–7) and many other subtypes have been identified. The sequence diversity
among the genotypes is approximately 30%. Genotypes 1 and 2 are the most prevalent HCV
genotypes. HCV genotypes 1, 2, and 3 are found in the USA, Europe, and Japan, while genotypes 4
and 5 are found in Africa. Genotypes 3 and 6 are endemic to Asia, whereas genotype 7 is endemic
to central Africa and has not been fully evaluated (1, 2). This article discusses recent published
literature on antiviral therapy for HCV infection, focusing on infection of the peripheral blood
mononuclear cells (PBMCs), and the effects of HCV infection on the immune system.

HEPATITIS C VIRUS INFECTION AND ANTIVIRAL THERAPY

HCV belongs to the genus Hepacivirus, a member of the Flaviviridae family. It is a small spherical
enveloped virus with a molecular size of 50–80 nm in diameter (Figure 1A). The virus has a
9.6 kb positive-sense single-stranded RNA (ssRNA) genome, which has a long open reading frame
between the 5’ and 3’ untranslated regions (1, 2). It encodes a large polypeptide chain consisting
of 3,010 amino acids that are processed to produce 10 different proteins known as the HCV
structural and non-structural (NS) proteins. The structural proteins include the core capsid (C) and
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FIGURE 1 | Structure of hepatitis C virus and sites targeted by antiviral therapy. (A) A small spherical enveloped virus with molecular size between 50 and 80 nm in

diameter. The genome is a positive-sense single-stranded RNA molecule. The structural proteins include the capsid which is the core (C) protein and the envelope

subunits glycoproteins (E1 and E2). (B) The viral long open reading frame in-between 5‘ and 3‘ untranslated regions. It encodes for 10 different proteins known as the

HCV structural proteins the core (C) and the envelope subunits glycoproteins (E1 and E2) and the non-structural (NS) proteins (NS1, NS2, NS3, NS4A, NS4B, NS5A,

and NS5B). Some of the NS proteins are targeted by the protease and RNA dependent RNA polymerase inhibitors (boceprevir, telaprevir, daclatasvir,

ledipasvir, sofosbuvir).

envelope subunit glycoproteins (E1 and E2). The NS proteins
include NS1, NS2, NS3, NS4A, NS4B, NS5A, and NS5B
(Figure 1B). The HCV core is a highly conserved protein
that forms the viral nucleocapsid and is involved in HCV
pathogenesis, including steatosis hepatitis, hepatocellular
carcinoma, and alteration of different cellular signaling pathways
and functions. The envelope is composed of two subunit
glycoproteins, E1 and E2, and both play a vital role in viral entry
(Figure 1A). The NS proteins are essential at different stages of
HCV replication (1, 2).

The first approved treatment for HCV infection was
ribavirin in combination with PEGylated interferon-alpha
(IFN-α). This combined therapy inhibits HCV replication
non-specifically by general suppression of protein synthesis,
inhibition of HCV polymerase, or mutagenesis of newly
manufactures HCV RNA. The effectiveness of this therapy
in adherent patients is ∼50%. However, the development

of direct antiviral therapy and the addition of a protease
inhibitor such as boceprevir or telaprevir has increased the
effectiveness of the treatment to about 70%. Advances in
the development of other proteases and RNA-dependent
RNA polymerase inhibitors such as daclatasvir, ledipasvir, and
sofosbuvir have drastically improved the clinical outcomes
(1, 2). Moreover, other antiviral drugs which target some
of the host key factors involved in HCV replication such
as microRNA (miR)-122 and cyclophilin are currently under
development (1).

IMMUNE SYSTEM AND VIRAL
RECOGNITION

The immune system is a diverse and complex network.
Based on the immune response to a foreign antigen, it can
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FIGURE 2 | Components of the innate and adaptive immunity. The immune

system is broadly categorized into innate and adaptive immune components.

Innate immunity is recognized by cellular components, including natural killer

(NK), dendritic cells (DC), macrophages (MAC), mast cells, and granulocytes

(Grans), whereas adaptive immunity is designated by B lymphocytes and T

lymphocytes. Following activation, the components of both branches act

together and in parallel with regulatory soluble cytokines (IL-1, IL-6, IL-12,

IL-10, IL-4) and chemokines (IL-8, IP-10, and MIG). Subsequently, CD4+ T

lymphocytes become activated and differentiate into T helper (Th)-1 and Th-2

cells, leading to the activation and differentiation of T lymphocytes into

cytotoxic CD8+ T cells and memory cells (Memo), while the B lymphocytes

differentiate into plasma cells, which are antibody-specific secreted cells, and

Memo, respectively.

be broadly categorized into innate and adaptive immune
components (Figure 2) (3–6). Innate immunity is mediated by
cellular components of natural killer (NK) cells, dendritic cells,
macrophages, and granulocytes, whereas, adaptive immunity
is mediated by B and T lymphocytes. On exposure to
foreign antigens, both components act together and in parallel
with regulatory soluble mediators known as cytokines and
chemokines, in order to eradicate, and protect the body from,
microbial pathogens (Figure 2) (3–6).

NK cells, dendritic cells, macrophages, and granulocytes,
as part of the innate immune system, and are the first line
of defense against invading pathogens. NK cells kill virus-
infected cells by cell lysis and perforin secretion. Dendritic cells,
macrophages, and granulocytes possess antimicrobial, antifungal,
and antiparasitic characteristics through their phagocytic and
endocytic activity (3–6). Further, they function as antigen-
presenting cells by uptake, processing, and presenting antigens
linked to major histocompatibility complex class II to CD4+

T cells. Furthermore, they secrete proinflammatory cytokines
such as interleukin (IL)-1, IL-6, IL-12, interferon type-1 (IFN-
α/β), and chemokines such as IL-8 (3–6). This stimulates the
adaptive immune system through the activation of CD4+ T
lymphocytes, which differentiate into T helper (Th)-1 and Th-
2 cells and leads to the activation and differentiation of T
lymphocytes into cytotoxic T cells (cytotoxic CD8+ T cells) and
the B lymphocytes into plasma cells, the antibody-specific cells
(Figure 2) (3–6). These essential cellular activities are mostly
mediated and regulated by the responsiveness of these cells to
different cytokines such as IFN-γ, tumor necrosis factor (TNF)-
α, IL-10, and signals delivered via the toll-like receptor (TLR)
family through recognition of various microbial proteins such
as bacterial lipopolysaccharides, viral proteins, and nucleic acids,
including those of HCV (3–6).

Unlike human cellular RNA molecules, which are short
and incomplete stems with secondary structures, RNA viruses
usually produce long and perfect double-stranded RNA (dsRNA)
molecules during replication in infected cells. Therefore, long
dsRNAmolecules are recognized as foreignmolecules and trigger
both cellular and humoral innate immune responses (7). There
are two characteristicmechanisms by which a cell recognizes viral
antigens. Extracellular viruses are recognized by the different
TLRs expressed on the cell surface based on the type of their
genome. For example, ssRNA, dsRNA, or CpG-rich DNA viruses
are recognized by TLR7/8, TLR3, and TLR9, respectively (8).
On the other hand, the intracellular replicating viruses are
recognized by RNA helicases which encoded by the retinoic
acid-inducible gene I (RIG-I) and/or melanoma differentiation-
associated gene 5 (MDA5) (9). Following viral recognition, the
activation and translocation of nuclear factor κB (NFκB) and
interferon-regulatory factor 3 (IRF-3) to the nucleus occurs and
promotes the transcription of IFN type-1 (10). Production of
IFN type-1 triggers the neighboring cells to produce different
antiviral proteins, including 2’-5’ oligoadenylate synthase/RNase
L, protein kinase R (PKR), myxovirus resistance factor, and
dsRNA adenosine deaminase 1, which results in the activation of
eukaryotic initiation factor (eIF-2), and translation inhibition of
both host and viral mRNA (11).

INFECTION OF PERIPHERAL BLOOD
MONONUCLEAR CELLS WITH HEPATITIS
C VIRUS AND DISRUPTION OF CELL
SIGNALING PATHWAYS

PBMCs, which include monocytes, the precursor of
macrophages, and lymphocytes (CD4+T cells, CD8+T cells,
NK cells, and B cells) play a major role in clearing microbial
pathogens. Studies have shown that HCV can infect and replicate
in hepatocytes and other cell types, including bone marrow
cells and PBMCs (12–16) by cell-to-cell infection (1). Despite
the disappearance of HCV RNA in the serum of sustained
responders, viral RNA can remain detectable for up to 5 years
in the PBMCs of these individuals (12, 17). Persistent infection
of PBMCs by HCV has been proposed to be an important
extrahepatic source of reinfection and is believed to be an
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important site for HCV replication (18–21). HCV infects
PBMCs and other cells through interaction with CD81 molecules
on cell surface (22) and subsequently replication of HCV in
extrahepatic tissues, is facilitated by expression of miR-122
(23). Moreover, transducing miR122 in B lymphocytes found to
stabilize and enhance HCV replication in these cells (24). Direct
and prolonged interaction of HCV with lymphoid tissue has
been implicated in the induction of malignant lymphoma (25).
Little is known about the biological significance of lymphotropic
HCV but evidence suggests that it might possibly be a reservoir
that contributes to recurrence of HCV infection (26). Peripheral
blood B lymphocytes particularly CD27+ memory B cells not
only can harbor higher HCV viral loads but also resist apoptosis
thus may serve as a candidate subset for HCV reservoir (27).
In addition to B lymphocytes lymphotropic HCV has been
shown to be capable of infecting T cell lines and primary naïve
CD4+ lymphocytes (5). Similarly, it has also been reported that
HCV can infect monocytes that are CD14+/CD16+ but not
CD14+/CD16- (28). Despite the existence of convincing data
supporting PBMCs serving as HCV reservoir there are reports
suggesting that the presence of HCV sequences in PBMCs is due
to passive virus adsorption (29) or contamination by circulating
virus and not due to replication of HCV (30). Because of the
conflicting data the exact mechanism of HCV infection of
PBMCs in-vivo remains unclear.

Infection of PBMCs results in persistence of infection, chronic
immune activation, and exhaustion of the immune system (17,
31, 32). Similar to other viral infections, HCV infection often
induces an IFN response which is recognized by the production
and secretion of proinflammatory cytokines, including IL-6
and IFN type-1, which have antimicrobial and antiproliferative
characteristics, and activate the adaptive immune responses.
PBMCs play a critical role in the elimination of pathogens via
phagocytic and cytolytic activities. Such PBMC functions are
mediated through the regulation of different signaling pathways,
including the Janus kinase/signal transducer and activator of
transcription (JAK-STAT) pathway (14, 33, 34). HCV and its
proteins, such as the core, E2, andNS5A polypeptides, are capable
of affecting several signaling pathways, including JAK-STAT,
phosphatidylinositol-3 kinase (PI3K), and mitogen-activated
protein kinase pathways in macrophages and hepatocytes. HCV
core protein has been shown to induce STAT-3 and PI3K
activation in monocytes and macrophages through the release
of IL-6 (35). Another study demonstrated up-regulation of
STAT-1 expression in hepatocytes from individuals with chronic
HCV viremia (36). In contrast, a significant down-regulation
of STAT-1 and IRF-1 expression has been observed in PBMCs
of individuals with untreated HCV infection and sustained
responders (12). Other reports have shown that HCV and
its proteins repress STAT-1 and IRF-1 expression in human
hepatocellular carcinoma cell-line (Huh7 cells) and other cell
types (37–41). STAT-1 and IRF-1 are transcription factors
involved in different immune functions, and dysregulation in
the expression of these proteins may compromise the immune
response (14, 33, 34, 42). Down-regulation of STAT-1 and IRF-
1 expression in HCV-transfected cell lines has been shown to

promote viral replication (43). However, IFN-α and IFN-γ co-
treatment in human hepatoma cells has been shown to up-
regulate the expression of STAT-1 and IRF-1, leading to enhanced
interferon stimulated gene (ISG) expression with robust antiviral
activity (43). It is therefore possible that persistent HCV infection
is attributable to virus-induced suppression of IFN expression.
Moreover, as IFN therapy up-regulates the expression of STAT-1
and IRF-1, monitoring the expression of these two genes may be
used to assess the response to treatment.

EFFECTS ON IMMUNE CELLS AND THEIR
FUNCTIONS

One of the main side effects of viral infections, including HCV
infection, is the alteration in cytokine and chemokine secretion.
Studies have shown alterations in the serum levels of cytokines
and chemokines such as IL-8, IL-6, IL-10, and IL-12p70 in
individuals with untreated HCV infection and non-responders
(44–46). IL-8, which is also known as CXCL8, is a CXC
chemokine that plays a major role in neutrophil and macrophage
trafficking toward the site of tissue injury (47). It is produced by
different types of cells expressing TLR, especially macrophages
and monocytes (48, 49). IL-8 binds to the chemokine receptors,
CXCR1 and CXCR2, which are both expressed by neutrophils,
monocytes, and macrophages (50, 51). It has been suggested
that in chronic HCV infection, elevated levels of IL-8 in the
intrahepatic tissues and peripheral blood and its interaction with
CXCR1 resulted in increased tissue infiltration and activation of
hepatic macrophages (52). In addition, increased levels of IL-8
in individuals with HCV infection are associated with disease
progression, resulting in chronic infection (45). The decreased
level of IL-8 after antiviral therapy among sustained responders
indicates that increases in serum IL-8 levels may be associated
with enhanced viral activity (44). Thus, the assessment of serum
IL-8 levels in HCV patients may be used to monitor disease
activity and response to treatment.

It has been reported that serum IL-6 levels are elevated in
individuals with untreated HCV infection, but that sustained
responder HCV patients have similar serum IL-6 levels to healthy
controls (44). IL-6 is a proinflammatory cytokine that is produced
by different types of cells, including macrophages and T cells, and
is involved in the regulation of differentiation of many cell types
(53). An increased IL-6 levels in the serum of individuals with
HCV infection have been shown to be linked to disease severity
(46). HCV infection has been shown to be directly linked to high
serum IL-6 levels. A recent animal study showed that inoculation
ofmice with recombinant HCV core protein resulted in increased
production of IL-6 (54). Thus, it is possible that the decreased IL-
6 levels in HCV patients serum after successful antiviral therapy
may indicate clearance of the infection (44).

It has been found that serum IL-10 levels are elevated in
individuals with untreated HCV infection, but that IL-10 levels
decrease and serum IL-12p70 levels increase following successful
antiviral treatment in sustained responders (44). IL-10 is a Th2
cytokine, whereas IL-12 is a Th1 cytokine (55). Increased levels of
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IL-10 in the serum of individuals with untreated HCV infection
suggests Th2 polarization of the immune response in individuals
with HCV infection. However, the immune response switches to
a Th1 immune response after antiviral treatment, as evidenced
by an increase in IL-12 levels and a decrease in IL-10 levels
(44). Several studies have shown that HCV infection is associated
with a Th2-skewed immune response (56, 57). Increased serum
IL-12 levels after treatment with ribavirin/PEGylated IFN-α2A
have been associated with a sustained viral suppression, whereas
increased serum IL-10 levels may indicate late viral activation
(58). These results suggest that successful antiviral treatment
is linked to a modification in the pretreatment Th2 cytokine
immune response to the Th1 response.

There has been considerable interest in the persistence of
low-level HCV RNA in PBMCs after completing a course of
treatment in individuals with chronic HCV infection. HCV RNA
has been shown to remain detectable 5 years after sustained
viral suppression following treatment with ribavirin/PEGylated
IFN-α2A, along with up-regulation of IL-6, IL-8, IL-12, TNF-
α, and macrophage inflammatory protein (MICP)-1β expression
(17, 44). PBMCs appear to be infected with HCV that leads
to an increase in cytokine expression due to persistent antigen
stimulation (29). IL-6, a proinflammatory cytokine associated
with the innate immune response, promotes T- and B-
cell activation, proliferation, differentiation, and survival (59),
whereas IL-8, a chemokine, is involved in neutrophil and
macrophage infiltration and activation (52). Therefore, it is
possible that both cytokines involve in both the innate and the
adaptive immune response to HCV. However, increased IL-12
levels in the serum of HCV patients after antiviral treatment
suggest its key role in Th1 polarization of the immune response
and increasing antiviral and cytotoxic activity (44, 60).

Programmed cell death (PCD) through apoptosis or
autophagy plays a major role in the maintenance of immune
regulation, cellular homeostasis, and normal cell death. Thus,
alterations in PCD processes may result in malignancies and/or
immune dysfunction (61–63). The apoptosis signaling cascade is
initiated either through cell surface death receptors such as Fas,
TNF-αR, TRAILR, and APO3-R (the extrinsic pathway), which
results in activation of caspase 8 and caspase 10 or disturbance of
the mitochondrial membrane potential, leading to cytochrome
C release and the activation of caspase 9 (the intrinsic pathway).
As a result, the downstream effector caspases 3, 6, and 7 are
activated, leading to cleavage of nuclear poly (ADP-ribose)
polymerase, DNA fragmentation, and cell death (61, 62).
However, autophagy is triggered by metabolic stress such as
nutrient starvation or by pharmaceutical or chemotherapeutic
agents (such as rapamycin and etoposide, respectively). The
process starts by the sequestration of a portion of cytoplasmic
materials, which include proteins and organelles, into a double-
membrane vesicle known as an autophagosome. Thereafter,
the autophagosome vesicles fuse with cellular endosomes and
lysosomes to form autolysosomes. Lastly, the cytoplasmic
contents within the autolysosome breaks down, leading to cell
death or cell survival (61, 63).

A number of reports have elucidated the role of PCD in
the pathogenesis of chronic HCV infection through the course

FIGURE 3 | Proposed model for the effects of HCV on PBMCs. Infection of

PBMCs, which include monocytes, CD4+T cells, CD8+T cells, NK cells, and

B cells, with HCV resulted in dysregulation of signaling-pathway mediators

such as STAT-1 and IRF-1, as well as alteration in cytokine and chemokine

production. Subsequently, persistent HCV RNA and its antigens, along with

chronic immune activation, the PBMCs become exhausted, impaired, and

more prone to PCD.

of hepatitis and fibrosis, or its progression to hepatocellular
carcinoma (64–67). PBMCs, through their phagocytic and
cytolytic activities, are critical for microbial pathogen clearance.
After activation of PBMCs, several cytokines are produced, such
as L-1 α and β, IL-2, IL-6, IL-10, IL-12, and IL-18, leading to
the activation of the adaptive immune response. It has been
proposed that the PBMCs of individuals with HCV infection
are more susceptible to PCD and are thus not capable of
clearing HCV. The PBMCs of individuals with untreated HCV
infection and sustained responders have been shown to exhibit
significantly increased spontaneous PCD compared to healthy
controls (68). The increased level of PCD has been shown to be
associated with significant up-regulation of caspase 3 expression
in the PBMCs of individuals with untreated HCV infection and
sustained responders compared to healthy controls (12). Several
other studies have shown similar results (69–71). For example,
increased PCD rates have been shown to be associated with the
up-regulation of the apoptotic genes, such as Fas, caspase 8,
caspase 9, and caspase 3, in the PBMCs of patients with HCV
infection, (69). In addition, on starvation, the cell death rates in
T cells and monocytes of patients with chronic HCV infection,
with or without liver cirrhosis or hepatocellular carcinoma, were
significantly higher than in healthy controls (70). Moreover,
several reports have shown that caspase 3 plays a role in PBMC
cell death and dysfunction (64, 70, 71).

It has been shown that increased susceptibility of PBMCs
to spontaneous PCD is associated with decreased levels of
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proinflammatory cytokines, including IL-6, IL-8, and IL-10,
in the supernatants of PBMC cultures of individuals with
untreated HCV infection and sustained responders (68). These
findings indicate that the PBMCs of individuals with HCV
infection are dysfunctional. Although low levels of supernatant
proinflammatory cytokines could indicate defective PBMCs,
they may have an adverse effect on PBMC PCD. These
cytokines may have a role in PBMC survival as recombinant
IL-8 inhibits apoptosis of endothelial cells by enhancing the
expression of anti-apoptotic genes such as B-cell lymphoma
2 (Bcl-2) and B-cell lymphoma extra-large (Bcl-xL) (72).
IL-10 has also been shown to inhibit spontaneous T cell
apoptosis in patients with infectious mononucleosis (73).
Furthermore, IL-6 prevents cluster of differentiation (CD) 3-
induced T cell death and hydrogen peroxide-induced PCD
in alveolar epithelial cells (74, 75). These results indicate
that despite increased blood levels of antiapoptotic cytokines
such as IL-8, IL-10, and IL-6, the PBMCs of individuals
with HCV infection are defective and more prone to PCD.
Thus, it is possible that factors related to the presence of
HCV within PBMCs are critical for enhanced susceptibility
to PCD.

CONCLUSION

PBMCs, which include monocytes, CD4+T cells, CD8+T cells,
NK cells, and B cells, play an essential role in eradicating
microbial pathogens. Infection of PBMCs with HCV results
in dysregulation of the signaling pathway mediators such as
STAT-1 and IRF-1, and alterations in cytokine and chemokine
production, including IL-1, IL-6, IL-10, and IL-8. In individuals
with chronic HCV infection, persistent HCV RNA and its
antigens, combined with chronic immune activation, lead to
PBMCs becoming exhausted, defective, and more prone to PCD
(Figure 3).
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