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Abstract 

Immunosuppression strategies that selectively inhibit effector T cells while preserving 

and even enhancing CD4+FOXP3+ regulatory T cells (Tregs) permit immune self 

regulation and may allow minimization of immunosuppression and associated toxicities.  

Many immunosuppressive drugs were developed before the identity and function of 

Tregs were appreciated.  A good understanding of the interactions between Tregs and 

immunosuppressive agents will be valuable to the effective design of more tolerable 

immunosuppression regimens.  This review will discuss pre-clinical and clinical 

evidence regarding the influence of current and emerging immunosuppressive drugs on 

Treg homeostasis, stability, and function as a guideline for the selection and 

development of Treg-friendly immunosuppressive regimens. 

  



Introduction 

The identification of immunosuppressive medications, particularly calcineurin inhibitors 

(CNI), has allowed the field of transplantation to develop.  Contemporaneously, we have 

learned that the immune system can be re-educated to accommodate changing self and 

foreign tissues through disarming effector T cells and generation of regulatory T cells 

(Tregs).  There are many types of Tregs including CD4+ and CD8+ cells expressing the 

transcription factor FOXP3 and the IL-10-producing Tr1 cells.  In this review, we focus 

on the CD4+FOXP3+ subset.  These Tregs constitutively express CD25, the α chain of 

the IL-2 receptor that confers high sensitivity to IL-2.  Tregs are essential for immune 

homeostasis and tolerance to self and foreign antigens including allografts1,2.  Because 

of substantial toxicity of immunosuppression medications, there has been increasing 

interest in promoting transplant immune tolerance so that immunosuppression can be 

minimized or withdrawn.  Many immunosuppressants were designed to broadly mitigate 

T cell function, including that of Tregs.  This review focuses on the impact of 

immunosuppressive drugs on Tregs with the goal of identifying Treg-supportive 

immunosuppressive regimens and providing guidelines for rationalized design of 

therapeutics for promoting immune self regulation in transplantation. 

Development, homeostasis, and function of Tregs 

Tregs can develop from maturing CD4+CD8- thymocytes and from mature CD4+ T cells 

after they exit the thymus.  While Treg development in the thymus (tTregs) and in the 

periphery (pTregs) both depend on signaling through T cell receptors (TCR), there are 

differences in the role of TCR signaling intensity on these subsets of Tregs.  In the 



thymus, strong TCR signaling with CD28 costimulation, just below the threshold for 

negative selection, promote tTreg lineage commitment3.  In the periphery, persistent 

weak TCR stimulation along with IL-2, transforming growth factor-β (TGF-β) or retinoic 

acid is conducive to pTreg development 4, a process abrogated by strong costimulation.  

pTregs express FOXP3 and cell surface markers similar to that of tTregs.  While tTregs 

also express transcription factor HELIOS and cell surface protein neuropilin 1, pTregs 

generally do not, although some exceptions have been reported5-9.  In addition, DNA in 

tTregs is demethylated in the Treg-specific demethylated region (TSDR) in the FOXP3 

enhancer, whereas TSDR of pTregs is only partially demethylated7.  The incompletely 

demethylated TSDR leaves pTregs more prone to lose FOXP3 expression and function.  

Overall, tTregs are a stable lineage of cells with specificity toward thymically expressed 

self antigens; whereas pTregs are a more dynamic population recruited to ensure 

tolerance to new antigens encountered in the periphery.  Both populations are essential 

to immune tolerance10.  

Tregs require IL-2 to maintain their lineage stability, and because Tregs do not make IL-

2, they are dependent on IL-2 from other T cells and dendritic cells.  Tregs are highly 

sensitive to IL-2, due to their constitutively high expression of CD25 and amplified 

intracellular signal transduction downstream of the IL-2 receptor11.  Tregs can thus be 

considered the “first responders” to IL-2, competing with conventional T cells (Tconvs) 

for IL-2 as a mechanism to prevent unwanted immune responses.  Defects in the IL-2 

receptor, IL-2 signaling, or limited IL-2 availability leads to Treg destabilization.  On the 

other hand, very high levels of IL-2, either provided therapeutically or because of potent 

immune activation, override Treg suppression and allow immune responses to proceed.  



Thus, IL-2 signaling is essential to tolerance mediated by Tregs and the level of IL-2 is a 

critical determinant of immune activation versus tolerance. 

Tregs can modulate the stimulatory capacity of antigen presenting cells (APCs) by 

removing CD80 and CD86 from their surface through CTLA-4-mediated transcytosis12.  

The resulting reduction of co-simulation increases the threshold for Tconv activation.  

During an active immune response, TCR and cytokine stimulations induce Treg 

trafficking to inflammatory sites where they use a broader array of suppressive 

mechanisms to dampen inflammation and limit collateral tissue damage13.  Activated 

Tregs can also induce new pTregs with distinct alloantigen specificity leading to an 

“infectious” spread of tolerance14.   

Immunosuppressive medications inhibit many of these critical Treg pathways described 

above.  This off-target inhibition of Tregs may impede tolerance while preventing 

effector T cells from attacking allografts.  However, research in Treg signaling in recent 

years has revealed some distinct intracellular signaling pathways in Tregs versus 

Tconvs.  Knowing these distinctions will guide the use of immunosuppressive drugs to 

promote Tregs.  

Immunosuppression for transplantation 

Solid organ transplant recipients typically receive a combination immunosuppressive 

regimen given at the time of transplantation (induction therapy) and during the 

maintenance phase15.  Induction agents may be broadly classified as depleting or non-

depleting depending on whether they act by killing or inhibiting immune cells.  Depleting 

induction agents include anti-thymocyte globulin (Thymoglobulin, Genzyme; Atgam, 



Pfizer), monoclonal antibodies (mAb) against CD3 (Muromonab, Janssen-Cilag), and 

anti-CD52 mAb (alemtuzumab; Campath, Genzyme).  Non-depleting agents include 

methylprednisolone and anti-CD25 mAb basiliximab (Simulect, Novartis) and 

daclizumab (Zenapax, Hoffmann-La Roche).  The use of induction immunosuppression 

strongly suppresses immune response soon after transplant when inflammation 

associated with surgery and ischemia make the graft most vulnerable to immune 

attacks15. 

Maintenance therapies vary by type of organ, institutional preference, and organ 

recipient demographics.  A multimodal approach is commonly employed to prevent 

rejection by blocking immune responses through several pathways.  Commonly used 

immunosuppressive drugs include CNIs, mammalian Target of Rapamycin (mTOR) 

inhibitors, corticosteroids16, mycophenolate preparations, CTLA4-Ig, and anti-CD20 

mAb.  A host of newer agents targeting other cell surface markers and intracellular 

signaling pathways are at various stages of preclinical and clinical development (Figure 

1)17-19.  Below, we will provide an agent-by-agent review of their effects on Treg 

maintenance, induction, and function in preclinical models and in clinical settings.  

Impact of approved immunosuppressive drugs on Tregs 

Anti-thymocyte globulin 

Rabbit anti-thymocyte globulin (rATG, Thymoglobulin) is used as an induction therapy in 

patients with high immunologic risk, to permit delayed introduction of CNI, or to treat 

steroid-refractory acute cell-mediated rejection20.  rATG is a polyclonal preparation from 

rabbits immunized with human thymocytes and has broad specificity against multiple 



antigens expressed by thymocytes.  It depletes CD4+ and CD8+ T cells for many 

months, with CD8+ T cells recovering more rapidly and completely than CD4+ T cells21. 

Mechanisms of ATG mediated immunosuppression include apoptosis and induction of 

T-cell anergy at low doses, antibody-dependent cellular cytotoxicity (ADCC) at 

moderate doses, and complement-mediated lymphocyte lysis at high doses22-25.  At 

clinical doses of 1 - 2 mg/kg/day, ADCC is likely to be the primary mechanism while 

lymphocyte lysis occurs at supra-therapeutic dosage (up to 3.5 mg/kg/day).  ATG 

induction of apoptosis depends on IL-2, which would be limited by concomitant use of 

medications that inhibit IL-2 or its receptor22-24.  ATG may further act to inhibit 

endothelial adhesion and to deplete lymphocyte reservoirs in peripheral lymph 

nodes23,26,27.   

Treatment of human peripheral blood lymphocytes with low-dose ATG in vitro induces 

expression of CD25 and FOXP3 in CD4+CD25- cells, although whether these in vitro 

stimulated cells acquire immunosuppressive properties seems context dependent28-31.  

ATG induction therapy in vivo reduces the absolute number of Tregs, but less than that 

for Tconvs, favorably altering the Treg/Tconv ratio29,32,33.  Furthermore, Tregs recover 

faster during immune reconstitution following ATG treatment, contributing to the 

sustained elevation of Treg/Tconv ratio34.  However, high-dose ATG impairs thymic 

generation of Tconv and Tregs cells in allogeneic hematopoietic stem cell 

transplantation34,35.  ATG therapy may also modulate antigen-specific immune 

responses by inducing memory-like Tregs, as well as other protective T cells such as 

Th2 and IL-10-producing Tr1 cells36.  Thus, immunological impact of ATG is not only 



limited to T cell depletion, but also in relative preservation of Tregs especially at lower 

doses.   

Anti-CD25 mAb 

Anti-CD25 mAb basiliximab and daclizumab are widely used induction agent after solid 

organ transplantation.  Basiliximab is a chimeric mouse-human IgG1 antibody and 

daclizumab is a humanized IgG1 antibody, both of which block the IL-2-binding site of 

CD2537-40.  Anti-CD25 mAb were originally developed to suppress immune response by 

targeting recently activated effector T cells that express CD25.  Anti-CD25 mAb can 

also inhibit activation of CD25- T cells by blocking CD25+ dendritic cells from trans-

presentation of IL-2 (a process of donating CD25 complexed IL-2)41.  Other CD25+ pro-

inflammatory cell types, such as lymphoid tissue-inducer cells and innate 

lymphocytes42, are reduced following daclizumab treatment during multiple sclerosis 

(MS) flares43,44.  These immunosuppressive mechanisms may contribute to the positive 

clinical outcomes of anti-CD25 mAb in MS37,45,46.   

Treatment with basiliximab in transplant patients can lead to a transient reduction of 

both Tregs47-49 and down-modulation of CD25 expression on Tregs without deleting the 

cells or impairing their functions50,51,52.  A recent study finds that donor-reactive Tregs is 

minimally impacted in lung transplant patients after basiliximab induction53.  Tregs 

normally express low levels of the IL-7 receptor α chain CD12754,55.  In MS patients, 

CD25lo Tregs are able to increase CD127 expression and IL-7 responsiveness following 

daclizumab treatment, explaining Treg rescue in the absence of IL-2 signaling56.  

Moreover, daclizumab increase CD56hi NK cells by increasing the bioavailability of IL-2.  



These CD56hi NK cells suppress immune responses by killing autologous activated T 

cells or allogeneic antigen presenting cells40,43,56-59.  Overall, anti-CD25 induction 

inhibits effector T cells and its effect on Tregs appears to be transient and of uncertain 

clinical significance.  Anti-CD25 mAb may also promote Treg-independent tolerogenic 

mechanisms that may offset anti-CD25 mAb impairment of Tregs.   

Anti-CD52 mAb 

Alemtuzumab (CAMPATH-1H, Genzyme) targets CD52 that is highly expressed on T 

cells and B cells60,61.  Although alemtuzumab gained FDA approval for the treatment of 

leukemia, it has found off-label efficacy as an induction agent in transplantation due to 

its profound depletion of T and B cells62-65.  The mechanisms of action and effects of 

alemtuzumab are quite similar to those reported for ATG.  ADCC and complement 

activation via anti-CD52 are the most likely mechanisms for alemtuzumab-mediated 

killing of CD52+ cells, with cell death proportional to surface expression of CD5260,66-69.  

Alemtuzumab preferentially depletes activated Tconvs over Tregs, resulting in a 

transient elevation of the Treg to Tconv ratio70-73.  Alemtuzumab can induce conversion 

of Tconv into Tregs73-75, increase anti-inflammatory cytokines IL-4, IL-10 and TGF-β, 

and suppress pro-inflammatory cytokines IFN-γ and IL-1776.  

CD52 is shed from the cell surface through a phospholipase C-dependent mechanism77.  

Soluble CD52 (sCD52) prevents T cell activation via binding to the inhibitory molecule 

sialic acid-binding immunoglobulin-like lectins-10 (Siglec-10) on activated T cells77,78.  

Addition of sCD52 to activated Tconvs in vitro inhibits T cell proliferation through a 

Siglec-10 dependent mechanism78-80.  sCD52 also prevents leukocyte adhesion to 



vascular endothelium by blocking Siglec-10 interaction with vascular adhesion protein-1, 

further modulating the local immune response81.  These findings suggest immune 

regulatory functions for sCD52 protein, which may also be blocked by alemtuzumab.  

CNI 

CNIs, tacrolimus (FK506) and cyclosporine (Cyclosporin A, CsA), are the most 

commonly used drugs for maintenance immunosuppression following solid organ 

transplantation82.  They act by inhibiting the intracellular phosphatase calcineurin, which 

dephosphorylates cytosolic nuclear factor of activated T cells (NFAT) to allow for its 

nuclear translocation and transcriptional activation of cytokine genes such as IL-283,84.  

IL-2 is a regulator of proliferation, survival, and maturation for all T cell subtypes, 

including Tregs85.  While the function of IL-2 on Tconvs can be substituted by other 

cytokines, IL-2 is indispensable for Treg development, homeostasis, and function86. 

CNIs impair Tregs by directly inhibiting Treg activation, inhibiting the generation of 

pTregs, and indirectly by limiting IL-2 production by Tconvs.  CNIs inhibit Treg 

proliferation in a dose-dependent fashion in vitro87.  The FOXP3 promoter and 

enhancers contain multiple NFAT binding sites.  NFAT binding to the CNS1 enhancer is 

important to pTreg induction88 and its binding to CNS2 enhancer is critical for Treg 

stability89-91.  Decreased FOXP3 mRNA expression in Tregs exposed to cyclosporine 

correlates with reduced suppressor activity92.  Treatment with tacrolimus also increases 

FOXP3- TSDR-demethylated “ex-Tregs”, suggesting that CNIs may transform Tregs into 

Tconvs91,93.  

The effects of CNIs on Tregs are dose and duration dependent.  High-dose, but not low-



dose, CNI exposure alters gene expression in Tregs87.  A portion of NFAT constitutively 

resides in the nucleus of most Tregs, making Tregs resistant to short-term low-dose 

action of CNIs94-97.  CNIs also indirectly affect Tregs by inhibiting IL-2 expression from 

Tconvs.  The decrease of FOXP3 expression in Tregs by cyclosporine is restored by 

addition of IL-292,98.  Combining IL-2 with CsA resulted in an increase of Tregs by 

permitting IL-2-induced Treg expansion and function while preventing antigen-specific 

Tconv proliferation in vivo98.  These studies suggest that a combination of low-dose 

CNIs and low-dose IL-2 may achieve the desired effect of selectively inhibiting Tconvs 

while sparing Tregs.  A recent report in non-human primates demonstrates that IL-2 

therapy broke kidney allograft tolerance induced by mixed bone marrow chimerism 

despite an increase in Tregs99.  Breaking tolerance in this study was IL-2 dose 

dependent and required a lower dose in primates with lymphoid aggregates in the 

allografts than in those with pristine grafts.  In comparison, following autologous stem-

cell transplantation, low-dose IL-2 therapy was found to be effective in promoting Tregs 

and ameliorating GvHD100-102.  The disparities in these findings may be rooted in the 

dose of IL-2 used and the immunological status of the recipients.  None of these studies 

evaluated the concurrent use of CNI with low-dose IL-2 as an approach to reduce 

impairment of Tregs by CNI. 

Current clinical trials are exploring CNI-sparing protocols to minimize nephrotoxicity of 

CNIs103.  Although the data are promising for restoration of Tregs, some patients need 

to resume CNIs because of rejection.  As a result, the OPTN/SRTR Annual Data Report 

in 2013 recommend against CNI withdrawal82.  The finding that Tregs are resistant to 



low-dose CNI and combing CNIs with sirolimus restore Tregs93,104 suggest that reducing 

CNI dose may not only spare patients from the nephrotoxicity, but also spare Tregs.   

Mycophenolate 

Mycophenolate Mofetil (MMF) is a mainstay of immunosuppression regimens in 

transplantation, typically in combination with CNI and prednisone.  Following in vivo 

conversion to its active form of mycophenolic acid, MMF inhibits de novo purine 

synthesis by blocking the enzyme inosine monophosphate dehydrogenase (IMPDH)105.  

B cells and T cells are dependent on this pathway for proliferation, because they cannot 

bypass this requirement using the salvage pathway of purine biosynthesis106.  

Additionally, the type II isoform of IMPDH, found in activated T and B cells, is five times 

more sensitive to mycophenolic acid than the type I isoform present in all cells, including 

resting lymphocytes106,107.  MMF may also act by down-regulating costimulatory ligands 

on dendritic cells, indirectly impairing T cell activation108.  Further mechanisms have 

implicated MMF in induction of T cell apoptosis, inhibition of IL-1 expression, and 

impairment of nitric oxide production106. 

Treatment of murine Tregs with MMF in vitro does not impair the viability or function of 

Tregs in MLR109, and treatment of activated human PBMC with MMF does not alter 

Treg phenotype but inhibits pro-inflammatory Th1 and Th17 responses110.  MMF 

treatment promotes Treg predominance over Th17 cells by inhibiting T cell Ig mucin-1 

expression, a protein that promote differentiation into effector T cells than Tregs111,112.  

However, administration of supra-therapeutic MMF monotherapy to mice receiving Treg 

cell therapy reduced the efficacy of Tregs113.  In liver transplant recipients, conversion 



from CNI to MMF with a one-time dose of daclizumab showed an increase in the 

percentage of Tregs from baseline114.  Analysis of kidney transplant patients on stable 

immunosuppression regimens identified higher levels of CD4+CD25highFOXP3+ Tregs in 

patients receiving MMF versus everolimus115.  Overall, preclinical and clinical evidence 

thus far suggest that MMF is compatible with Treg homeostasis and function.   

Corticosteroids 

A multitude of anti-inflammatory mechanisms have been attributed to corticosteroids.  

Corticosteroids bind their cytosolic glucocorticoid receptor, translocate to the nucleus, 

and inhibit NF-κB-mediated transcription, resulting in broad suppression of pro-

inflammatory cytokines116-118.  Glucocorticoids may also bind to specialized receptors on 

T cells, which uncouple TCR signaling from downstream signal transduction 

pathways118,119.  Extracellular steroid binding can impair T cell interaction with APCs, 

down-regulate leukocyte rolling and adhesion, and disrupt the T cell cytoskeleton to 

inhibit migration120,121.  Corticosteroids also alter the balance of T cell subsets to favor a 

predominance of Th2 cells and Tregs122,123.  

In a murine model of MS, treatment with dexamethasone and IL-2 expands Tregs124.  

Patients treated with glucocorticoids for autoimmune and atopic diseases have likewise 

demonstrated an increase in Treg percentage amongst T cell subsets125,126.  In 

transplantation, treatment with methylprednisolone during kidney rejection episodes 

alters T cell composition to favor highly-suppressive DRhighCD45RA- Tregs127.  Steroids 

are able to induce pTregs by promoting the expression of glucocorticoid-induced leucine 

zipper (GILZ), which facilitates TGF-β signaling and FOXP3 expression128.  GILZ 



appears to be a strong inducer of FOXP3+ expression, but deletion of GILZ does not 

completely inhibit FOXP3+ expression in Tregs, suggesting that glucocorticoids promote 

Tregs through multiple, redundant mechanisms129.  Overall, corticosteroids likely benefit 

Treg prevalence and activity.  Additionally, steroids may also create a favorable immune 

environment for Tregs through modulation of local cytokine expression. 

mTOR Inhibitors 

Two mTOR inhibitors are currently FDA approved for transplantation, sirolimus 

(rapamycin, Rapamune) and everolimus (Zortress).  Rapamycin, first identified as a 

potent antifungal isolated from Streptomyces hygroscopicus bacteria, was also found to 

have immunosuppressive capabilities by inhibiting the serine/threonine kinase mTOR 

downstream of phosphatidylinositol 3-kinase (PI3K) and Akt130,131.  mTOR acts through 

two distinct complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). 

Rapamycin is more effective at inhibiting mTORC1, and is able to inhibit mTORC2 only 

after prolonged exposure132-134.  The two mTOR complexes mediate distinct cellular 

activities.  Th1 and Th17 differentiation of CD4+ T cells are dependent on mTORC1, 

whereas Th2 differentiation requires mTORC2135.  However, both mTOR complexes 

promote glycolytic metabolism in CD8+ T cells and drive effector CD8+ T cell 

differentiation at the expense of memory CD8+ T cell formation136.  Thus, mTOR 

deficiency or rapamycin treatment inhibits CD8+ effectors but paradoxically enhances 

CD8+ T cell memory response137.  

The PI3K-Akt-mTOR signaling axis critically controls Treg development, homeostasis 

and function138.  Activation of CD4+ Tconvs while blocking PI3K, Akt, or mTOR signaling 



leads to Treg induction in vitro139.  In committed Tregs, this signaling axis is suppressed 

by high expression of PTEN, an intracellular phosphatase that inhibits PI3K-Akt-mTOR 

signaling.  Excessive activation of this axis, as seen in PTEN-deficient Tregs, leads to 

Treg destabilization due to mTORC2 over activation140,141.  Tregs alternatively employ 

the kinase PIM2 for cell growth and activation142, and as a result,  Tregs are able to 

proliferate in the presence of rapamycin143-145.  This property of rapamycin has been 

exploited for manufacturing Tregs for therapeutic applications.  Addition of rapamycin in 

Treg expansion cultures inhibits Tconv outgrowth while preserving Treg identity, yielding 

purer and more potent cellular products146.  In kidney transplant recipients, patients on 

sirolimus maintenance immunosuppression show a four-fold increase in circulating 

Tregs when compared to patients receiving cyclosporine147.  Additionally, converting 

from CNIs to a rapamycin-based regimen produces a sustained increase in peripheral 

Tregs for months following conversion93,104.  However, this increased proportion of 

Tregs failed to correlate to significant improvement in clinical outcomes, with a mild 

protective benefit in GFR but no significant difference in rejection, graft loss, or 

development of neoplasm147-149.  It is worth noting that rapamycin does not promote 

Treg expansion, and the enrichment of Tregs seen in vitro and in vivo by rapamycin is 

due a higher sensitivity of Tconv to rapamycin than Tregs. Treg resistance to mTOR 

inhibition is not absolute.  In fact, addition of rapamycin to ex vivo Treg cultures 

dramatically reduces Treg proliferation, but less so than it inhibits Tconv proliferation146.  

Selective deletion of mTORC1 in mouse Tregs leads to impairment of Treg function and 

systemic autoimmunity, demonstrating that mTORC1 is required for proper Treg 

activation150.  Taken together, targeting mTOR may promote pTreg induction and 



selectively suppress Tconvs while sparing Tregs.  This Treg favoring effect is dose-

dependent and high doses of mTOR inhibitors will also negatively impact Treg function.  

CTLA4-Ig 

Productive T cell activation requires TCR signaling along with costimulation through 

CD28 interaction with CD80 or CD86 on APCs18.  At the same time, CTLA-4, a CD28 

homolog expressed on activated T cells, bind to CD80 and CD86 with high affinity to 

inhibit T cell activation.  CTLA4-Igs are genetically engineered soluble fusion proteins 

that bind to CD80 and CD86, thereby inhibiting CD28 costimulation.  Two CTLA4-Igs, 

belatacept and abatacept are currently available; both consist of the extracellular 

domain of human CTLA4 linked to a modified Fc of human IgG1, with belatacept 

containing modifications to increase affinity for CD80 and CD86.  Currently, belatacept 

is FDA approved as an immunosuppressant for kidney transplantation151.  

While CD28 costimulation is critical for Tconv activation, it is also essential for tTreg 

development and homeostasis152.  CD28-deficient mice have reduction in Tregs leading 

to exacerbated autoimmune diseases in autoimmune-prone mice152-154.  Effector T cell 

activation requires higher CD80 and CD86 expression than is needed for maintaining 

Treg homeostasis; thus, partial CD80 and CD86 blockade prevents the emergence of 

effector T cells while permitting Treg homeostasis in mouse models and in kidney 

transplant patients47,155.  Moreover, while complete absence of CD80 and CD86 

abrogate pTreg genesis, strong costimulation through CD28 drives effector T cell 

programming at the expense of pTreg induction.  Thus, partial CD80 and CD86 

blockade using CTLA4-Ig may favor pTreg development156.  CTLA4-Ig may also operate 



independently of blocking CD28 signaling by inducing dendritic cell expression of 

indoleamine 2,3-dioxygenase, leading to tryptophan catabolism, T cell apoptosis, and 

activation of Tregs157,158.  CTLA4-Ig is shown to promote nitric oxide production by 

macrophages, contributing to Treg generation while inhibiting pro-inflammatory 

cytokines159-161.  Long-term clinical follow-up of kidney transplant patients treated with 

belatacept demonstrates superior graft function at 5 years without differences in graft or 

patient survival when compared to CNI-based immunosuppression162,163.  Studies in 

liver transplantation are less encouraging164 and CTLA4-Ig has not been well studied in 

other solid organ transplants.  Overall, CTLA4-Ig is compatible with Treg function at the 

right dose and can be an effective replacement for CNI at thwarting rejection with 

minimal renal toxicity. 

Impact of alternative immunosuppressive agents on Tregs 

Anti-CD20 mAb 

Rituximab is an anti-CD20 mAb that depletes B cells, most frequently used in 

transplantation for management of antibody-mediated rejection and ABO-incompatible 

kidney transplants165.  Current data investigating the impact of rituximab on Tregs are 

mostly derived from autoimmune models, with somewhat conflicting results.  B cell 

depletion with rituximab in a mouse model of arthritis correlated with increases in Treg 

number and function166.  Similarly, patients with systemic lupus erythematosus showed 

an increase in the percentage of CD4+CD25bright Tregs with rituximab treatment167,168.  

However, another report showed that B cells were critical for maintenance of Tregs in 

autoimmune disease169.  Within the transplant population, a study evaluated the 



addition of rituximab induction to standard immunosuppression in renal transplantation 

and revealed no detrimental effect on Tregs170.  Rituximab may have further use in the 

transplant population, as it has shown efficacy in both prophylaxis against acute GVHD 

and treatment of steroid-refractory chronic GVHD in allogenic stem cell transplant 

patients, which is believed to be a B cell-dependent process171-173.  More studies within 

the transplant population are needed to better understand the effects of B cell depletion 

on Tregs167,174-176.   

LFA-3 Fusion Protein 

Alefacept (Amevive, Astella Pharma) is a fusion protein of LFA-3 and human IgG1 to 

target CD2 that is highly expressed on memory T cells.  Alefacept prevents T cell 

activation by blocking CD2-mediated costimulation and enhances NK cell-mediated 

lysis of CD2-expressing cells.  Alefacept use led to selective loss of CD40RO+ memory 

T cells without affecting native T cells in psoriasis patients177.  In a more recent phase II 

trial in patients with type 1 diabetes, alefacept was found to spare Tregs, leading to an 

increased ratio of Tregs to memory T cells178.  Alefacept prolonged kidney allograft 

survival in nonhuman primates when combined with abatacept by targeting CD28- 

effector T cells179,180.  However, two follow-up studies in nonhuman primates using an 

optimized immunosuppressive regimen of belatacept and intramuscular sirolimus found 

that addition of alefacept conferred no benefit in graft survival and increased risk of 

opportunistic infections181,182.  Moreover, dramatic reduction in the frequency of Tregs 

was observed in monkeys that received additional alefacept.  These studies used a 

higher dose of alefacept than previous studies in addition to the optimized concurrent 

immunosuppressions.  These dosing differences may explain the distinct efficacy 



outcomes and discordant findings with respect to Tregs.  In human transplant patients, 

addition of alefacept to the standard immunosuppressive regimen of tacrolimus, MMF, 

and corticosteroids was well tolerated, but did not reduce acute rejection rates183.  

Unfortunately, this study did not report the impact of supplemental alefacept on Tregs.  

Since memory T cells pose a significant threat to transplanted grafts, preservation of 

Tregs while reducing memory T cells is a highly desirable goal for optimizing 

immunosuppression in transplant patients.  Future studies are needed to determine if 

alefacept could benefit patients with higher immunological risks such as those with 

autoimmune diseases, HIV infections, or those prone to rejection on a belatacept-based 

regimen. 

JAK3 Inhibitors 

Janus associated kinase 3 (JAK3) transduces signals downstream of CD132, which is 

the common gamma chain shared among many cytokine receptors including receptors 

for IL-2184,185.  JAK3 signaling is critical to normal homeostasis and function of T cells, B 

cells, and NK cells.  The importance of JAK3 to normal immune function is 

demonstrated by the severe combined immunodeficiency in patients with inborn JAK3 

mutations184,186.  Thus, JAK3 inhibitors such as tofacitinib (Xeljanz, Pfizer) can broadly 

affect many immune cells including various CD4+ T helper subsets, CD8+ T cells, NK 

cells, as well as Tregs.  Although mouse studies of JAK3 inhibitors have shown 

preservation of Tregs, JAK3 inhibitor use at 30 mg twice daily in transplant patients 

partially depletes CD4+CD25bright Tregs187.  Early clinical trials in kidney transplant 

patients found that this dose of tofacitinib led to a trend toward higher rejection and 

increased infections, whereas 15 mg twice daily was comparable to CNI in incidences of 



rejection and infections188.  However, the impact of low-dose tofacitinib on Tregs and 

other immune cells was not reported. An in vitro analysis of tofacitinib inhibition of 

STAT5 phosphorylation showed that CD25-/dim T cells were nearly twice as susceptible 

to JAK3 inhibition as CD4+CD25bright T cells, suggesting that lower doses of tofacitinib 

may preferentially inhibit Tconvs that have lower expression of CD25189.   

Anti-LFA-1 Antibodies 

Leukocyte function antigen-1 (LFA-1) is a cell surface adhesion molecule expressed on 

a variety of leukocytes that controls leukocyte transmigration from blood to peripheral 

tissues190.  In T cells, LFA-1 is also essential for the establishment of an immunologic 

synapse between T cells and APCs.  Similar to CD2 described above, LFA-1 

expression is higher on memory T cells than on naïve T cells.  Anti-LFA-1 antibodies 

(efalizumab; Raptiva, Genentech) impair the stimulatory interaction of naïve and 

memory T cells.  The addition of efalizumab to full-dose CNI maintenance therapy led to 

profound immunosuppression and increased incidence of post-transplant 

lymphoproliferative disorder in kidney transplant recipients191.  On the other hand, 

efalizumab allowed reduction of CNI dosing by half without increasing rejection.  In islet 

transplantation, a combination of ATG induction and efalizumab-based maintenance 

immunosuppression allowed patients to achieve insulin independence on a steroid-free 

CNI-free regimen192.  Surprisingly, this regimen also led to a dramatic rise of the 

percentage of Tregs to 30 to 70% among circulating CD4+ T cells in all study 

participants192.  This finding suggests that efalizumab differentially affects Treg versus 

Tconv homeostasis and/or trafficking. Efalizumab was withdrawn from market because 



of incidences of serious infections in psoriasis patients. However, the use of efalizumab 

in transplantation, particularly as an induction agent, warrants further exploration.  

Anti-IL-6R mAb 

IL-6 is produced early by a wide variety of immune and non-immune cells in response to 

acute injury and elicits its cellular actions by binding to IL-6R.  IL-6R dimerizes with a 

transmembrane protein gp130, which is responsible for transmitting intracellular signals. 

IL-6R can shed from the membrane generating a soluble form of the receptor (sIL-6R) 

that can complex with IL-6 and activate cells that lack the membrane-bound IL-6R but 

express gp130. This “trans-signaling” process is known to be important in the transition 

from acute to chronic phases of inflammation193.  IL-6 has pleotropic effects including 

granulopoiesis, B cell growth and maturation, and T cell proliferation and differentiation.  

Notably, IL-6 occupies a unique position in determining the fate of naïve T cells.  In the 

presence of IL-6, TGF-β drives naive T cells into proinflammatory Th17 cells, whereas 

in the absence of IL-6, TGF-β induces pTregs194.  In addition, IL-6 renders Tconvs 

resistant to Treg suppression and directly destabilizes Treg by inhibiting FOXP3 

expression195-197.  IL-6 has been implicated in frailty, which is an emerging risk factor for 

poor transplant outcomes198,199.  Thus, IL-6 critically regulates Treg number and 

function, and the level of IL-6 in patients may impact to transplant outcomes.  

Tocilizumab (Actemra) is a recombinant humanized anti-IL-6R monoclonal IgG1 

antibody that prevents IL-6 from binding to membrane-bound and soluble IL-6R.  

Tocilizumab is currently FDA-approved for the treatment of rheumatoid arthritis and 

juvenile idiopathic arthritis. Tocilizumab treatment leads to a significant and sustained 



increase in the proportion of Tregs in patients with rheumatoid arthritis200,201.  In 

transplantation, blocking IL-6 leads to decreased IFN-γ and IL-17 mRNA, reduced 

alloantigen-stimulated T cell proliferation, increased proportion of Tregs, and prolonged 

allograft survival in mouse models202-204.  In humans, IL-6 is associated with acute and 

chronic rejections and IL-6 levels correlate with the degree of inflammation in the 

allografts205-210.  The use of tocilizumab with intravenous immunoglobulin in sensitized 

kidney transplant patients shows improved donor-specific antibody levels similar to the 

results obtained in a mouse model211,212.  Together, anti-IL-6R has multiple anti-

inflammatory properties and may favor the function and stability of Tregs.  Future 

studies are needed to determine the effects of tocilizumab on Tregs in transplant 

patients. 

Anti-CD28 Antibodies 

CTLA-4Ig blocks CD80- and CD86-mediated costimulation through CD28 but also 

blocks CTLA-4 engagement with CD80 and CD86 and CD80 with to PDL-1213,214.  

Blockade of T cell checkpoints CTLA-4 and PD-1 is a major breakthrough in cancer 

treatment, which underscores the importance of these pathways in immune 

regulation215.  Anti-CTLA-4 and anti-PD-1 therapies in transplant recipients with 

metastatic melanoma provide insights on how these pathways contribute to alloimmune 

responses.  So far, 5 published reports described 6 cases of kidney or liver transplant 

recipients receiving checkpoint blockade.  Four patients (two liver and two kidney 

recipients) received anti-CLTA-4, with all four showing tumor regression without long-

term impairment of graft function216-218.  One kidney transplant recipient showed tumor 

regression with anti-PD-1 therapy, but lost kidney graft to acute cellular rejection219.  



One kidney transplant recipient received initial anti-CTLA-4 therapy without rejection or 

tumor regression, but follow-up anti-PD-1 therapy precipitated graft rejection while 

inducing tumor shrinkage220.  These early experiences suggest that PD-1, but not 

CTLA-4, may be crucial in suppressing alloreactive T cells in patients with stable graft 

function.  Nonetheless, blockade of CD28 using anti-CD28 mAbs more specifically 

targets the immune activation function of this complex network of activators and 

inhibitors.  However, many anti-CD28 mAbs have agonist activities.  Although agonist 

anti-CD28 mAbs in rodents show preferential augmentation of Tregs and therapeutic 

efficacy in autoimmune diseases, an early human trial revealed life-threatening cytokine 

storm in healthy volunteers after receiving agonist anti-CD28 mAb221.  Monovalent anti-

CD28 Fab lacking an Fc region abrogates agonist activity and effectively blocks T cell 

activation222-226. When evaluated in animal models of organ transplantation, monovalent 

anti-CD28 mAbs are able to protect allografts from acute and chronic rejection while 

increasing the proportion of peripheral CD4+Foxp3+ Tregs223,225,227.  These favorable 

pre-clinical findings has led to an ongoing phase I trial in healthy subjects to define the 

safety and tolerability of this therapy in humans with potential future development in 

transplantation and autoimmune diseases.   

Inhibitors of TNF family ligands and their receptors 

TNF family ligands, such as TNFα, CD40L, OX40L, and 41BBL, are primarily 

proinflammatory by promoting activation of both innate and adaptive immunity.  Each 

member and their respective receptors are all potential targets for immune modulation.  

We will briefly summarize preclinical and clinical experiences of antagonists targeting 



three members of the TNF family that have been most studied in the context of 

transplantation. 

Anti-TNFα mAb infliximab (Remicade, Janssen Biotech) is able to down-regulate pro-

inflammatory cytokines in a number of autoimmune diseases, and its use has been 

shown to increase functional Tregs in RA patients228-230.  Induction therapy containing 

anti-TNFα and T cell depleting agents in clinical islet transplantation leads to higher rate 

of insulin independence when compared to anti-CD25-based induction231. 

CD40 and CD40L have critical functions in regulating T and B cell function, through their 

co-stimulatory interaction in the activation of naïve T cells and induction of high affinity 

antibody production.  In the non-obese diabetic mouse model, CD40L deficiency impairs 

effector T cell function without impacting Tregs, and stimulation through CD40 on APC 

rendered the cells resistant to Treg-mediated suppression232,233.  These findings 

suggest that targeting the CD40/CD40L interaction may selectively block effector cell 

differentiation while preserving function of Tregs.  Indeed, CD40L blockade showed 

remarkable efficacy in promoting allograft tolerance in murine and non-human primate 

models.  Clinical translation of this strategy was halted due to a high incidence of 

thromboembolism234.  Since thrombus stabilization by anti-CD40L is dependent on Fc 

receptor binding and mediated by CD40L binding to beta 3 integrin, not CD40, 

alternative strategies using anti-CD40L and CD40-targeting antibodies which bypass Fc 

receptor binding are being evaluated in preclinical and early clinical trials235-239. 

OX40L is constitutively expressed by Tregs and induced on Tconvs after activation.  

Blocking antibodies to OX40L inhibit memory T cell function and allow for Treg 



expansion in murine cardiac allograft models240,241.  Costimulation through OX40L 

abrogates conversion of Tconv to Tregs in vitro whereas OX40L synergizes with IL-2 to 

induce proliferation of Tregs that have already developed.  OX40 stimulation alone 

induces moderate Treg proliferation but down-regulates FOXP3 expression and 

increases expression of PD-1242-244.  Addition of IL-2 to OX40L induced more robust 

Treg proliferation while maintaining high FOXP3 expression.  In transplant patients on 

CNI when IL-2 availability may be reduced, inhibition of OX40L may prevent 

destabilization of formed Tregs and promote pTreg generation.  

Vitamin D 

Although not normally considered an immunosuppressant, vitamin D has potent 

immune modulatory activities on many cells types245.  Conversion of Vitamin D into its 

biologically active form 1,25-OH vitamin D3 starts in the skin and completes in the 

kidney by renal tubule cells.  Macrophages are also capable of producing vitamin D3 

from its precursors, providing a local source of vitamin D3 at site of immune activation.  

Vitamin D3 is anti-inflammatory and promotes immune regulation via IL-10 and Treg 

induction.  The immunologic effects of vitamin D deficiency in the kidney transplant 

population – where end-stage renal disease leads to dysregulation of vitamin D 

metabolism – can persist well beyond successful transplantation of a renal allograft.  

Low vitamin D levels are predictive for deterioration in allograft glomerular filtration 

rate246,247 and correlate with acute rejection, infection, and mortality in lung transplant 

patients248.  Given the potentially significant immunologic impact of vitamin D deficiency 

and the safety of vitamin D supplementation, normalization of vitamin D levels should be 

recommended in the transplant population.   



Conclusion 

Modifying immunosuppression regimens to selectively inhibit effector and memory T 

cells while permitting Treg development, survival, and function could theoretically allow 

for minimization of immunosuppressive drugs and favor tolerance induction.  Current 

knowledge of Treg biology reveals numerous distinctions between Tregs and Tconvs 

that may be targeted therapeutically to favor Tregs (Figure 2).  Many of these 

distinctions, such as IL-2 responsiveness, CD28 and mTOR dependence, CNI 

sensitivity, and resistance to lymphodepletion are not absolute but quantitative.  Thus, 

selection of Treg-friendly immunosuppressive regimens not only has to consider which 

drugs to use, but also what dose to apply.  Many immunosuppressive drugs currently 

used in transplant patients are compatible with Tregs at lower doses.  It is possible that 

a combination of multiple immunosuppressants at low-dose would be better able to 

support Tregs while adequately preventing rejection while minimizing toxicity.  When 

evaluating new immunosuppressive regimens, close monitoring of the numbers, 

activation status, and function of Tconvs versus Tregs, in addition to clinical outcomes, 

will help to enrich our knowledge and guide future development of tolerogenic therapies 

for transplantation.  It is important to note that the high proportion of Tregs needed to 

induce transplant tolerance in pre-clinical models249 is not likely achievable by titrating 

doses of immunosuppressive drugs alone.  Combining Treg cell therapy, attenuation of 

effector responses, and Treg-supportive immunosuppression may be needed to induce 

tolerance.   



Figure legend: 

Figure 1. Mechanisms of action of immunosuppressive drugs on T cell activation.  

Schematic representation of the mechanisms of action by which immunosuppressants 

control T cell activation.  Black font marks molecules expressed by T cells and antigen 

presenting cells (APC).  Red font marks immunosuppressive drugs.  Black arrows 

indicate signaling pathways and red T-bars point to targets of immunosuppressive 

drugs.   

Figure 2.  Differential effects of immunosuppressive drugs on the balance 

between effector T cells and Tregs. Immunosuppressive drugs are represented by 

colored blocks.  The overall length of the block roughly correlates with the drug’s 

immunosuppressive potency.  The left-right position of the block indicates the drug’s 

selectivity for effector T cells (Teff) versus Tregs with the center position representing 

no selectivity and left to the center more suppressive for Teff than for Tregs.  The 

overall height of the balance in the cylinder below correlates with state of immune 

activity and the tilt of the balance correlates with regulatory activity.  
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