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Impact of Human-Centered Vestibular System Model

for Motion Control in a Driving Simulator
Carolina Rengifo , Jean-Rémy Chardonnet , Member, IEEE, Hakim Mohellebi, and Andras Kemeny

Abstract—This study presents a driving simulator experiment to
evaluate three different motion cueing algorithms based on model
predictive control. The difference among these motion strategies
lies in the type of mathematical model used. The first one contains
only the dynamic model of the platform, while the others integrate
additionally two different vestibular system models. We compare
these three strategies to discuss the tradeoffs when including a
vestibular system model in the control loop from the user’s view-
point. The study is conducted in autonomous mode and in free
driving mode, as both play an important role in motion cueing
validation. A total of 38 individuals participated in the experiment;
19 drove the simulator in free driving mode and the remaining using
the autonomous driving mode. For both driving modes, substantial
differences is observed. The analysis shows that one of the vestibu-
lar system models is suitable for driving simulators, as it thoroughly
restores high-frequency accelerations and is well noted by the
participants, especially those in the free driving mode. Further tests
are needed to analyze the advantages of integrating the chosen
vestibular system model in the control design for motion cuieng
algorithms. Regarding the autonomous mode, further research is
needed to examine the influence of the vestibular system model on
the motion performance, as the behavior of the autonomous model
may implicitly interfere with subjective assessments.

Index Terms—Autonomous driving (AD), driving simulators
(DSs), human motion perception, model predictive control (MPC),
motion cueing algorithms.

I. INTRODUCTION

N
OWADAYS most important driving simulation challenges

are in autonomous vehicle research and advanced driver

assistance systems validation since they require massive testing
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in normal, risky, and expensive situations. Also, enabling cars

to generate driving behaviors while keeping the driver safe is

a difficult and demanding effort task. Therefore, driving simu-

lators (DSs) are a powerful tool for testing human behavior in

safe, critical, and cost-effective scenarios. However, the validity

of these technologies in simulation is heavily depending on the

DS performance as the relationship between simulator fidelity

and validity is not straightforward [1]. Therefore, it is necessary

to select the DS’s characteristics carefully.

Since motion signals cannot be sent directly from the vehicle

model to the DS due to its limits, motion restitution is one of

the most critical characteristics regarding driving simulation.

To overcome this issue, motion cueing algorithms (MCAs)

are implemented [2]. Several efforts have been made in MCA

development in order to increase simulation realism and reduce

the well-known simulator sickness induced by conflicting effects

among subsystems. One of the approaches aiming at solving

these problems has been to integrate human motion perception

into the control design. Most MCAs use human perceptive

system information to restore additional linear acceleration

while tilting the platform cockpit [3]–[6]. This is a well-known

technique named tilt coordination.

Some optimization-based techniques such as optimal [7] or

model predictive control (MPC) [8] in MCA, integrate the

vestibular system’s mathematical model into the control design

to minimize the error between the perceived vehicle and sim-

ulator motion cues. Located inside the inner ear, the vestibular

system comprises the otolith organs and the semicircular canals,

which act as sensors for linear and rotational accelerations,

respectively. The literature provides several vestibular system

models [9]. However, when designing MCAs, only two models

are mostly employed in a model reference and control theory

context. The first one includes both, the semicircular canals [10]

and the otolith organs model [11]. This model has been used in

numerous studies [8], [12]–[18]. The second model proposed

by [19] also integrates both models, but is more recent and is

the most used model among MCAs [20]–[25]. Although most

researchers suggest that using an accurate vestibular sensor

model improves motion restitution quality, its implementation

without any experimental test is not obvious. In fact, some au-

thors continue to design MCAs without considering any human

vestibular sensor model [26], [27]. Furthermore, the integration

of this model makes the control design more complex and

increases the optimization time as the number of states in the

system increases.
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To the best of authors’ knowledge, no comparison has been

made between integrating a vestibular system model or just using

the dynamics of the platform into the MCA for a DS. In addition,

the two vestibular system models presented earlier have not been

compared in experimental tests. Therefore, this article proposes

to evaluate three different motion strategies that depend directly

on the mathematical model used in the control design. The first

configuration contains only the platform dynamic model without

any vestibular system model, the second one integrates Young–

Oman/Meiry’s model [10], [11], while the third one uses the

Telban and Cardullo’s model [19]. Throughout this article, they

will be called M0, M1, and M2, respectively.

In this regard, the main objective of this study is to validate

the mathematical model used in MPC-based MCAs to improve

driver-in-the-loop immersion and motion perception in a DS. For

this purpose, we show the mathematical model impact on motion

perception; we compare the M0, M1, and M2 configurations

from an experimental perspective in both autonomous driving

(AD) and free driving (FD) modes.

The rest of this article is organized as follows. Section II

goes over modeling of the different motion strategies using an

MPC technique, followed by a comparison between them in

Section III. Section IV presents the experimental methodology

and procedure. Section V discusses the experimental results.

Finally, Section VI concludes the article.

II. CONTROL STRATEGY MODELING

MPC-based MCA aims at reproducing as best as possible

the vehicle signals by minimizing the error between the desired

driver acceleration signals and the simulator response while

respecting constraints within a prediction window. However, in

the presence of sustained accelerations, the platform working

space is limited and its physical limits are reached quickly.

Hence, in order to improve the tracking task and maximize

driver motion perception, we use the well-known tilt coordi-

nation technique [28]. By using this technique, linear sustained

accelerations are artificially produced by tilting the platform. For

the driver not to perceive the tilt, this one must be complemented

by nontilting visual cues and under the rotation perception

threshold [29]

fx = ax + gsin(θ). (1)

The MCAs compared in this study use tilt coordination. Never-

theless, they depend directly on two fundamental MPC compo-

nents: the mathematical model and the optimization.

A. Mathematical Model

1) DS Model: The DS dynamics is specific to the actuator

manufacturers. Therefore, we chose to simplify the real system

as a dual integrator model in order to access all simulator states

such as the position p, the linear velocity v, the angle θ, and the

angular speed ω of the platform along the x and y axes. This

model does not consider the delays produced by the simulator

mechanics and is represented by a linear time invariant system

xDS(k + 1) =

ADS
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︷ ︸︸ ︷
[

0 0 g 0
]

xDS(k) +

DDS
︷ ︸︸ ︷
[

1 0
]

u(k)

(2)

where u(k) represents the linear ulin and rotational urot acceler-

ations. Instead of choosing acceleration as the tracking variable

and output yDS(k), we choose the specific force (1), which

explains why only x and y linear accelerations are considered to

control the system. Model (2) is used for the M0 configuration.

2) Vestibular System Model: The DS model only considers

simulator states while ignoring human motion perception. Then,

aiming at improving simulation realism and drivers’ immersion,

a human vestibular system model is additionally integrated into

the control design. This model is based on the vestibular system

as it responds to head movements relative to gravity and space

by using inertial-force receptors. The vestibular system detects

linear and angular accelerations through different sensory or-

gans: the otolith organs and the semicircular canals, respectively.

Several authors have tried to represent, in a simplified way, the

mechanisms of specific force sensation and angular velocity with

a mathematical model [9]. The dead zone introduced by the

detection of vestibular system’s thresholds are not represented

in the vestibular models presented in this work as they are

treated as perceptive constraints in the optimization statement.

The transfer function for the semicircular canals that links the

perceived angular velocity ω̂ and the real angular velocity ω for

the three rotations along the x, y, z axes is

ω̂

ω
=

τLτas
2(1 + τls)

(1 + τas)(1 + τLs)(1 + τss)
. (3)

This model is implemented as a filter for the three rotation

angles. The result is then added to the tilt angles resulting from

the optimization of the tilt coordination technique and then

saturated to avoid exceeding the platform’s physical limits.

For the otolith model, the relation between the specific force

f and the sensed specific force f̂ is

f̂

f
=

Go(τaos+ 1)

(τLos+ 1)(τsos+ 1)
. (4)

Note that (1) refers to the specific force f along the x-axis

f̂x =
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(τLos+ 1)(τsos+ 1)

[
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g

s2
urot(s)

]

(5)



TABLE I
PARAMETERS OF VESTIBULAR MODELS

and is represented in the state-space form as
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where

T1 =
Goτao
τLoτso

, T2 =
Go

τLoτso
, T3 =

τLo + τs0
τLoτso

,

T4 =
1

τLoτso
.

This system is used to minimize the motion perception error:

the difference between the specific force perceived in the sim-

ulator and the one perceived in the vehicle. It is necessary to

integrate the simulator system into the optimization reference

model to add hard constraints on simulator states. Therefore,

we unify the specific force system (6) and the DS system (2) to

create the tilt coordination model

˙Xforce =

[

Aoto 0

0 ADS

][

xoto

xDS

]

+

[

Boto

BDS

][

ulin

urot

]

Yforce =
[

Coto 0
]
[

xoto

xDS

]

.

(7)

This model (7) is implemented in the M1 and M2 strategies.

The parameters for both models are mostly based on subjec-

tive responses and may vary according to the literature. In this

study, we analyze two of the most commonly used vestibular

sensor models in MCAs: the one for M1 is the one proposed by

Young–Oman/Meiry [10], [11] and the one for M2 is the one

proposed by Telban and Cardullo [19]. The different parameters

for each model are shown in Table I. In this table, τL/τLoto are

long time constants, τs/τsoto are short time constants, τa/τaoto

are adaptation operators, τl is a lead term to avoid vibration

effects, and Goto represents the static sensitivity for the otolith

organs.

B. Optimization Statement

An MPC controller operates as an optimal tracking strategy

that solves a specific optimization problem to obtain the desired

reference trajectory for a finite control horizon Nu, within a

TABLE II
WEIGHTING PARAMETERS

TABLE III
PLATFORM’S WORKSPACE AND PERCEPTIVE LIMITS

prediction horizonNp [30]. In this study, the cost function varies

from one strategy to another. In the M0 configuration, the objec-

tive is to faithfully track the accelerations of the virtual vehicle,

while in M1 and M2 configurations, the objective is oriented

toward minimizing the error between the motion perceived in

the simulator and the motion perceived in the virtual vehicle.

In all three configurations, the cost function to be minimized is

expressed as

J(k) =

Np−1
∑

j=0

‖r (k + j)− y(k + j)‖2δ + ‖x (k + j)‖2q

+

Nu∑

j=1

‖∆u(k + j − 1)‖2
λ
; s.t. Ac∆U ≤ b (8)

where δ, λ, and q are weighting parameters for the tracking error,

the control, and the future states, respectively. r represents the

reference trajectory that remains constant throughout Np, and it

takes the value of the specific force f for M0 and the perceived

specific force f̂ for M1 and M2 (see Section III-A for details).

y and x represent the future output and future states of the

system, respectively. Their values change according to the type

of configuration, since they depend directly on the mathematical

model. ∆u is the decision variable and represents the rate of

change of the rotational and linear acceleration. The matrix

equation Ac∆U ≤ b represents the linear inequality constraints

shown in Table III.

In order to solve the quadratic programming problem (8), the

open-source tool qpOASES is implemented [31]. It applies the

active set method and provides a ready-to-use package capable

to find the optimal control action ∆U in real time.

C. Real-Time Execution

Several considerations must be taken into account to apply

MPC-based MCA in real time (control frequency of 125 Hz)

without presenting any risk to the platform or the user itself.

1) Control Tuning: Tuning consists in choosing the appro-

priate optimization and control parameters such as Nu, Np,

δ, λ, q and sample time to be applied in the cost function

(8), in order to improve the system performance and ensure

control feasibility. The perceptual and physical limits presented



in Table III are too restrictive and have influence on the region for

which the optimization problem find a solution ∆U . Therefore,

the weighting parameters were chosen in order to make the

algorithm as efficient as possible for each configuration. We

first applied a weighting unit value to the control variables

∆ulin and ∆urot. However, it was not enough to ensure system

closed-loop stability, and therefore, we use the trial-and-error

method with a square signal of 2 m/s2 at a frequency of 5 s. The

selected parameters make the best compromise between the sys-

tem closed-loop stability and the control strategy performance

regarding trajectory tracking. They are presented in Table II.

When the platform is close to its limits in displacement, the

simulator must slow down and return to a safe position without

provoking any false cue, i.e., unwanted rendering of motion as

a result of poor motion cueing or unexpected driving behav-

ior [32]. To achieve this, we consider a suitable fair prediction

horizon of six seconds. However, this value is very large consid-

ering real-time control frequencies as the optimization problem

cannot be solved due to high computational costs. This problem

was fixed using two different sampling times when creating the

discrete-state-spaces forms, (2) and (7). The first sample time

corresponds to the control frequency and was applied to the first

ten steps. The second sample time was set to 0.3 s and was

applied for 20 steps in order to reach the requested prediction

time. In that sense, Np takes 30-time steps. Another important

parameter is the control horizon Nu that indicates the number

of parameters used to capture the future control trajectory ∆U
for all configurations. Important Nu values can leave to high

computational loads, but small ones can result on closed-loop

instability. We decided to make a tradeoff between both aspects

by setting the control horizon at 3-time steps.

2) Stability: Traditionally, tuning parameters are enough to

ensure closed-loop stability and performance in MPC [33].

Nevertheless, in the presence of state constraints, MPC becomes

difficult to control and closed-loop stability will depend on

the optimal solution over Np, i.e., problem (8) needs to be

feasible to satisfy the limits. In this study, we used two different

approaches to ensure closed-loop stability. The first one consists

in introducing a terminal penalty matrix equal to the solution

of the discrete algebraic Riccati equation used in the infinite

horizon cost function [34]. This condition implies that the cost

function is Lyapunov and then, when feasibility is verified,

nominal stability is guaranteed for the MPC system in closed

loop. Additionally, it restricts severely the system and is not

enough to guarantee a feasible solution along Np. Hence, we

use an additional stability condition proposed by [27]. Their

approach proposes a braking law for the linear (9) and angular

(10) signals, in which, once the simulator approaches its physical

limits, it returns to its neutral position with a certain acceleration

threshold. This law is transformed in terms of∆U and is applied

as hard constraints in (8)

pmin ≤ pk + cvTvk +
T 2ulink

2
≤ pmax (9)

θmin ≤ pk + cvT θ̇ +
T 2urotk

2
≤ θmax (10)

Fig. 1. Control design for the DS’s movement restitution based MPC along
the x-axis.

where cv = 1.9 and T = 1.6 are tuning parameters allowing the

feasible optimization solution over the prediction horizon.

III. MOTION STRATEGIES COMPARISON

This section describes the differences between the three con-

sidered MCAs from a theoretical and experimental viewpoints.

A. General Framework

The three motion configurations M0, M1, and M2 implement

the same control design for linear and angular accelerations.

Fig. 1 illustrates the complete MPC-based MCA framework

for accelerations along the x-axis, in which the input signals

are linear and angular accelerations from the vehicle dynamic

model, which takes as inputs the signals sent from the simulator’s

pedals and steering wheel.

Considering that tracking the full input signal is not nec-

essarily the best solution for self-motion perceived coherence

in motion restitution, the input signals have been scaled down

according to each configuration. A study conducted by Berthoz

et al. [35] showed that MCA lower unit gains comprised between

0.4 and 0.75 give more perceived coherence of self-motion and

provide a better optimization of the actuators working space.

Hence, we selected a 0.6 gain gx for scaling the specific force

signal f . The same value was implemented along the y-axis as

it provides balance between visual and vestibular attention [36].

Since strategy M0 does not incorporates the vestibular sys-

tem, the blocks that represent the transfer function for otolith

organs and semicircular canals models are included only for

M1 and M2 configurations. For instance, when using M0, these

blocks are replaced with a unit gain. Once the signals are scaled

down, MPC-based optimization is performed, resulting in some

optimal values of linear and angular accelerations.

The saturation block represents a high-pass filter aiming at

saturating the angular acceleration input signal coming from the

vehicle model behavior in terms of angular position and velocity,

while keeping the platform within its physical limits. Details

about the simulator are presented in Section IV-B.

B. Theoretical Analysis

The differences between both vestibular system models, M1

and M2 come from the parameter values in the transfer func-

tions for the semicircular canals (3) and the otolith organs (4).

As a consequence, both models behave as different acceler-

ation filters. These values are shown in Table I. Regarding

the otolith model (4), Fig. 2 shows the frequency response of



Fig. 2. Frequency response of the otolith models proposed by Young–
Oman/Meiry (M1) and Telban (M2).

Fig. 3. Motion restitution according to each configuration: the top image is
the autonomous vehicle acceleration signal along the x-axis Fx; the plots from
the left to the right are the tracking signal with model M0, with the M1 model,
and with the M2 model. Each of these three figures show the Fx, the scaled Fx,
and the DS tracking response for M0, M1, and M2.

Young–Oman/Meiry’s [11] and Telban and Cardullo’s [19] mod-

els for the acceleration input along the x and y axes. In the mag-

nitude diagram, we can see that none of the models represents a

signal amplification, in contrast, both models tend to attenuate

the input signal and to act as low-pass filters, with a higher

magnitude for the M2 model. For M1, the otolith’s sensitivity is

higher between 0.03 and 0.2 Hz, and higher between 0.06 and

5 Hz for M2. This indicates that M2 covers all the frequency

range of the most normal head movements from 0.1 to 1 Hz [37].

In this study, the semicircular canals model (3) is used only

as a rotational accelerations filter that come directly from the

vehicle model. Therefore, this mode is not present on the MPC

mathematical model for any of the configurations, M1 and M2.

For this reason, there is no theoretical analysis of the semicircular

canals model. In addition, the phase and magnitude values for

M1 and M2 semicircular models act in the range of normal

head motion [19] for both models. The M0 configuration is not

compared in this section as it tracks the acceleration input signals

completely without integrating any filter, as explained earlier in

the MPC framework.

C. Tracking Performance Analysis

To understand how each configuration restores motion, we

used the data collected after driving the simulator in an AD

mode, using the terrain scenario presented in Fig. 5. The result

Fig. 4. Comparison between the longitudinal platform’s position (a) and
pitch angle (b) for strategies M0, M1, and M2.

Fig. 5. Terrain and paths used for the DS tests.

is a signal containing transient and continuous accelerations that

last 250 s. This input signal is referenced as Input:fx in Fig. 3 and

represents the autonomous vehicle behavior along the x-axis.

The remaining three curves in Fig. 3 show motion restitution

in a 25-s zoom section to enable tracking legibility for each

configuration M0, M1, and M2. The specific force fx is the

input signal for all configurations, as illustrated in each plot.

Nevertheless we scaled it differently for each configuration to

obtain the sensed specific force input f̂ for M1 and M2 after

passing the otolith model or simply the same signal with a lower

gain gx in the M0 configuration.

None of the three configurations reaches one-to-one track-

ing motion as the physical and perceptive limits were very

restrictive. The M1 configuration does not restore well transient

accelerations and invests much energy in the platform’s contin-

uous accelerations that were generated by tilting the cockpit.

This fact generates a higher phase lag in motion restitution

since the maximum angular speed was 4◦/s. This value was

selected according to the study developed by Fang et al. [38].

All perception and physical limits implemented in this study are

presented in Table III.

To analyze objectively the specific force restored by the

simulator of each configuration, we collected the longitudinal

acceleration and the tilting angle data for the breaking scenario

test that occurs approximately after 8 s of simulation. This



TABLE IV
BREAKING VALUES COMPARISON

use case was selected since it requires a significant effort of

specific force tracking. In Table IV, we report the minimum

values of the different parameters such as the inclination angle

θ, the longitudinal acceleration ax, the specific force fx, and

the jerk Jx. We also included the difference in time occurrence

∆t between the peak in specific force for each strategy and the

vehicle data. It can be observed that in terms of longitudinal

acceleration amplitude, M2 leads to a higher value than the

other configurations since it mainly restores high acceleration

frequencies. Additionally, M2 is less smooth than the others as

it presents the highest value of Jx. The θ from M1 has a greater

amplitude as it tracks more the low-frequency (LF) accelerations

than the others. Regarding ∆t, the M0 strategy is the fastest,

followed by M2 and M1.

The tracking task performance is linked with the simulator’s

workspace. Fig. 4(a) shows the x rail displacement when using

the three different MCAs. The M0 and M2 strategies mostly

use all parts of the workspace, while the M1 strategy only uses

half of the available space. Indeed, the M1 model filters the

high frequencies accelerations, which are mostly restored by

the simulator’s rails. However, the LF accelerations obtained by

tilting the simulator are more restored by the M1 strategy than

with M0 or M2 as can be seen in Fig. 4(b).

IV. EXPERIMENTAL METHODOLOGY

A. Participants

For this experiment, we recruited 41 Renault employees. All

participants (mean age: 36.6 years, SD age: 11.5 years) had a

driving license and signed a consent form. Three participants

were unable to complete the test as they felt symptoms of

simulator sickness during the experiment. Therefore, 38 par-

ticipants were included in the data analysis. Participants were

separated into two groups depending on the driving mode. The

first one with 19 subjects drove the simulator actively in a free

mode, while for the last 19 subjects, the simulator behaved as a

self-driving vehicle.

B. Driving Simulator

We used the ULTIMATE simulator, which was built in 2004

by Renault. It is an eight degree-of-freedom high-performance

DS composed of a hexapod platform and linear rails [39]. The

motion envelope given by the hexapod and the rails are detailed

in Table III. The visual scene was displayed on a cylindrical

screen covering a horizontal field of view of 210◦. The cockpit

is composed of a manual gearbox, steering force feedback, and

a sound system reproducing engine and environmental noises.

C. Procedure

We conducted the experiment in different steps. Upon arrival

to the simulator, all participants completed a preliminary in-

formation sheet and signed a consent form. Then, they were

explained the procedure and safety instructions. Regardless of

the driving mode, participants were asked to pay attention to the

platform movement in each use case (stop/go situations, slalom,

etc.) that were presented during the simulation.

After a familiarization driving test that lasted between 150 and

200 s, two different groups were designated randomly. The first

group named FDmode consisted of 19 participants who passed

the three configurations (M0, M1, M2) with full control of the

vehicle. The second group named ADmode was composed of

19 participants who did the test using a simulated self-driving

vehicle. We made two different groups to find out whether the

MCA should be adapted depending on the driving modes and,

in that case, analyze the impact of the vestibular system model

on MCA adjustments for the AD or FD modes. Each subject

drove the DS four times including the familiarization phase

and the three MCAs. For the group that drove the simulator

in the FD mode, there were traffic signs and verbal instructions

in the familiarization phase indicating the speed limit and the

path. Between each drive, participants were asked to complete

a motion cueing questionnaire (see Section IV-C2). For one

subject, the entire experiment took approximately one hour to

complete. After the four driving tests, the subjects were asked

to rank in order of preference the three configurations indicating

first the best one.

1) Test Scenario: The study was conducted in a simulation

environment generated with the SCANeR Studio driving sim-

ulation software.1 SCANeR Studio also served to create the

self-driving vehicle and the road environment use cases used for

the comparison between motion strategies. The terrain is shown

in Fig. 5. It was wilfully generated with segments including

a city, a highway, and merging sections aiming at producing

inputs simulator signals, especially high-frequency (HF) and LF

accelerations, as follows.

HFx : transient x accelerations, e.g., stop/go situations.

LFx : continuous x accelerations, e.g., highway use cases.

HFy : transient y accelerations, e.g., slalom use case.

LFy : continuous y accelerations, e.g., merging sections.

HFx signals were presented mostly at the beginning of the

experiment and correspond to the section between 0 and 50 s in

Fig. 6(a). LFx signals are illustrated in the section between 75

and 90 s in the same figure. The generic slalom driving scenario

consisted of a series of obstacles aligned on a two-line straight

road. The maximal speed in this road segment was fixed to

70 km/h, generating a sine-like trajectory with a maximal lateral

acceleration of 1 m/s2. This use case is shown in Fig. 6(b) be-

tween 130 and 180 s. The last type for continuous y accelerations

are shown in Fig. 6(a) between 40 and 60 s and between 100 and

175 s.

The self-driving vehicle implemented for the AD mode was

designed by a script-based controller capable of handling all

1https://www.avsimulation.com/

https://www.avsimulation.com/


Fig. 6. Accelerations comparison between the AD and the FD modes, after
driving the test (a) along the longitudinal x-axis and (b) lateral y-axis: the AD
signals corresponds to the autonomous vehicle model accelerations signals and
the FD signals corresponds to a random participant accelerations signals.

TABLE V
MOTION RATING SCALE FOR EACH SIGNAL TYPE

planning decisions and different use cases safely. Most of self-

driving actions depended on the autonomous behavior provided

by the traffic model from the simulation software.

The driving behavior of the AD model was compared with

the acceleration signals of one random participant after driving

the scenario test. The results are shown in Fig. 6(a) and (b). In

Fig. 6(b), we can observe that lateral accelerations follow the

same path and frequencies in both free and AD modes. Indeed,

they depend mainly on the trajectory imposed by the terrain

and not necessarily on the driver command inputs. Besides,

the longitudinal trajectories along the x-axis [see Fig. 6(a)] are

slightly different, especially for positive transient accelerations.

This effect depended in one hand on the drivers’ anticipation

and driving style, and on the other hand, on the vehicle dynamic

model. The presence of lag in the curves is explained by dif-

ferent speeds profiles when driving the simulator, as they were

controlled by different driving modes.

2) Motion Cueing Questionnaire: After each drive on the

simulator, participants filled out the motion rating scales in-

dex [40] that evaluates the following different MCA character-

istics: smoothness, sense (motion perception), delay, amplitude,

discomfort, and disorientation for each of the the following four

situations: acceleration/braking, long turns, slalom, and contin-

uous acceleration. For each situation named earlier, subjects had

to score from 1 to 7 according to Table V.

In the last part of this questionnaire, participants scored the

MCA using a seven-point Likert scale (1: “strongly disagree”;

7: “strongly agree”) [35]. Three statements had to be scored:

“I forgot the simulator,” “Motion was realistic, I felt like I was

driving,” and “I drove as usual” (in the FD mode only).

V. EXPERIMENTAL RESULTS AND DISCUSSION

The analysis was based on the MCA questionnaire scores

provided by each participant. Two different tests were carried

out: the first one consisted in comparing the MCA characteristics

within-subject (see Section IV-C2) among the three configura-

tions (M0, M1, M2). Each feature of each configuration was

grouped within a pair, e.g., Amplitude: M0 with M1; M1 with

M2, and M0 with M2. This analysis was made with the data of

19 participants who drove the simulator in FD mode and the 19

participants who drove in AD mode. The second test compared

by MCA, the features between the AD and the FD modes, i.e.,

Amplitude: M0-free with M0-auto; M1-free with M1-auto, and

M2-free with M2-auto. In this case, the test was between-subject

as the populations to be compared were different. All results and

figures shown from now on correspond only to the data that are

statistically significant different in at least one of the analyzes,

not to overload this article.

A. Driving Mode

All MCA characteristics have been tested for normality using

the Shapiro–Wilk test. No distribution was found to be normal,

therefore, we used nonparametric paired Wilcoxon signed-rank

tests with a significance level of 5%, in order to determine

whether or not, there were significant differences between all

MCAs characteristics of each configuration (M0, M1, M2).

Three separate Wilcoxon signed-rank tests (corresponding to the

three configurations) were done for each characteristic. Hence,

we applied a Bonferroni correction leading to a significance

level of: p < 0.05/3 = 0.016. The study considered separately

the 19-person group for the AD mode and the 19-person group

for the FD mode.

1) Group One: FD Mode: The test showed that continuous

accelerations along both x and y axes presented significant

differences: along the x-axis, the Delay attribute with M1 was

greater than with M2 (Z = 2.18, p = 0.014); along the y-axis,

the delay using M0 was less important than the one perceived

using M1 (Z = 2.18, p = 0.015). In both cases, M1 presented a

greater delay score when compared with the other two configu-

rations regarding continuous accelerations. We can explain this

result by analyzing the M1 tracking task: when applying the M1

otolith organs model in an MPC framework, HF accelerations

are filtered out. Consequently, when minimizing the perceptive

error of the specific force, angular accelerations and thereby tilt

angles have more weight than linear accelerations. However, the

angular speed threshold generates a signal delay when tilt angles

are important. In line with this result, we can observe in Table IV

that for a braking use case, the M1 ∆t is greater than the one

obtained with the other two strategies. Although the∆t between

M0 and the others strategies was not substantial, i.e., about 0.2 s,

it was high enough to be noticed by the participants as a delay.



Fig. 7. Mean and SD for the MCA features with a statistically significant
difference using the FD mode condition.

The M1 delay attribute score was also greater in the slalom use

case when comparing M0 and M1 (Z = 2.39, p = 0.009). In the

same use case, M2 presented a greater delay value than the M0

strategy (Z = 2.16, p = 0.015).

Among other features, in the slalom use case more differences

were found between the configurations: the M0 strategy was

smoother than M2 (Z = 2.31, p = 0.011); Sense was almost

inverted using M1 instead of M2 (Z = 2.35, p = 0.009), and

Discomfort attribute was less noted with M0 than M1 (Z =
2.35, p = 0.009). Participants found the M0 and M1 strategies

smoother than M2. This may be due to the tracking performance

of strategy M2, as it privileges transient accelerations allowing

for greater signal jerk. In fact, HF accelerations and jerk can

contribute significantly to the perceived strength of motion and

are important in vehicle speed estimation [41]. Without them,

drivers could feel a different movement from what they expected,

as observed using the M1 strategy. However, despite being an

important parameter, we cannot conclude in this experiment,

whether or not, jerk improves the motion perception of the

simulator. It should also be noted that jerk is affected by the

weighting parameter λ in the cost function (8), since for the

M0 strategy, this was more penalized to allow feasibility of the

optimization problem overall Np.

One unexpected finding is that no significant difference was

found for transient accelerations along the x-axis, even though

motion restitution for this type of signal was considerably dif-

ferent for the three configurations, as shown in Fig. 3. Fig. 7

summarizes the means and standard deviations for the charac-

teristics with statistically significant differences.

2) Group Two: AD Mode: Compared with the FD mode,

there were more differences between characteristics, notably

the acceleration components along the x-axis. For HF accel-

erations, the M2 strategy was less smooth compared to M0

(Z = 3.32, p = 0.0004) and M1 (Z = 2.92, p = 0.002); mo-

tion perception was better with strategy M0 in contrast with

the strategies including a vestibular model, either M1 (Z =
2.07, p = 0.018) and M2 (Z = 2.24, p = 0.001); Discomfort

was greater with M1 (Z = 2.31, p = 0.010) and M2 (Z =
2.76, p = 0.003) when compared to M0, but there was not a

significant difference between M1 and M2. For LF accelerations,

M0 was still smoother (Z = 2.68, p = 0.004) and more com-

fortable (Z = 2.18, p = 0.014) than M2, and the M2 Amplitude

was larger compared to M0 (Z = 2.15, p = 0.015) and M1

Fig. 8. Mean and SD for the MCA features with a statistically significant
difference in the AD mode condition.

(Z = 2.62, p = 0.004). These results show that the M2 strategy

is more aggressive than M0 and M1, for both low and high

frequencies, which is consistent with the M2 motion tracking

for transient accelerations, but not for low frequencies. This

may imply that participants did not distinguish between the

two types of frequencies, making their opinion biased by the

high frequencies. Hence, in general, participants felt the M2

motion restitution along x jerkier than normal driving, which is

in accordance with the objective data shown in Table IV for Jx.

Overall, the M0 strategy was the most appreciated for motion

cueing along the x-axis as it scored better in comfort and move-

ment perception compared to the strategies using a vestibular

model in the control loop design. Only one difference was found

along the y-axis: Discomfort was greater for HF accelerations

when using M1 rather than M0 (Z = 2.12, p = 0.016). Fig. 8

shows the comparison between the parameters with statistically

significant differences for the AD mode group and the means

and standard deviations for each parameter. In short, participants

preferred the characteristics provided by the M0 strategy rather

than strategies integrating a vestibular system model. This can

be explained by the self-driving vehicle model. As explained

before, the model was based on a script controller that reacts

for different use cases, in which the acceleration profile depends

on the traffic model provided by the SCANeR studio software

as well as the vehicle model dynamics. Transient accelerations

were perceived aggressively, and therefore, the M0 MCA scored

better than the other two strategies, as it makes a correct balance

between HL and LF accelerations.

B. Autonomous Versus FD mode

In this part, we evaluate the differences between character-

istics of the different groups, free and AD modes. To do this,

nonparametric Mann–Whitney tests were used as there were

different populations. The means and standard deviations for

each characteristic that were statistically significant different

between both groups are shown in Fig. 9. We can see that there

is a difference in all situations, at least in sense, disorientation,

and delay. For these characteristics, subjects tended to rate more

badly the FD mode than the AD mode. We believe that this result

comes from a comparison between participants’ usual driving

behavior in real life and the simulator motion. Currently there

is no reference for AD and consequently, participants tended to

evaluate the AD mode instead of the simulator motion cues. This



Fig. 9. Mean and SD for the MCA features with statistically significant
differences between the autonomous and the FD modes: (a) strategy M0, (b)
strategy M1, and (c) strategy M2.

effect is salient when considering the M0 strategy: in the AD

mode, M0 was better appreciated than the other two strategies

concerning motion perception and orientation, however, in the

FD mode M0 did not stand up among M1 and M2. Another

observation that supports this hypothesis is the difference in

smoothness for the M2 configuration, i.e, in the AD mode, this

configuration was scored as aggressive, nevertheless in FD, the

M2 motion cueing was consistent with continuous and transient

accelerations, and in general, participants preferred this strategy

better than M1.

One of the limitations of the study is the disparity between

subjects shown in the standard deviations for most situations.

This means that part of the population had different opinions for

each strategy. However, this result was expected given the sub-

jectivity of the experiment. Another consideration is the influ-

ence of drivers’ adaptation to the simulator. Unfortunately, based

on the simulator and participants availability, all three strategies

were presented consecutively and randomly. Furthermore, the

motion control strategy for this experiment can influence the

drivers’ motion perception, and thus, their subjective answers.

Indeed, motion restitution was mainly based on the tracking

of the specific force. To obtain the specific force, we used

the tilt coordination technique, which combines rotational and

translational motion of the platform. However, if this technique

is not correctly implemented, it may generate an inaccurate

motion perception, as it does not correspond to a natural driving

movement. In addition, other studies have shown that the tilt

perception thresholds must be adapted according to the level of

acceleration to improve realism [3]. This leads us to believe that

some participants may have been influenced not only by the type

of model used in each strategy but also by the cueing strategy

itself. Moreover, the final perception of the movement may be

influenced not only by the stimuli of the vestibular system, but

also by the multisensory integration.

According to the last part of the questionnaire presented in

Section IV-C, seven participants preferred the M0 strategy and

12 participants preferred the M2 strategy which, in addition to

the dynamics of the platform, integrates the human perception

model. No participant chose the M1 strategy.

VI. CONCLUSION AND FUTURE WORK

This study described a driver-in-the-loop experiment in a

DS. Three strategies were compared using a real-time imple-

mentation of MPC-based MCA. The strategies depended on

the mathematical model used in the control-loop design: the

first one named M0 corresponded to the platform’s dynamic

model. The other two strategies additionally integrated Young–

Omang/Meiry’s and Telban and Cardullot’s vestibular sensor

models, named M1 and M2, respectively. The experiment com-

pared an AD and a FD mode. The study focused mainly on

motion perception for x–y HF and LF accelerations. Results

showed that the mathematical model has an impact on the MCA

restitution for both axes of movement. In FD mode, M2 strategy

showed appropriate behavior in lateral motion since the other

two were significantly smoother, e.g., inhibiting motion percep-

tion in the slalom use case. Besides, M1 configuration was the

least desired in this category since the simulator movement did

not correspond to a real driving compared to the M2 strategy, and

it was less comfortable than driving with the M0 strategy. Also,

in the discussion with the participants, the majority considered

that it was difficult to adapt to this strategy, even though it was

presented in a random order. They agreed that the movement, in

addition to being perceived with a delay, was inconsistent with

the visual environment. Moreover, we cannot assume that M2 is

the best strategy regarding motion perception as further research

is needed to conclude on the advantages of implementing the M2

vestibular system model over only the simulator’s model of M0.

Regarding the AD mode, we found that participants preferred

motion cueing provided by the M0 model as it offered less

discomfort, delay, and better simulation immersion than using

a vestibular system model. We believe that the strategies rating

was quite affected by the acceleration profile provided by the

autonomous vehicle behavior, which presented an instantaneous

response regarding transient accelerations, especially along the

x-axis. In this sense, configuration M2 was considered as too

aggressive in the AD mode as it restored more HF accelerations

compared to M0 and M1. The M1 strategy, on the other hand,

was not qualified as very aggressive, but participants noticed

discomfort and a wrong perception of movement when using it.

The delay attribute was less important in both modes for MCA

M0. One reason is that the additional vestibular system filters

for M1 and M2 strategies generates an additional time delay.

When comparing both driving modes, several differences were

found, especially regarding strategy M0. This indicates that it is

necessary to re-evaluate the AD mode and compare the types of

driving.

Summarizing all results, we can conclude that regardless of

the driving mode, the M1 strategy is the least preferred by

participants. This fact is explained by the lack of restitution

of transitory accelerations among others, a condition highly

necessary in MCAs since the perception of speed, the conditions

of the road and the vehicle behavior depend on it. Results provide

further evidence of the imperative need to select an appropriate

mathematical model to define the tracking task in MPC-based

MCA control design and the importance of including driver-

in-the-loop feedback to develop higher degree of realism and

accurate motion cues.



In this study, we only considered the subject’s motion per-

ception on the specific force. Therefore, to deeply understand

the drivers’ appreciation of the overall motion experience, we

could employ a continuous real-time evaluation for all degrees of

freedom as proposed in [42]. Future research will also look into a

deeper comparison between the M0 and M2 configurations using

larger and more representative populations. Additionally, we

will take into account the driving performance in order to give an

objective analysis to this study. We will also deploy a self-driving

model with human-like driving characteristics to provide a more

realistic and immersive simulator’s virtual driving environment.

Driving behavior is an important factor that must be considered

when defining an MCA as it can influence the way subjects

perceive movement in real life as well as in a DS.
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