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Abstract The effects of inactivity and exercise training

on established and novel cardiovascular risk factors are

relatively modest and do not account for the impact of

inactivity and exercise on vascular risk. We examine

evidence that inactivity and exercise have direct effects on

both vasculature function and structure in humans.

Physical deconditioning is associated with enhanced

vasoconstrictor tone and has profound and rapid effects on

arterial remodelling in both large and smaller arteries.

Evidence for an effect of deconditioning on vasodilator

function is less consistent. Studies of the impact of exercise

training suggest that both functional and structural

remodelling adaptations occur and that the magnitude and

time-course of these changes depends upon training dura-

tion and intensity and the vessel beds involved. Inactivity

and exercise have direct ‘‘vascular deconditioning and

conditioning’’ effects which likely modify cardiovascular

risk.
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Introduction

Physical activity, inactivity and cardiovascular risk

Contemporary westerners have reached an historical pin-

nacle of physical inactivity and further technological

change is likely to reinforce this (Booth et al. 2002).

Physical inactivity is an independent risk factor for ath-

erosclerosis, cardiovascular diseases and diabetes (Blair

et al. 1995; LaMonte et al. 2005; Manson et al. 1999) and

low cardiopulmonary fitness is a strong independent pre-

dictor of all-cause mortality (Wei et al. 1999). Sedentary

living is estimated to be responsible for approximately one-

third of deaths due to coronary heart disease, colon cancer,

and type 2 diabetes (Powell and Blair 1994). Physical

inactivity is therefore a key factor in the etiology and

progression of chronic diseases, including cardiovascular

and metabolic diseases which are common, debilitating and

costly. Given the low daily energy expenditure which is
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characteristic of modern living (Booth et al. 2002), the

consequences of physical inactivity seem likely to worsen.

Regular physical exercise is associated with reduction in

primary (Hakim et al. 1999; Myers et al. 2002; Paffen-

barger et al. 1986; Sesso et al. 2000) and secondary vas-

cular events (Jolliffe et al. 2001; Oldridge et al. 1988).

Meta-analyses, including those of exercise-based cardiac

rehabilitation undertaken in the contemporary statin, ACE

inhibitor and revascularisation era, indicate that a *30%

exercise-related benefit is evident in terms of cardiac

events, relative to usual care (Green et al. 2008c). Indeed,

some expert opinion suggests that the most physically

active individuals demonstrate CAD rates half those of the

most sedentary (Thompson et al. 2003). This magnitude of

benefit approximates or exceeds that associated with anti-

hypertensive or lipid lowering interventions in large mul-

ticenter trials (Turnbull 2003; Wilt et al. 2004). It is well

established that individuals with higher cardiopulmonary

fitness exhibit lower cardiovascular disease rates than unfit

individuals (Thompson et al. 2003), with the relative risk of

being unfit exceeding that associated with smoking, ele-

vated systolic blood pressure, hypercholesterolemia and

overweight/obesity (Blair et al. 1996). These data indicate

that exercise training and maintenance of physical fitness

have important impacts on the prevalence and progression

of cardiovascular diseases in humans.

Does risk factor modulation explain the effects

of inactivity and exercise on CV risk?

Detrimental changes in cardiovascular risk factors have

been suggested to explain the increased cardiovascular risk

associated with chronic inactivity (Garshick et al. 2005;

Groah et al. 2001; Imai et al. 2004). Human models of

short-term physical inactivity (4–8 weeks) demonstrate no

change in blood pressure, obesity, BMI or cholesterol

levels (Bleeker et al. 2005a, b, c; Demiot et al. 2007;

Pawelczyk et al. 2001; Thijssen et al. 2007b). Subjects with

a spinal cord injury (SCI), who are predisposed to develop

cardiovascular diseases (Garshick et al. 2005; Groah et al.

2001; Imai et al. 2004), have similar cholesterol, triglyc-

eride and blood pressure levels to healthy subjects

(Bauman et al. 1992; Cardus et al. 1992; Krum et al. 1992;

Liang et al. 2007). Recently, prevalence rates of the met-

abolic syndrome and traditional cardiovascular risk factors

were compared between 185 SCI subjects and age-, gen-

der- and race-matched controls. No differences were found

for traditional risk factors between both groups and SCI

patients demonstrated lower levels of blood cholesterol and

glucose (Liang et al. 2007). These results suggest that the

strong link between physical inactivity and cardiovascular

mortality and morbidity cannot be fully explained by an

effect of inactivity on traditional cardiovascular risk

factors.

The effects of exercise on conventional risk factors are

substantially less than those achieved by pharmacological

therapies and also much less than that required to explain

the mortality benefits associated with exercise and fitness

(Green et al. 2008c). For example, the magnitude of

decrease in LDL required to explain a 30% mortality

benefit, approximates 25% (LIPID study group 1998). The

impact of exercise training on LDL is typically \5%

(Thompson et al. 2003). In addition, improvement in tra-

ditional risk factors cannot solely account for the magni-

tude of risk reduction associated with exercise training,

since the association with reduced mortality is independent

of these risk factors (Dimmeler and Zeiher 2003; Shephard

and Balady 1999). Indeed, a recent analysis of 27,000

subjects in the Women’s Health Study reported that dif-

ferences in risk factors explained 59% of the relative car-

diovascular risk reduction associated with exercise (Mora

et al. 2007). The impact of hemoglobin A1c, lipid sub

profiles, lipoprotein (a), apolipoprotein A1, apolipoprotein

B-100, creatinine, homocysteine, hs-CRP, fibrinogen,

s-ICAM-1, weight, height, BP and diabetes were taken into

account. This statistical modelling suggests that at least

40% of the risk reduction associated with exercise cannot

be explained by establish risk factors (Fig. 1). The

Fig. 1 Percentage reduction in CVD events associated with physical

activity that is explained by risk factors (adapted from Mora et al.

2007). Differences in risk factors explain *59% of the relative

cardiovascular risk reduction associated with exercise. This statistical

modeling suggests that at least 40% of the risk reduction associated

with exercise cannot be explained by established or emerging risk

factors
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mechanisms responsible for the cardiovascular benefits of

exercise in humans can therefore not be solely attributed to

risk factor modulation.

In summary, traditional cardiovascular risk factors do

not appear to explain the link between cardiovascular risk

and physical inactivity, whilst at least 40% of the cardio-

vascular risk reduction attributable of exercise training

remains unexplained. In this review, we examine evidence

supporting the notion that inactivity and exercise have

direct effects on the function and structure of the vascu-

lature and play an important role in explaining the links

between inactivity, exercise and cardiovascular risk. We

propose that inactivity and exercise training have direct

‘‘vascular deconditioning and conditioning’’ effects, which

modify cardiovascular risk.

Effects of physical inactivity on the vasculature

in humans

Studies of the impact of inactivity on the vasculature in

humans have adopted different intervention approaches

including space travel and (head-down) bed rest, unilateral

lower limb immobilisation (ULLS), immobilization via

casting and assessment of subjects with spinal cord injury.

Each of these approaches has its limitations. For example,

changes in plasma volume accompany space flight and bed

rest (Convertino et al. 1998) whilst upper extremity activity

is not typically unrestricted in the bed-rest model. ULLS is

only suitable to study localized deconditioning in one lower

limb and there is apparently an increased risk of (deep

venous) thrombosis (Berg and Tesch 1996; Bleeker et al.

2004; Gamrin et al. 1998) [suggested incidence of 2.7%

(Bleeker et al. 2004)]. Casting of a limb (lower leg or fore-

arm) (Green et al. 1997) typically follows a fracture or

trauma and vascular changes to ‘‘inactivity’’ may therefore

be influenced by the impact of healing and inflammatory

processes.

Finally, it has been suggested that loss of supraspinal

sympathetic vascular tone of the legs may affect vascular

function and structure independent of the effects of inactivity

per se. However, sympathectomized patients, who lack

sympathetic vascular innervation, but participate in normal

physical activity, do not exhibit the structural or functional

vascular adaptations typically observed in the SCI model

(Eisenach et al. 2002; Hashmonai and Kopelman 2003). In

addition, previous studies in SCI have demonstrated that

vascular adaptations are partly reversible by electrical

stimulation training of the inactive paralyzed legs in SCI (de

Groot et al. 2005; Hopman et al. 2002; Thijssen et al. 2007b).

These data have led some investigators to conclude that

vascular adaptations observed in the paralyzed legs in SCI

may primarily result from physical inactivity.

Physiological studies have been undertaken to examine

the impact of inactivity on both resistance and conduit

artery function and structure. These impacts of each of the

models of inactivity on the function and structure of these

vessel beds will be considered separately below.

Resistance vessel function

Plethysmographic measurement of change in limb volume

has typically been employed as a method to assess

peripheral resistance vessel function in humans (Shepherd

1983). Several limb volume techniques evolved after the

initial use of plethysmography in 1905, but all rely upon a

‘‘congesting’’ cuff inflated around the upper arm or thigh

and inflated to approximately 40–50 mmHg (Joyner et al.

2001). Mercury-in-silastic strain-gauges are the most fre-

quently used technique (Whitney 1953) and were widely

used in the twentieth century to examine vascular physi-

ology and pharmacology (Joyner et al. 2001).

The majority of studies which have used venous

occlusion plethysmography to assess resting blood flows

have reported decreases after 4–120 days of head down tilt

bed rest (26–48%, Christ et al. 2001; Convertino et al.

1989; Louisy et al. 1997; Pawelczyk et al. 2001),

4–14 days space flight (41%, Watenpaugh et al. 2001),

28 days limb immobilization (24%, Bleeker et al. 2005a)

and chronic spinal cord injury (26–70%, Bleeker et al.

2005c; Hopman et al. 2002; Kooijman et al. 2003; Thijssen

et al. 2007b). To gain better insight into the mechanisms

responsible for these decreases in limb blood flows,

Bleeker et al. examined leg vascular responses to femoral

artery infusions of the nitric oxide (NO) antagonist,

NG-monomethyl-L-arginine (L-NMMA), the NO vasodila-

tor sodium nitroprusside (SNP) and angiotensin II (Bleeker

et al. 2005c). Studies were undertaken in SCI individuals,

age-matched controls and also in healthy young men before

and after 28 days of ULLS. The vasoconstrictor responses

to L-NMMA and angiotensin II, and the dilator responses to

SNP, were unaltered in both models of inactivity. The

authors concluded that short- and long-term deconditioning

preserved vasoactive responses in the lower limb skeletal

muscle vascular bed (Bleeker et al. 2005c).

In another study, forearm blood flow responses to

L-NMMA were examined immediately after forearm cast

removal for treatment of scaphoid or Colles’ fractures, and

again 6 weeks after cast removal. Responses were com-

pared to those in healthy uncasted controls. The response to

L-NMMA was similar between groups and before and after

6 weeks recovery (Green et al. 1997). Although forearm

injury and fracture may have influenced these results, this

study suggests that physical inactivity does not influence

basal activity of the NO dilator system in vivo in resistance

vessels during short-term physical activity.
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Another factor that contributes to baseline vascular tone,

the a-adrenergic system, has been compared in SCI indi-

viduals and able-bodied controls (Kooijman et al. 2003).

Leg blood flow changes were assessed in response to intra-

femoral infusion of incremental doses of phentolamine (a

competitive antagonist of the a-adrenoceptor) during local

b-adrenergic receptor blockade with propranolol. Interest-

ingly, despite the complete spinal cord lesion in all SCI

subjects, a-adrenergic tone was not exaggerated in the leg

vascular bed of SCI individuals. Recently, Thijssen et al.

(2007b) examined the contribution of endothelin-1 (ET-1),

a powerful endothelium-derived vasoconstrictor, to base-

line blood flow in the inactive legs of SCI individuals,

using intra-femoral administration of selective ETA/B-

receptor blockers. They found a larger vasodilator response

to blockade of ET-1 in the legs of SCI subjects compared

with age-matched able-bodied controls, suggesting that

ET-1 importantly contributes to the increased vascular tone

observed as a consequence of chronic physical inactivity.

To further examine this hypothesis, the authors trained

their SCI subjects for 6 weeks using functional electrical

stimulation (FES). After this training, the SCI subjects

showed reversed ET-1-mediated vascular tone, further

supporting a role for ET-1 in the increased baseline vas-

cular tone observed in this model of deconditioning.

In a final study, which assessed resistance artery endo-

thelial function, intra-brachial administration of endothe-

lium-dependent (acetylcholine) and -independent (sodium

nitroprusside) vasodilators was undertaken in healthy vol-

unteers before and after 13 days of bed rest (Hesse et al.

2005). Bed rest impaired endothelium-dependent vasodi-

lation of resistance vessels, but not smooth muscle NO-

mediated vasodilation. These short-term effects of bed rest

were not present when bed rest was performed under

energy restriction (25% reduction in fat intake) (Hesse

et al. 2005). Furthermore, the level of actual upper limb

activity change associated with bed rest (subjects were

allowed to do upper limb daily activities) was not con-

trolled. These results should therefore be interpreted with

caution.

Conduit artery function

Using high resolution ultrasound, flow-mediated dilation

(FMD) can be examined as a marker for conduit artery

endothelial function. Assuming the occluding cuff is placed

distal to the scanned artery (Doshi et al. 2001), that the

period of ischemia does not exceed 5 min (Mullen et al.

2001) and that diameter responses are appropriately col-

lected (Black et al. 2008a) and normalised (Black et al.

2008a; Pyke and Tschakovsky 2007), FMD is predomi-

nantly mediated by NO (Doshi et al. 2001; Joannides et al.

1995; Kooijman et al. 2008) and serves as a valid index of

conduit artery endothelium-dependent NO function (Ganz

and Vita 2003). FMD also correlates with coronary endo-

thelial function (Takase et al. 1998, 2005). This technique

is non-invasive, allows direct arterial visualisation and, in

contrast to plethysmography, allows measurement of

absolute arterial diameters and has a good temporal reso-

lution (Green et al. 2002b). However, arterial diameters are

critically dependent upon image quality (Logason et al.

2001), while sometimes manual analysis is used, which is

subject to significant observer error (Black et al. 2008a;

Celermajer et al. 1992; Hardie et al. 1997; Sonka et al.

1998). Finally, it is possible that the shear stress or flow

stimulus that elicits FMD may provide some independent

prognostic information (Philpott et al. 2009).

Whilst impaired endothelium-dependent NO-mediated

dilator function has typically been observed in subjects

with traditional cardiovascular risk factors, surprisingly, an

enhanced superficial femoral artery FMD response was

observed after 25 and 52 days of bed rest (Bleeker et al.

2005b), 28 days of limb suspension (Bleeker et al. 2005a)

and in acute (de Groot et al. 2006a) (within 21–42 days

post-injury) (de Groot et al. 2006b), as well as in chronic,

SCI (de Groot et al. 2005; de Groot et al. 2004). In contrast,

a recent study reported decreased posterior tibial artery

FMD in SCI compared with controls (Stoner et al. 2006).

However, in the latter study the occlusion cuff was placed

proximal to the vessel-imaging site, an arrangement that

likely results in vasodilation which is less NO-dependent

(Doshi et al. 2001) than distal cuff occlusion. This meth-

odological issue may account for this atypical finding.

Changes in brachial artery endothelial function after

shorter periods of bed rest also reveal conflicting results.

While 5 days of bed rest did not alter the FMD response

(Hamburg et al. 2007), another study reported an increased

brachial artery FMD following 7 days of bed rest (Bonnin

et al. 2001). Methodological differences, such as different

approaches to the detection of peak arterial diameter

(Hamburg et al. 2007) and the question of whether the

upper limbs are truly inactive during bed rest, may have

impacted these results.

Recent studies regarding the interpretation of FMD data

suggest the change in diameter should be normalized for

the eliciting shear stress stimulus on the endothelial cell

membrane. This approach is conceptually equivalent to the

interpretation of drug responses in accordance with the

administered dosage. When the superficial femoral artery

FMD response of spinal cord-injured individuals was

expressed as diameter change relative to the hyperemic

peak shear rate, FMD responses were found to be preserved

(de Groot et al. 2004) or slightly increased (de Groot et al.

2005) compared to able-bodied controls (de Groot et al.

2004). A preserved normalised FMD of the superficial

femoral artery was also found after 25 and 52 days of bed
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rest (Bleeker et al. 2005b) and 4 weeks of unilateral lower

limb suspension (Bleeker et al. 2005a). However, the

appropriate normalization approach involves assessment of

the area-under-the-curve (SRAUC) for shear rate, from the

time of occluding cuff deflation to that of peak diameter

attainment (Pyke and Tschakovsky 2007), rather than

simply the peak shear rate following cuff deflation. SRAUC

normalization is particularly appropriate under circum-

stances where diameter responses are likely to differ as a

function of the shear stress that the artery is exposed to,

such as the case where arteries of differing baseline

diameter are compared (e.g., SCI vs. controls). Using a

0–40 s time window to calculate the AUC, a similar FMD

response was observed in SCI and able-bodied controls

(Kooijman et al. 2008).

A possible explanation for the apparently preserved

FMD response in deconditioned vessels may relate to up-

regulation of smooth muscle cell sensitivity to NO, possi-

bly initiated as a counter-regulatory response to chronic

decreases in endothelial shear stress and down-regulation

of eNOS in the deconditioned vessels. Increased NO

smooth muscle sensitivity to NO donors was observed after

28 days limb suspension (Bleeker et al. 2005a) and after

52 days of bed rest (Bleeker et al. 2005b). In SCI subjects,

the superficial femoral artery endothelium-independent

dilatation varies between 15.6 and 19.6% (de Groot et al.

2004; Thijssen et al. 2005), while healthy young controls

demonstrate a dilatation of 10.9–13.4% (de Groot et al.

2004; Thijssen et al. 2006). Nevertheless, differences

between these groups did not achieve statistical signifi-

cance (de Groot et al. 2004).

These data go some way towards supporting the notion

of enhanced smooth muscle NO responsiveness as a con-

sequence of deconditioning. However, sublingual admin-

istration of a single dose of a NO-donor, such as

nitroglycerine (GTN), has important limitations relating

to between subjects differences in pharmacokinetics.

Recently, therefore, smooth muscle cell NO-sensitivity was

examined using incremental intra-femoral doses of sodium

nitroprusside (SNP) in SCI subjects and age-matched able-

bodies controls. After correcting for absolute differences in

artery dimensions, both groups demonstrated similar NO

sensitivity of the superficial femoral artery (Thijssen et al.

2008a).

Taken together, the results of recent studies that

examined acute (21–52 days) and chronic (longer than

6 months) deconditioning suggest that endothelium-

dependent and -independent vasodilation are preserved in

peripheral conduit arteries. A possible explanation for the

preserved conduit artery endothelial function after physical

inactivity may relate to compensatory changes in conduit

artery dimensions. As a result of the changes in shear rate,

deconditioning induces an inward remodelling of conduit

arteries and a new equilibrium is set that preserves or

normalizes the vascular function. These considerations are

discussed further below. Currently no information is

available regarding coronary vascular function after

deconditioning.

Resistance vessel remodelling

Peak reactive hyperemic blood flow assessment is an

approach traditionally used to assess remodelling of resis-

tance vessels in humans (Conway 1963; Folkow et al.

1958; Patterson and Whelan 1955; Zelis et al. 1968;

Folkow 1978; Takeshita and Mark 1980; Sinoway et al.

1986, 1987; Martin et al. 1990; Silber et al. 1991; Silber

and Sinoway 1990). Reactive hyperemic blood flow

through the superficial femoral artery in response to a

5 min ischemic stimulus decreased by 28% after 52 days

of bed rest (Bleeker et al. 2005b). A 31% decrease was

observed in the forearm vascular bed after 14 days of bed

rest using a 10 min ischemic stimulus (Shoemaker et al.

1998). After 29 days of cast immobilization of the wrist as

a treatment of bone fracture, minimal resistance during

reactive hyperemia was higher in the casted than in the

control arm. During the recovery period, minimal resis-

tance during reactive hyperemia decreased in the casted

arm but did not change in the control arm (Silber and

Sinoway 1990). Similar findings were reported in the calf

directly after 2–12 weeks of cast treatment for leg trauma

and after a 6 week recovery period (Kroese 1977).

Although not significant, a trend towards decrease in

hyperemic flow was present after 28 days of lower limb

immobilization (Bleeker et al. 2005a) and during the first

6 weeks after a spinal cord injury (de Groot et al. 2006a,

b). Reactive hyperemia is 40–60% lower in the legs of SCI

compared with controls (de Groot et al. 2004). In summary,

reactive hyperemic blood flow, an index of resistance

vessel structure or cross-sectional area, is reduced after a

period of inactivity in most models of deconditioning.

Conduit artery remodelling

Shear stress plays an important role in the regulation and

adaptation of large arteries. Langille and O’Donnell

established that changes in vessel structure occur second-

ary to chronic changes in flow, and that such changes are

dependent upon the release of a labile factor from endo-

thelial cells (Langille and O’Donnell 1986). This conclu-

sion was later confirmed by studies demonstrating that

arterial remodelling is shear stress and NO-dependent

(Tuttle et al. 2001) and acts in a manner which homeo-

statically regulates wall shear (Tronc et al. 1996).

Baseline shear levels were found to be almost doubled in

the femoral artery of chronic SCI individuals compared
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with able-bodied subjects (De Groot et al. 2003, 2004),

while shear rate levels were also significantly increased

after 28 days ULLS (Bleeker et al. 2005a). Several models

of physical inactivity of different duration demonstrated

that these increases in shear rate associated with decondi-

tioning were not due to increases in blood flow (Bleeker

et al. 2005a, b, c; de Groot et al. 2006a, b; Olive et al.

2003). The principal reason for elevated shear rate in de-

conditioned conduit arteries is therefore related to

decreased conduit artery diameter and the consequent

increase in velocity. Deconditioning induced a 6% reduc-

tion in artery diameter after 7 days of leg casting

(Sugawara et al. 2004), a 13% decrease after 28 days ULLS

(Bleeker et al. 2005a), 13 and 17% reductions after 25 and

52 days of bed rest (Bleeker et al. 2005b), respectively, a

25% decrease 18 days after a spinal cord lesion (de Groot

et al. 2006b) and 30% reduction in vessel diameter in chronic

SCI (De Groot et al. 2003, 2004, 2006a; Huonker et al. 2003).

Hence, conduit artery diameter decreases markedly in

response to physical inactivity, which coincides with a

marked increase in conduit artery shear rate.

In a previous cross-sectional study in chronic SCI

individuals and able-bodied controls, Olive et al. (2003)

reported that the significantly smaller femoral vessel

diameter in SCI was no longer different when diameter was

expressed per unit muscle mass. Interestingly, when

changes in vascular properties and limb volume during the

first 6 weeks after a spinal cord injury were examined (de

Groot et al. 2006b), femoral artery size decreases sub-

stantially, while a simultaneous decrease in limb volume

was evident. Although changes in limb volume do not

completely reflect changes in muscle mass, the corrected

femoral artery diameter for limb volume showed no dif-

ferences over the 6 week time period and values in SCI

were comparable with control values (de Groot et al.

2006b). These findings suggest a link between vascular

structural adaptations and muscle atrophy as a consequence

of inactivity.

The above studies have reported baseline conduit artery

diameter as an index of vascular structure. However,

baseline diameter reflects competitive functional influences

on vascular tone, in addition to artery size. The use of

baseline diameter as an index of structure is therefore

polluted by factors which regulate vascular function. The

importance of measuring maximal conduit artery diameter

as a marker of structural changes has recently been

emphasized (Naylor et al. 2005). Vasodilatation to nitro-

glycerin represents near maximal diameter (Naylor et al.

2005) and can therefore reflect the limits of arterial struc-

ture and size. Maximal femoral artery diameter decreased

by 9% after 4 weeks of limb suspension (Bleeker et al.

2005a), 16% after 25 and 52 days of bed rest (Bleeker et al.

2005b) and by 35% in chronic SCI individuals (De Groot

et al. 2003, 2004, 2006a). These findings reinforce those

above and indicate that inactivity is indeed associated with

arterial structural remodelling and decreased conduit artery

dimension.

Time-course of vascular adaptations to inactivity

In a recent longitudinal study by de Groot et al. (2006b),

conduit artery characteristics and limb volume were

examined in SCI subjects during the 6 weeks immediately

following spinal cord injury. Interestingly, the femoral

artery diameter decreased substantially and rapidly, with a

decrease in diameter 3 week post-injury which approached

vessel dimension of chronic SCI subjects (de Groot et al.

2006b). Other models of deconditioning have also been

used to establish that rapid and extensive changes occur

in conduit artery dimensions (Bleeker et al. 2005a, b;

Sugawara et al. 2004). These findings indicate that physical

inactivity provides a strong stimulus for rapid structural

remodelling of human conduit arteries. Whether these

changes in conduit artery dimension parallel changes in

other vascular beds, and whether functional and structural

changes have a similar time-course, is discussed below.

Resistance versus conduit vessels

Evidence suggests that resistance and conduit vessels have

a different time-course of adaptation to deconditioning. For

example, the rapid decrease in femoral artery dimension

after SCI was not accompanied by a simultaneous rapid

decrease in reactive hyperemic flow, the latter a reflection

of arteriolar structural changes (de Groot et al. 2006b).

Parallel to this, a large decrease in conduit artery diameter

during 52 days bed rest was present in the first 4 weeks,

with little change thereafter, while the reactive hyperemia

response did not change significantly (Bleeker et al. 2005a,

b). This suggests that the mechanisms and time-course of

structural vascular adaptation to deconditioning may differ

between conduit and resistance vessels. This hypothesis

was first proposed by Laughlin et al., based on animal data

(Laughlin 1995), and later also suggested for exercise

training studies in humans (Green et al. 2004). Future

studies should further examine the possible differences in

time-course for activity-induced changes in conduit and

resistance vessels.

Functional versus structural changes

The sparse data present suggest that physical inactivity-

induced conduit artery structural and functional changes

may differ in terms of time-course (Fig. 2). As stated

above, the decrease in femoral artery dimension after

a spinal cord injury was nearly complete 3 weeks
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post-injury, while the FMD responses demonstrated large

changes between 4 and 6 weeks after the lesion (de Groot

et al. 2006b). In parallel, during bed rest and limb sus-

pension, the change in diameter dimension occurred

predominantly in the initial phase, while femoral artery

endothelial function showed a gradual change over time

(Bleeker et al. 2005a; Bleeker et al. 2005b). Future studies

that utilize more frequent functional and structural mea-

surements within the same vascular bed during decondi-

tioning will provide greater insight into the time-course of

structural and functional adaptation in resistance and con-

duit vessels.

Local versus systemic adaptations to physical inactivity

Experimental models in which the whole body is subject to

physical inactivity, for example spaceflight or bed rest, are

associated with vascular changes throughout the body

(Bleeker et al. 2005b; Bonnin et al. 2001; Louisy et al.

1997; Zhang 2001). It must be borne in mind, however, that

inactivity is also associated with changes in systemic car-

diovascular parameters (Hamburg et al. 2007). In contrast,

models which utilise localized physical inactivity, for

example ULLS and cast immobilisation, are associated

with vascular adaptations specific to the immobilized

region or limb only (Bleeker et al. 2005a, b; Sugawara

et al. 2004), in the absence of change in systemic cardio-

vascular risk factors. SCI subjects demonstrate marked

vascular adaptations in the inactive, paralyzed legs (de

Groot et al. 2004; Stoner et al. 2006), while upper

extremity vascular function and structure are comparable

with able-bodied controls (de Groot et al. 2004, 2005;

Hopman et al. 2002; Stoner et al. 2006). This raises one

final consideration, pertinent to the models of inactivity

used in humans. Using ULLS or a cast to immobilize one

limb forces volunteers to use crutches for locomotion.

Whether, on balance, this leads to a training effect in the

‘‘unaffected’’ weight-bearing limb, or a small decondi-

tioning because of the global reduction in levels of physical

activity, is unknown. Similarly, it is likely that a different

level of activity is present in the upper extremities of SCI

individuals after the lesion. The dependence on the upper

limbs for locomotion may theoretically result in SCI sub-

jects exhibiting vascular adaptations, compared with able-

bodied controls, yet studies consistently indicate that non-

immobilized areas do not demonstrate enhanced vascular

function or structure (Bleeker et al. 2005a; de Groot et al.

2004; Stoner et al. 2006; Thijssen et al. 2005). Taken

together, available evidence indicates that physical inac-

tivity appears to lead to localized vascular adaptations in

the affected inactive regions only.

Physical inactivity, vascular adaptations

and cardiovascular risk

As mentioned in the introduction, the impact of physical

inactivity on traditional risk factors may not adequately

explain the increased cardiovascular mortality associated

with deconditioning, particularly in SCI subjects. It is

therefore feasible that direct effects of inactivity on vas-

cular structure and function, rather than the indirect effects

of traditional risk factors, may explain the increased car-

diovascular risk associated with a sedentary life style.

However, current data, discussed above, suggests that

Fig. 2 Hypothesised changes in artery function and structure

(remodelling) in response to inactivity and exercise training in

humans. Studies performed in both animals and humans suggest that

rapid changes occur in artery function, including nitric oxide (NO)

bioavailability, in response to exercise training and that these changes

are superseded by arterial remodelling and normalisation of function.

Physical inactivity is associated with rapid changes in arterial

diameter, with structural remodelling occurring within weeks of, for

example, spinal cord injury. There is little evidence for longer term

vascular dysfunction in response to inactivity. Changes in artery

function and structure occur rapidly in response to activity and

inactivity

Eur J Appl Physiol (2010) 108:845–875 851

123



deconditioning does not impair vasodilator function. It

remains possible that other vascular parameters, such as

intima-media thickness (Simon et al. 2002) or arterial

stiffness (O’Rourke 1999) which correlate with cardio-

vascular risk, are abnormal in inactive subjects. To date,

these parameters have only been examined using short-

term deconditioning (2–7 days) and, perhaps predictably,

no changes were reported in these longer-term markers of

vascular adaptation (Pannier et al. 1998; Sugawara et al.

2004). SCI subjects, however, demonstrate a lower arterial

compliance (de Groot et al. 2005). Some evidence exists

for enhanced vasoconstrictor function in models of inac-

tivity, including exaggerated endothelin-1 responses

(Thijssen et al. 2007b). Data regarding the impact of

physical inactivity on sympathetic-mediated vasoconstric-

tor tone is scant.

Despite the sparse and dispersed data, and the various

models of inactivity that have been adopted, it remains

likely that changes in conduit and resistance vessel struc-

ture and function may help to explain the increased car-

diovascular mortality and morbidity associated with

deconditioning. Future studies are necessary to further

examine this interesting hypothesis.

Remarkably, despite the epidemiological evidence

linking physical inactivity and increased cardiovascular

risk and the general acceptance of physical inactivity as a

cardiovascular risk factor (USDHHS 1996), no physio-

logical studies have ever examined the direct impact of

physical inactivity on coronary artery function and

structure.

Effects of exercise or cardiopulmonary fitness

on vascular events

The Health Professional’s Follow-up Study (HPFS)

(Tanasescu et al. 2002) included analysis of 44,452 men

who had their leisure time physical activity assessed by

questionnaire every 2 years between 1986 until 1996. The

relative risk of MI, comparing the highest and lowest total

exercise volume quintiles, was 0.7 (P \ 0.001). The

authors concluded that a significant inverse dose relation

exists between total physical activity and CHD risk, that

exercise intensity is associated with risk reduction and that

the addition of ‘‘weight’’ training may be beneficial in

terms of further risk reduction. Although studies such as

the HPFS are prospective and undertaken in large cohorts,

they rely heavily on self-report of physical activity and are

therefore subject to misclassification bias. The Aerobics

Center Longitudinal Database (ACLD) estimated _VO2max

following graded exercise testing in 25,341 men and 7,080

women between 1970 and 1989 (Blair et al. 1996).

Increased relative risk of CV mortality was associated with

low levels of fitness (RR = 1.70), cigarette smoking

(RR = 1.57), elevated systolic blood pressure (RR = 1.34)

and elevated serum cholesterol (RR = 1.65) in men.

Higher levels of cardiorespiratory fitness were associated

with significant protection from the impact of other risk

factors. Notwithstanding the important distinction between

cardiorespiratory fitness and exercise training, this pro-

spective data provides evidence for the CV benefits of

exercise for primary prevention of CV disease.

There is no evidence available from large prospective

cohort trials regarding the effect of exercise in a sec-

ondary prevention setting, although Myers et al. con-

cluded that, after adjustment for age, peak exercise

capacity measured in METs is the strongest predictor of

the risk of death among both normal subjects and those

with established cardiovascular disease (Myers et al.

2002). A series of meta-analyses performed on smaller

studies of exercise-based cardiac rehabilitation have esti-

mated the benefits in terms of reduction in total and

cardiac mortality at between 20 and 32%, relative to usual

care (Taylor et al. 2004), although earlier analyses

included studies performed prior to the widespread

adoption of contemporary lipid-lowering, antihypertensive

and interventional strategies. The most recent meta-anal-

ysis, which included 48 eligible studies to March 2003

involving 8,940 patients, attempted to address this con-

cern. Cardiac rehabilitation was associated with signifi-

cant decreases in the odds ratio for all-cause and cardiac

mortality (OR = 0.74) and the authors concluded that

recent trials conducted in the era of contemporary car-

diovascular therapies and case mix (post-angioplasty,

CABG etc.), continued to report similar or greater benefits

(OR = 0.62). An interesting aspect of this analysis, which

confirms previous findings (Ebrahim et al. 2006), was the

suggestion that studies involving exercise training alone

(OR = 0.76) exert a similar effect to those studies which

involved ‘‘comprehensive’’ rehabilitation (OR = 0.84)

consisting of behavioural strategies aimed at decreasing

the impact of other CV risk factors. This suggests that

exercise is an important component of cardiac rehabili-

tation programs and also indirectly suggests that modifi-

cation of risk factors may not be the primary means by

which exercise exerts its beneficial effect.

In summary, exercise or physical fitness is associated

with an approximate 30% benefit in terms of decreasing the

risk of cardiac events. Indeed, some expert opinion has

stated that the most physically active individuals demon-

strate CAD rates half those of the most sedentary and that

in many studies the lower frequency of CAD is indepen-

dent of other known atherosclerotic risk factors (Thompson

et al. 2003). As described above, exercise training

improves vascular function in the absence of changes in

lipid levels (Lewis et al. 1999), blood pressure (Higashi
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et al. 1999a), glucose tolerance, or BMI (Watts et al.

2004a). In addition, a recent study reported significant

improvements in both conduit and resistance vessel endo-

thelial function, in the absence of change in plasma lipids,

blood pressure, blood glucose, waist:hip or BMI, with no

significant correlations between changes in any of these

risk factors and the improvements in vascular function

(Green et al. 2003). These studies indicate that improve-

ment in risk factors is not an obligatory requirement for

improvement in vascular function as a result of exercise

training. Direct effects of exercise on the vasculature,

perhaps by virtue of a repetitive impact of shear stress,

pulse pressure or pulsatility, may therefore contribute to the

reduction in coronary events associated with exercise

training (Green et al. 2008c).

Effect of exercise training on vascular function

Different modalities of exercise exert distinct physiolog-

ical and health benefits. For example, recent studies

indicate that exercise involving different volumes of

muscle mass or exercise intensity may be associated with

different shear stress mediated impacts on vascular

function (Goto et al. 2003, 2004, 2005; Thijssen et al.

2009). Aerobic exercise involving large muscle groups is

associated with systemic changes in pulse pressure and

heart rate which generate a recurrent hemodynamic

(shear) stress that may directly induce vascular function

and structure adaptation (see below) (Green et al. 2004,

2005), whereas small muscle group exercise is not asso-

ciated with such hemodynamic signals and provides

insight into localised effects of exercise independent of

central regulatory or neural changes. A further consider-

ation relates to the types of study designs adopted. Many

‘‘exercise training’’ studies have relied upon cross-sec-

tional comparisons of subjects with high and low car-

diorespiratory fitness as a model of the physiological

impact of chronic exercise in humans. Despite efforts to

match subject groups for numerous confounders (age, sex,

body composition, risk factor profiles etc.), there remains

the strong possibility that between-subject differences

pollute the purported effects of ‘‘exercise’’ on vascular

outcomes. Furthermore, whilst cross-sectional compari-

sons to some extent reflect the impact of different fitness

levels on outcome measures, such differences cannot

validly be ascribed to the impact of exercise training per

se, since genetic cardiopulmonary capacities are included

in fitness measures. In any event, the best assessment of

the impact of exercise training on vascular outcome

measures is derived from longitudinal training studies

where within subject changes in fitness following an

exercise training intervention are the focus.

Small muscle group exercise

Resistance vessels

Studies of handgrip exercise training were initially under-

taken as a physiological model of the impact of localised

muscle activity on vasomotor control, in the absence of

marked changes in central hemodynamics during the

training stimulus. Two of the three studies undertaken in

healthy subjects failed to demonstrate improvement in

forearm blood flow responses to ACh, SNP or LNMMA

infusions (Bank et al. 1998; Franke et al. 1998; Green et al.

1994), whilst two of the three studies in heart failure

demonstrated improvement in endothelium-dependent

responses (Bank et al. 1998; Hambrecht et al. 2000a; Katz

et al. 1997). The disparate findings both derived from a

single study (Bank et al. 1998). In general, the impact of

localised exercise training on resistance vessel function has

not been thoroughly studied in humans and recent inves-

tigations have focussed on more clinically applicable, large

muscle group, training modalities.

Conduit arteries

Studies which have examined the impact of small muscle

group exercise on conduit artery function have been per-

formed in CHF subjects (Hambrecht et al. 2000a; Hornig

et al. 1996) and hypertensives (McGowan et al. 2006a).

Hornig et al. (1996) performed an early study in which

radial artery FMD was enhanced after 4 weeks of hand-

grip training and this improvement was NO mediated as

indicated by its abolition using NO blockade. Hambrecht

et al. (2000a) also demonstrated that hand grip exercise

training, particularly with the addition of L-arginine sup-

plementation, enhanced ACh mediated radial artery diam-

eter change. These studies have some clinical relevance in

CHF, as they suggest that vascular adaptations which

favour enhanced O2 delivery and decreased peripheral

resistance are possible as a consequence of small muscle

group exercises which can reverse the peripheral abnor-

malities which may limit functional capacity in such sub-

jects, without the hemodynamic burden associated with

more systemic forms of training. Finally, McGowan

recently observed enhanced brachial FMD responses after

isometric hand grip exercise in patients with primary

hypertension (McGowan et al. 2006a; b).

Large muscle group dynamic exercise

Resistance vessels

There have been at least 12 studies of whole body exercise

programs (e.g., running, walking, cycling) in healthy
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control subjects either as a primary intervention group or as

matched controls in studies of subjects with cardiovascular

disease. The outcomes in terms of improvement in resis-

tance vessel function are mixed. In young subjects who

undertook cycle exercise training, some improvement in

basal NO function was observed after brachial LNMMA

infusions, but no changes in stimulated endothelial function

were evident (Kingwell et al. 1997b). Another study of fit

young men who undertook high intensity training found a

decrease in ACh and LNMMA responses (Bergholm et al.

1999). In middle aged subjects, exercise training enhanced

ACh responses in two studies (DeSouza et al. 2000;

Higashi et al. 1999a), but failed to do so in a third

(Maiorana et al. 2001b). Finally, a recent study suggested

that basal NO bioavailability is enhanced with training in

middle aged and older subjects, an adaptation to some

extent counteracted by sympathetic vasoconstrictor tone

(Sugawara et al. 2007).

Whilst there is no apparent consensus regarding the

impact of exercise training on resistance vessel function in

healthy subjects, the majority of studies performed in

subjects with impaired endothelial function have docu-

mented improvements. This includes studies in patients

with CHF (Hambrecht et al. 1998; Linke et al. 2001;

Maiorana et al. 2000b; Parnell et al. 2005), hypertension

(Higashi et al. 1999a, b), hypercholesteremia (Lewis et al.

1999; Walsh et al. 2003b), obesity (Sciacqua et al. 2003;

Watts et al. 2004a) and diabetes (Maiorana et al. 2001a).

Indeed, there are no published studies in this category that

we are aware of that have not reported improvements in

resistance vessel vasodilator function as a result of large

muscle group training.

Finally, a recent study investigated the effects of both

chronic training and short term exercise in older subjects

on microvascular function using microdialysis and laser

Doppler flow assessments in the skin (Black et al. 2008b).

Exercise was associated with enhanced NO-mediated skin

vasodilator responses to both ACh infusions and local

heating stimuli in this study.

Conduit arteries

One study of conduit artery responses in healthy subjects

indicated that training of army recruits increased brachial

FMD (Clarkson et al. 1999) and another suggested

improvements after 4 weeks training (Pullin et al. 2004).

However, resistance exercise training did not alter brachial

responses (Rakobowchuk et al. 2005) in healthy volunteers

and cycle training had no impact in older subjects

(Moriguchi et al. 2005; Thijssen et al. 2007a).

In subjects with CV disease or risk factors, the majority

of studies indicate that exercise training involving a large

muscle mass induced enhanced conduit artery function.

Studies undertaken in CHF (Belardinelli et al. 2006;

Hambrecht et al. 2003; Linke et al. 2001; Wisloff et al.

2007), CAD (Edwards et al. 2004; Gokce et al. 2002a;

Walsh et al. 2003a), peripheral artery disease (Andreozzi

et al. 2007), hypertensives (Moriguchi et al. 2005;

Westhoff et al. 2007), hypercholesterolemics (Walsh et al.

2003b), diabetics (Fuchsjager-Mayrl et al. 2002; Lavrencic

et al. 2000; Maiorana et al. 2001a) (Xiang and Wang 2004)

and subjects with obesity (Meyer et al. 2006; Olson et al.

2006; Sciacqua et al. 2003; Watts et al. 2004a, b; Woo

et al. 2004) have also demonstrated enhanced FMD

responses following different exercise training programs.

Whilst a few studies exist which have not observed chan-

ges in conduit artery function following whole body

exercise regimes (Gokce et al. 2002b; Paul et al. 2007),

data in conduit arteries fundamentally reinforces the find-

ings described above in resistance vessels, suggesting that

vascular function is more amenable to enhancement in

subjects with cardiovascular disease and risk factors who

may exhibit impaired vasomotor and endothelial function a

priori, than in healthy subjects with less impaired vascular

function at the outset.

Summary: conduit and resistance arteries

The use of small muscle group exercise training provides

information regarding the impact of localised muscular

activity, in the absence of marked change in central

hemodynamics, on vascular adaptation. Conversely, larger

muscle mass exercise involves both a localised stimulus in

the active muscle, and systemic hemodynamic stimulus by

virtue of both increases in cardiac output and peripheral

changes in the sympathetic vasomotor tone sub-serving the

control of blood flow and distribution. It is clear that these

forms of exercise represent disparate stimuli in terms of

their impact on endothelial shear stress (Green et al. 2005)

and it is likely that some of the differences observed in

terms of training effects in response to small and large

muscle mass exercise reflect these differences.

No clear consensus emerges from the studies reviewed

above regarding the impact of exercise training in healthy

volunteers, possibly because of the disparate nature of the

subjects studied or the various forms of exercise inter-

ventions applied. Conversely, most studies indicate that

subjects with CV disease and risk factors benefit from

exercise training. An explanation for some of the disparate

findings may relate to the type or form of exercise used and

in particular the intensity of exercise (Goto et al. 2003;

Green et al. 2008c; Wisloff et al. 2007). In this context, the

study of Goto et al. is revealing, in that it suggests that low

intensity exercise may fall below the threshold required for

vascular adaptation in healthy subjects, whilst moderate

intensity exercise is associated with improvements in
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endothelial function. Exercise at higher intensity

(Bergholm et al. 1999; Goto et al. 2003) may be associated

with elevated levels of oxidative stress and inflammatory

responses after exercise and this may, in turn, diminish any

underlying shear and hemodynamic-mediated beneficial

adaptations (Laughlin et al. 2008).

Coronary vascular function

Animal studies have convincingly demonstrated that

exercise induced flow-mediated epicardial coronary

vasodilation is dependent upon the integrity of the

endothelium (Berdeaux et al. 1994; Niebauer and Cooke

1996), and experimental studies of coronary blood flows

in humans indicate that NO blockade abolishes pacing-

induced epicardial vessel dilation, indicating that NO

contributes to vasodilation in these conduit vessels in

patients free of CAD risk factors (Quyyumi et al. 1995)

and in those with angiographically normal coronary

arteries (Tousoulis et al. 1997). NO is also involved in

pacing-induced hyperemia in patients with risk factors for

CAD, including some with mildly irregular arteries

(Duffy et al. 1999), whilst NO production increased by

pacing was abolished at the sites of stenoses in patients

with CAD disease (Tousoulis et al. 1997). These studies

strongly indicate that acute exercise is associated with

changes in endothelial function and, furthermore, that

repeated exercise stimuli (i.e., training) which may induce

chronic change in vascular function and also structure. It

is important to note that animal studies suggest that cor-

onary arteries of different caliber possess differences in

eNOS content and NO-related adaptations to exercise

training may be vessel caliber dependent. Larger vessels,

which are exposed to higher shear stress forces, possess-

ing greater capacity for NO production (Green et al. 2004;

Laughlin et al. 2003a; Laughlin et al. 2003b). Laughlin

has previously expertly reviewed evidence regarding

vascular adaptations to exercise training in conduit and

resistance vessels of animals (Jasperse and Laughlin

2006; Laughlin and McAllister 1992).

In humans, several important studies have indicated a

beneficial impact of exercise training on coronary vasodi-

lator and endothelial function. Hambrecht et al. studied 19

stable CAD patients randomised to exercise training or

control groups for a period of 4 weeks (Hambrecht et al.

2000b). Intra-coronary infusion of ACh and adenosine

were used to assess epicardial coronary artery endothe-

lium-dependent vasodilator function and resistance vessel

function, respectively. Quantitative angiography and

Doppler flow-wires assessed coronary diameter and flow.

Training improved ACh and adenosine responses, indicat-

ing that coronary conduit and resistance artery endothe-

lium-dependent vasodilator function was enhanced by

exercise. In a subsequent study, the authors found that

home-based exercise training sustained part of the effects

of this hospital-based intervention (Gielen et al. 2003).

These authors also completed a comprehensive study

which concluded that exercise training improves endothe-

lial function in vivo by upregulating NO synthase protein

expression and by increasing phosphorylation of NO syn-

thase, effects consistent with a shear-stress mechanism for

enhanced NO bioactivity with training (Hambrecht et al.

2003) (see ‘‘Mechanisms responsible for change in vas-

cular function and structure’’).

Effect of exercise training on sympathetic nervous

system and vasoconstrictor function

Exercise training may alter autonomic balance in a manner

which decreases cardiovascular risk. Increased parasym-

pathetic, and decreased sympathetic, outflow to the heart

would typically be cardioprotective (Billman and Kukielka

2006). Low heart rate variability is a prognostic index of

cardiovascular mortality (Dekker et al. 1997; Gerritsen

et al. 2002; Tsuji et al. 1994). Some studies suggest that

exercise training enhances heart rate variability (Buchheit

et al. 2005; Davy et al. 1998; Levy et al. 1998; Rennie et al.

2003; Wichterle et al. 2004), possibly by increasing large

artery compliance (Hunt et al. 2001; Tanaka and Swenson

1998), including that of the carotid sinus and aortic arch.

This, in turn, may increase baroreceptor nerve traffic and

increase parasympathetic tone. Alternatively, exercise

training may lead to brain stem cardiorespiratory center

remodelling which reduces sympathetic and enhances

parasympathetic outflow (Billman and Kukielka 2006;

Nelson et al. 2005).

Direct evidence for changes in sympathetic nervous

system (SNS) mediated control of the vasculature after

exercise training is lacking. It has been pointed out (Rowell

1993) that training is associated with large increases in

cardiac output (stroke volume), whereas mean arterial

pressure does not markedly change. A substantial increase

in vascular conductance therefore occurs to accommodate

the increase in output that accompanies training. Whilst

this increase in conductance may result from enhanced

vasodilator function (‘‘Effect of exercise training on vas-

cular function’’) or arterial remodelling (‘‘Effect of exer-

cise on training on vascular structure’’), another possibility

is that SNS-mediated vasoconstrictor tone decreases with

training. Ray et al. reviewed the few available studies

relating to muscle sympathetic nerve activity (MSNA) and

exercise and concluded that MSNA may decrease with

training (Ray and Hume 1998). Galbo (1983) also sug-

gested that norepinephrine (NE) spillover decreases at

matched absolute workloads following training. However,

it has also been suggested that MSNA and NE spillover do
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not change after training when expressed in relative terms

(Rowell et al. 1996). This suggests that SNS withdrawal is

not responsible for the enhanced conductance evident fol-

lowing training (Green et al. 2008b). In addition, Tanaka

et al. recently reported enhanced vasodilation in response

to phentolamine infusion following training, suggestive of

increased SNS-mediated vasoconstriction (Sugawara et al.

2007). This, and the previous findings of Haskell et al.

(1993), suggest that basal vasoconstriction may, in fact,

increase following training.

The impact of exercise training on locally produced and

circulating vasoconstrictors such as ET-1 and angiotensin

II (Ang II) has not been thoroughly researched (Thijssen

et al. 2008b). Data derived from exercise-trained swine

suggest that training improves aortic and coronary sensi-

tivity to the vasoconstrictor ET-1 (Jones et al. 1999) and

lowers ET-1 DNA expression (Wamhoff et al. 2002). In

humans, two recent studies have reported that exercise

training partly reverses increased ET-1-mediated vascular

tone in the leg (Thijssen et al. 2007c) and forearm (Van

Guilder et al. 2007) of older humans. Regarding Ang II,

Adams et al. (2005) found that exercise training in

patients with stable coronary artery disease leads to a 49%

reduction in Ang II-induced vasoconstriction. Whilst

the evidence relating to exercise training effects on vaso-

constrictor pathways is far less comprehensive than that

relating to vasodilator control mechanisms, the few studies

performed in humans suggest that the contribution of

vasoconstrictor pathways to vasomotor control may

decrease after training.

Effect of exercise training on vascular structure

Autopsy and angiographic studies performed in athletes

(Currens and White 1961; Pelliccia et al. 1990) and

physically fit individuals (Hildick-Smith et al. 2000;

Mann et al. 1972; Rose et al. 1967) suggest that physical

conditioning induces an increase in arterial cross sectional

area, also referred to as ‘‘arterial remodelling’’. Similarly,

cross-sectional studies have consistently reported

enlargement of skeletal muscle conduit (Ben Driss et al.

1997; Dinenno et al. 2001; Huonker et al. 1996, 2003;

Kool et al. 1991; Schmidt-Trucksass et al. 2000; Wijnen

et al. 1991; Zeppilli et al. 1995) and resistance (Green

et al. 1996; Sinoway et al. 1986) vessels in athletes rel-

ative to matched controls, indicating that exercise training

may induce arterial enlargement (Prior et al. 2003).

Findings from animal studies regarding epicardial and

resistance coronary vasculature concur (Brown 2003). The

studies described below have primarily utilised longitu-

dinal designs in which subjects were followed across a

training program.

Resistance vessel remodelling

Sinoway et al. performed two of the earliest studies which

specifically addressed the question of the impact of exercise

training on resistance vessel ‘‘structure’’. They measured

blood flow responses using stain-gauge plethysmography

and utilised a metabolic stimulus (ischemia or ischemic

exercise) to achieve maximal, or peak, forearm blood flow

responses. By using a stimulus that induced peak localised

dilation (Patterson and Whelan 1955; Takeshita and Mark

1980), without inducing reflex changes in vasomotor con-

trol, they sought to assess the impact of exercise training on

structural vascular adaptations, independent of central reg-

ulatory changes. As mentioned above, maximal or peak

blood-flow responses in response to ischemic stimuli have

commonly been used to assess resistance vessel structural

adaptations in various settings (Conway 1963; Folkow et al.

1955; Sivertsson 1970), based on the assumption that peak

reactive hyperemia in response to a maximal vasodilator

diminishes the impact of functional differences between

subjects or following interventions (Patterson and Whelan

1955; Takeshita and Mark 1980). Peak reactive hyperemic

stimuli used in this context include 10 minutes of limb

ischemia; the blood flow response to which cannot be

increased by co-infusion of vasodilator agents (Takeshita

and Mark 1980). More recently, periods of ischemia com-

bined with ischemic exercise have been utilized to induce

peak blood flow responses (Naylor et al. 2005). While

plethysmography has commonly been used for peak blood

flow assessment, Doppler ultrasound methodology can also

be used to directly measure blood flow through conduit

arteries in humans (Green et al. 2002b; Hughson et al. 1996,

2001; Radegran 1997; Radegran and Saltin 1998, 1999) at a

higher temporal resolution (Naylor et al. 2005).

Sinoway et al. demonstrated that the preferred arms of

tennis players exhibit much higher peak vasodilator

responses to 5 and 10 min periods of forearm ische-

mia ? exercise than the non-preferred limbs of these ath-

letes or either limb of non-tennis playing control subjects

(Sinoway et al. 1986). A subsequent study demonstrated

that 4 weeks of hand-grip exercise training significantly

enhanced the peak dilator response to a 10 min period of

forearm ischemia in the trained, but not untrained, con-

tralateral forearm (Sinoway et al. 1987). The authors con-

cluded that exercise training enhances the intrinsic ability

of skeletal muscle resistance vessels to dilate (Clausen

et al. 1973; Gleser 1973; Saltin et al. 1976; Yasuda and

Miyamura 1983). The findings were unlikely to result from

changes in sympathetic tone, as Takeshita and Mark

demonstrated that peak blood flow responses following

10 min ischemic stimuli were not altered by lower body

negative pressure induced increases in sympathetic outflow

(Sinoway et al. 1986; Takeshita and Mark 1980). In
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addition, Klausen et al. (1982) had previously demon-

strated that, when cardiac output is not a limiting factor

during leg exercise, training is associated with increased

maximal leg blood flows due to enhanced vasodilator

capacity.

The increases in peak vasodilator capacity observed by

Sinoway were also not associated with muscle hypertro-

phy, as the training program did not alter maximal work-

load performed or forearm circumference, and because

plethysmographic flow responses are normalised to dL of

forearm tissue (Sinoway et al. 1986, 1987). Finally, train-

ing–induced increases in skin blood flow were discounted,

as an index of skin blood flow did not change with training

(Sinoway et al. 1987).

The enhanced intrinsic vasodilator capacity of active

muscle beds following training may conceivably result

from the well established increase in capillary density that

occurs with training (Andersen and Henriksson 1977).

However, as explained by Snell et al. (1987), muscle blood

flow may not predominantly depend upon capillary density

(Maxwell et al. 1980). Whilst capillaries regulate transit

time and O2 extraction, they contribute much less resis-

tance to flow than upstream arterioles (Brown 2003;

Kassab et al. 1993; Laughlin and Ripperger 1987). In

addition, electrical stimulation experiments suggest that the

time-course of adaptation in capillary density (rapid

*4 days) (Brown et al. 1976) is dissociated from adapta-

tions in hyperemic flows (14–28 days) (Hudlicka et al.

1977). Adaptations observed in maximal blood flow or

conductance responses with training therefore most likely

reflect changes in the caliber or cross-sectional area of the

resistance arteries, i.e. arterial remodelling, rather than

increases in capillarity (Brown 2003).

In addition to the studies of Sinoway described above,

several other studies have observed increased resistance

artery vasodilator capacity in response to localized small

muscle group exercise training. Green et al. confirmed the

Sinoway findings and added the observation that no sig-

nificant change in either endothelium-dependent or -inde-

pendent NO vasodilator function was apparent in trained

limbs of healthy young subjects (Green et al. 1994, 1996).

Martin observed enhanced maximal calf conductance fol-

lowing swim training in middle-aged men and women

(Martin et al. 1987) and also in older subjects following

walking/running exercise (Martin et al. 1990). Two studies

performed in subjects with heart failure observed enhanced

calf vasodilator capacity following lower limb exercise

training (Demopoulos et al. 1997; Dziekan et al. 1998),

whilst other studies induced increased peak common

femoral artery blood flows in response to voluntary and

electrically stimulated thigh exercise (Thijssen et al. 2005).

Finally, some studies have reported enhanced upper

limb resistance artery vasodilator capacity following

predominantly lower limb exercise training interventions

(Maiorana et al. 2001b; Silber et al. 1991), although the

generalisability of this vascular adaptation remains some-

what controversial (Green et al. 2008a; Thijssen and

Hopman 2008) (‘‘Local versus systemic adaptations to

exercise’’).

Conduit artery remodelling

Several cross-sectional and longitudinal studies suggest

that exercise training is associated with enlargement of

skeletal muscle conduit arteries in humans. In an early

study which utilized M-mode echocardiography, Zeppilli

et al. observed significantly increased large artery (aorta,

carotid, subclavian arteries) size in endurance trained ath-

letes, relative to matched sedentary controls (Zeppilli et al.

1995). These differences persisted after correction for body

surface area differences between the athletes and controls.

Wheelchair athletes demonstrated enhanced dimensions in

the aortic arch and subclavian artery, but lower values in

the abdominal aorta and mesenteric artery. These findings

essentially extended previous reports of enlargement in

conduit arteries of athletes compared to control subjects

(Kool et al. 1991; Wijnen et al. 1991). Later findings by

Huonker et al. suggested that larger elastic arteries (e.g.,

aorta) show less adaptability than smaller conduit arteries

(subclavian, femoral) supplying peripheral limb muscle

groups (Huonker et al. 1996, 2003; Schmidt-Trucksass

et al. 2000). One of these studies observed diminished

femoral artery diameters in paraplegic subjects, as well as

in the affected, but not unaffected, limbs of below-knee

amputees, whereas cyclists possessed larger femoral

arteries than these subjects and healthy controls and tennis

players larger subclavian arteries in their racket arm than

the contralateral limb (Huonker et al. 2003). Together,

these cross-sectional data strongly suggest that chronic

exercise training or detraining are associated with arterial

remodelling. However, few of these studies corrected

findings for between-subjects scaling factors which can

potentially generate misleading interpretations (Naylor

et al. 2008).

One way to avoid the problems associated with

between-subject comparisons is to examine the impact of

an exercise training intervention on skeletal muscle conduit

artery adaptations. In small sample studies of healthy

young men, Miyachi et al. observed significant increases in

the dimensions of the ascending and abdominal aorta fol-

lowing 8 weeks of cycle ergometer training (Miyachi et al.

1998) and of the femoral artery in the trained, but not

untrained limb, after 6 weeks of one-legged cycle exercise

(Miyachi et al. 2001). These training effects were reversed

following detraining (Miyachi et al. 2001). The authors

concluded that regional, rather than systemic, factors are
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responsible for conduit artery remodelling as a result of

training. Change in femoral artery diameter explained 70%

of the variance in change in _VO2max with training, rein-

forcing the tight nexus that exists between conduit artery

remodelling and enhanced central hemodynamic adapta-

tion to training (Klausen et al. 1982). These data also infer

that exercising limb changes in shear rate, rather than

systemic changes in blood pressure or artery transmural

pressure, are responsible for conduit artery adaptation

(Laughlin et al. 2008). Finally, in a study submitted con-

current with that of Miyachi (Miyachi et al. 2001),

enhanced resting femoral artery diameter was observed

following aerobic (walking) exercise training in previously

sedentary men (Dinenno et al. 2001).

In all of the above studies, resting arterial diameter has

been used as an index of arterial remodelling. However,

resting diameter is dependent upon sympathetic nervous

system tone, as well as paracrine and circulating hormonal

modulation. As these competing vasodilator and constrictor

influences impact upon resting tone, baseline artery diam-

eter may not be an optimal index of vascular structure and

remodelling following exercise training, a stimulus which

modulates each of these factors (Naylor et al. 2005).

Therefore, it has been proposed that peak artery diameter

may serve as a more appropriate assessment of conduit

structure (Naylor et al. 2005) than resting measurements.

This suggestion is reinforced by the data of Haskell et al.

(1993), who observed no differences using quantitative

angiography in the cross-sectional area of coronary arteries

in athletes at rest, relative to matched sedentary control

subjects, despite marked increases in maximal dilator

capacity in response to pharmacological stimulation

(GTN). These investigators suggested that, in the basal

state when myocardial O2 demand is not elevated, the

coronary arteries of athletes may exhibit greater vascular

tone (Haskell et al. 1993). In summary, then, a strong

argument can be made that, just as assessment of resistance

vessel vasodilator capacity requires the application of a

peak vasodilator stimulus, studies of conduit artery

remodelling should attempt to assess maximal diameter or

cross-sectional areas. We recently demonstrated, at least in

the brachial artery, that peak conduit and resistance vessel

structure can be simultaneously assessed using ultrasound

Doppler approach and a combination of ischemic exercise

or pharmacological stimulation (Naylor et al. 2005). In

another study, Naylor et al. observed training-induced

enhancement of brachial artery diameter at rest and fol-

lowing a 10-min period of ischemia, thereby providing

evidence for arteriogenic adaptation in response to a peak

dilator stimulus (Takeshita and Mark 1980). The findings

of this study in elite rowers suggest that chronic exercise

induces marked arterial remodelling, and also that

resumption of exercise training after a brief sojourn is also

associated with further structural adaptation in highly

trained individuals (Naylor et al. 2006).

Coronary artery remodelling

Training-induced adaptations in large and small coronary

artery diameter in animals have been expertly reviewed by

Laughlin and McAllister (1992) and Brown (2003). These

reviews indicate that well-conducted exercise studies sug-

gest increased coronary flow capacity, a measure of resis-

tance artery structural remodelling, as well as large

epicardial arterial remodelling after training.

The earliest studies regarding coronary structural adap-

tation in humans involved autopsy analysis. In a series of

necropsy experiments (Rose et al. 1967), blind analysis of

plaque free segments of the right main coronary artery

internal diameter was undertaken in subjects who died

from myocardial infarction and a group of ‘‘controls’’ who

had no evidence of post-mortem infarction. All measure-

ments were undertaken at a constant distension pressure

(80 mmHg). Subjects were classified according to whether

they had been engaged in light, moderate or heavy physical

activity occupations (Rose et al. 1967). The authors

reported a 75% greater coronary artery diameter in control

versus infarction subjects within the active and heavy

physical activity occupational groups. This paper has

been widely quoted in evidence that exercise is associated

with coronary artery enlargement. However, whilst mean

diameter in control subjects was somewhat larger

(0.1 [ P [ 0.05) in those engaged in ‘‘active’’, compared

to ‘‘light’’ physically active occupations (3.90 vs

4.30 mm), there was a surprising lack of effect for those in

‘‘heavy’’ occupations, compared to the light group (3.90 vs.

3.98 mm). The majority of the difference between infarc-

tion and control subjects within each occupational category

was, in fact, evident in the diameter of the infarction sub-

jects, whose diameters were lower in the more active

groups (3.82, 3.22, 2.94 mm for light, active and heavy).

This evidence is therefore open to the interpretation that, in

those with small coronary arteries, higher activity levels

are associated with greater risk of infarction.

Another widely quoted paper on the impact of exercise

on coronary dimensions relates to the autopsy of Clarence

De Mer (Currens and White 1961), who ran 100 marathons

and 1,000 distance races and won the Boston marathon 7

times. His coronary artery dimensions were quoted as

being ‘‘two or three times the normal diameter’’. However,

the cardiac findings must be considered with some caution,

as the post-mortem was performed after the heart was

embalmed and had a trocar passed through it in several

places. Unconfirmed reports also suggest that the exami-

nation may have occurred post-exhumation (Thompson

2004).
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A final historical report relating to the impact of exercise

on coronary artery size relates to autopsy studies performed

on 50 tribal Masai from Tanzania and Kenya (Mann et al.

1972). The coronary intimal thickness of the older Masai

exceeded that of a cohort of US subjects aged 60–69 years

and there was widespread presence of atheroma, similar to

that expected in American men of similar age. However,

symptomatic cardiovascular disease was rare in these

subjects (Mann et al. 1964) and the autopsies revealed that

the coronary lumen displayed marked enlargement, such

that the intimal thickening was not compromising. The

Masai were remarkable fit (Mann et al. 1965) and the

authors speculated that they were protected from the clin-

ical manifestations of atherosclerosis by physical fitness,

which caused their coronary arteries to enlarge.

The advent of trans-thoracic echocardiography encour-

aged an ambitious cross-sectional study of coronary artery

size in 125 male athletes, selected from an initial sample of

625 subjects on the basis of acceptable image quality

(Pelliccia et al. 1990). Using a 3.25 MHz transducer to

assess proximal epicardial diameter in the short axis view

using M-mode echocardiography performed approximately

1 cm from the aortic ostium, these authors reported a

correlation between coronary size and LV mass and wall

thicknesses. A weak correlation was also evident for cor-

onary size and _V O2max. The authors concluded from this

correlational analysis that training-induced myocardial

hypertrophy involves a proportionate increase in coronary

lumen size (Pelliccia et al. 1990). A cross-sectional study

performed a decade later compared distal LAD diameter

and blood flow, assessed using transthoracic echocardiog-

raphy, in healthy control subjects and athletes during

nitroglycerine administration and intravenous adenosine

infusion. The diameter increase to nitroglycerine was

greater in athletes (14.1%) than controls (8.8%) and coro-

nary flow reserve was also greater in the athletes. At least

some of the increased flow reserve was attributed to lower

resting coronary flow in athletes, associated with relative

bradycardia. The increase in peak flow was similar to that

in controls when data were scaled for LV mass. Although

the findings of this study were limited by the use of flow

reserve in the absence of differences in peak flows, the

limited spatial resolution of echocardiography as a tech-

nique for imaging coronary arteries and the systemic

infusion of a dilator agent which may have induced dif-

ferent reflex coronary responses, it nonetheless suggests

that epicardial coronary diameters are increased in athletes.

A number of studies have performed quantitative angi-

ography to assess the impact of exercise training on coro-

nary artery structure. In the study by Haskell et al., no

differences in the cross-sectional area of resting coronary

arteries were observed in athletes, relative to matched

sedentary control subjects, despite marked increases in

maximal dilator capacity in response to nitroglycerine. The

investigators concluded that the arteries of highly trained

middle aged men exhibit greater dilating capacity than

those who are sedentary (Haskell et al. 1993).

The intervention studies of Hambrecht et al. provide

further insight. In the 10 stable CAD patients randomised

to exercise training for a period of 4 weeks (Hambrecht

et al. 2000b), intra-coronary infusion of ACh revealed

higher epicardial diameter responses than controls, indi-

cating that endothelium-dependent vasodilator function

was enhanced (‘‘Coronary vascular function’’). Interest-

ingly, the endothelium-independent epicardial dilator

responses to GTN and adenosine were unaffected by

training, suggesting no change in coronary conduit artery

remodelling in response to this short period of exercise

training. Resting arterial diameters, pre versus post inter-

vention in each group, were not reported. Coronary

velocity and flow reserve, measured using a Doppler flow-

wire, revealed increased coronary flow reserve responses to

adenosine, suggesting enhanced vasodilator capacity of

coronary resistance vessels. This study can therefore be

interpreted as indicating that short-term exercise training in

humans increases resistance vessel vasodilator capacity

without inducing conduit artery remodelling. However, a

follow-up study, involving a further 6 months of home

based exercise training, reported enhanced adenosine-

mediated coronary flow reserve and coronary artery

diameter, apparently evident at 4 weeks (Gielen et al.

2003). In a further experiment involving assessment of left

internal mammary artery adaptations to 4 weeks of exer-

cise training in patients awaiting coronary bypass graft

surgery, the training group exhibited enhanced adenosine-

induced diameter and peak blood flow velocity responses,

suggesting increased coronary conduit and resistance artery

adaptation (Hambrecht et al. 2003). There is therefore

some inconsistency between these studies in terms of the

reported conduit artery responses but, in general, evidence

was provided for enhanced conduit and resistance vessel

vasodilator capacity.

In common with the study of Haskell, no effects of

exercise were reported by Hambrecht et al. in terms of

resting resistance or conduit artery characteristics in the

studies described above. This is further reinforced by a

final experiment in which the effects of percutaneous cor-

onary intervention with stenting (PCI) were compared to

exercise training in a 12 month randomised trial of 101

male subjects. Relative to the PCI group, exercise training

significantly enhanced cardiopulmonary fitness and cost

approximately half as much due to fewer rehospitalisations

or repeat procedures. At 12 months follow-up, the PCI

group exhibited significantly increased lumen diameter

(0.53–2.57 mm) and decreased relative stenosis diameter

(80.7–11.8%), whereas exercise training had no impact on
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arterial stenotic size (0.66–0.69 mm, 77.9–76.5%). Despite

this, there was significantly higher event-free survival in

the exercise training group (88 vs. 70%). The implication

of this study is that, whilst coronary interventions treat only

a short segment of the diseased coronary tree, exercise

training exerts beneficial effects on disease progression in

the entire arterial bed.

Local versus systemic adaptations to exercise

A series of studies which investigated the impact of

exercise training on vascular function in humans

(Maiorana et al. 2000a, b, 2001a, 2002; Walsh et al.

2003a; b; Watts et al. 2004a, b) involved a similar

exercise training intervention, a combination of resistance

and aerobic exercise, performed under close supervision,

in which upper limb exercise was avoided. In some of

these studies upper limb conduit artery function

(Maiorana et al. 2001a; Walsh et al. 2003a, b; Watts et al.

2004a, b) was examined, whilst in others the resistance

vessel adaptations were assayed using intra-brachial

infusions of acetylcholine, sodium nitroprusside and

sometimes L-NMMA. All of these studies demonstrated

improvement in upper limb endothelial function following

lower limb training (Green et al. 2004; Maiorana et al.

2003), despite subjects being expressly requested to avoid

hand-grip exercise. Hambrecht et al. (Linke et al. 2001)

also observed systemic vascular effects of lower limb

exercise. In addition, a review of the literature preceding

these publications (Green et al. 2004) unearthed other

studies indicating improvement in upper limb vascular

function as a result of predominantly lower limb exercise

(Clarkson et al. 1999; DeSouza et al. 2000; Hambrecht

et al. 1998; Kingwell et al. 1997b), although many of

these did not report whether subjects were specifically

requested to avoid incidental hand-gripping. More recent

studies have largely reinforced evidence that lower limb

exercise generates changes in upper limb vascular func-

tion (e.g., Clarkson et al. 1999; DeSouza et al. 2000;

Fuchsjager-Mayrl et al. 2002; Goto et al. 2003; Wisloff

et al. 2007; Higashi et al. 1999a; Linke et al. 2001;

Maiorana et al. 2000a, 2001b; Schmidt et al. 2002; Walsh

et al. 2003a, b) (Kingwell et al. 1997b) (see Table 1).

In terms of generalised effects of training on vascular

structure, a number of studies have investigated the impact

of leg exercise training on forearm vasodilator capacity as

an index of resistance artery remodelling. Silber et al.

(1991) observed a significant increase in forearm peak

reactive hyperemic flows following bicycle ergometer

training during which arm exercise was minimized. They

concluded that vascular responses to conditioning stimuli

can involve vascular beds not specifically involved in the

training stimulus. They furthermore suggested that this

effect may be dependent upon the mass of muscle involved

in the training stimulus, as hand-grip training studies were

not associated with contra-lateral limb adaptations (Green

et al. 1994, 1996; Sinoway et al. 1986, 1987). Whilst some

other studies involving predominantly lower limb exercise

have observed evidence for upper limb resistance artery

remodelling (Maiorana et al. 2000b), others have not

observed such an effect (Demopoulos et al. 1997; Dziekan

et al. 1998; Walsh et al. 2003b). However, some of the

latter studies (Demopoulos et al. 1997; Dziekan et al. 1998)

utilized a reactive hyperemic stimulus involving only

5 min of forearm ischemia, a stimulus which has repeat-

edly been demonstrated as insufficient to induce a true

maximal hyperemic responses (Naylor et al. 2005;

Sinoway et al. 1986; Takeshita and Mark 1980). Studies of

conduit arteries have not typically observed adaptation in

non-exercised regions in healthy subjects (Dinenno et al.

2001; Huonker et al. 2003; Tanaka et al. 2002).

A mechanistic explanation for generalised changes in

arterial structure and function may relate to the impact of

lower limb exercise on blood flow and shear stress pat-

terns in inactive arterial beds. Shear stress provides a

major physiological signal to improvement in endothelial

function (Pohl et al. 1986; Rubanyi et al. 1986) and also

adaptation in arterial size (Langille and O’Donnell 1986;

Tronc et al. 1996; Tuttle et al. 2001). This effect is, at

least in part, transduced by nitric oxide. Recent data

suggests that lower limb exercise such as cycling induces

a pattern of blood flow change in the brachial artery of

the inactive upper limb characterized by increases in

anterograde flow during systole as cardiac output increa-

ses, along with large increases in retrograde flows during

diastole (Green et al. 2002b). The ‘‘amplitude’’ of flow

and shear rate changes increases with exercise intensity

(Thijssen et al. 2009). The shear stress sensitive endo-

thelium is therefore not exposed to a smooth increase in

laminar anterograde flows as lower limb exercise intensity

increases, but rather, large oscillations in shear as blood is

dragged in both directions across the cell membrane. This

flow pattern in the brachial artery of the resting upper

limb during lower limb exercise is associated with NO

release (Green et al. 2002a), which in fact exceeds that

associated with hand grip exercise, even when both types

of exercise cause similar mean or average blood flows

into the limb (Green et al. 2005). It seems, therefore, that

the mode and intensity of exercise performed has

important impacts on the pattern of flow, even when bulk

or mean flows are similar over time (Thijssen et al. 2009).

If endothelial phenotype is indeed sensitive to flow and

shear stress patterns (Laughlin et al. 2008), then different

types of exercise may logically result in different endo-

thelial adaptations and, consequently, different degrees of

change in the health of the vessel wall and its
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predisposition to atherogenic change (Goto et al. 2003;

Green et al. 2008c; Wisloff et al. 2007).

Time-course of vascular adaptation to exercise

There have been few studies of the time-course of arterial

functional or structural adaptation to exercise training in

humans. However, 2–4 week training in rats increased

endothelial NO synthesis in skeletal muscle arterioles and

vasodilator responses to ACh and L-arginine. SNP

responses were unaltered, suggesting enhanced endothelial

function, but unchanged smooth muscle cell sensitivity to

NO (Sun et al. 1994). A study of similar duration dem-

onstrated augmented dilator response, which were partially

abolished by L-NMMA infusion in rats (Koller et al. 1995).

In another study, 4 weeks of training not only enhanced

ACh-induced vasodilation of the rat aorta but also

increased eNOS protein levels in aortic tissue (Delp and

Laughlin 1997; Delp et al. 1993). Eight weeks of running

in rabbits increased ACh reactivity in the aorta and pul-

monary arteries, but not in the carotid artery (Chen and Li

1993), whilst 4 weeks of exercise in rats improved flow-

induced dilation in skeletal muscle arteries, but not in

mesenteric vessels (Sun et al. 1998). Improved endothe-

lium-dependent vasodilation has been observed after as

few as 7 days of endurance training in pigs in peripheral

conduit vessels (McAllister and Laughlin 1997) as well as

coronary conduit arteries (Laughlin et al. 2003a). These

findings suggest that increased production of endothelial

NO occurs rapidly in response to exercise training, par-

ticularly in arteries supplying active regions.

Studies performed over a longer duration have not

consistently shown augmented endothelial function.

Endothelium-dependent vasodilation was unaltered after

16–20 weeks of training in pigs (McAllister et al. 1996)

and 16 weeks in rats (Kingwell et al. 1997a) (Laughlin

1995). There is also evidence that changes in eNOS

expression are also time dependent. Expression of eNOS

protein and enhanced ACh-mediated relaxation (Johnson

et al. 2001) were evident after 1 week of training in pigs,

whereas changes were not present after 16 weeks

(Johnson and Laughlin 2000). These data suggest that

long-term training is not consistently associated with

enhanced vascular function. However, it should be borne

in mind that prolonged exercise training enlarges arterial

diameters in animals (Kramsch et al. 1981; Lash and

Bohlen 1992; Leon and Bloor 1968; Wyatt and Mitchell

1978). As previously proposed (Laughlin 1995), it is

conceivable that vascular remodelling, an endothelium

and NO-dependent phenomenon (Gibbons and Dzau

1994; Kamiya and Togawa 1980; Langille and O’Donnell

1986; Prior et al. 2003; Rudic et al. 1998; Zarins et al.

1987), may partly supplant the need for acutelyT
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responsive vasodilator mechanisms to normalise shear

stress during exercise bouts.

A time-dependent change in conduit and resistance

artery endothelial function is found in the coronary circu-

lation. Early animal studies indicated that training increased

vasodilator responses in dogs (DiCarlo et al. 1989) and

transport capacity in swine (Laughlin et al. 1989). Sessa

et al. were the first to report that eNOS gene expression is

enhanced by exercise training in the coronary arteries. They

observed increased nitrite and NO production, and eNOS

gene expression, following 10 days of training in dogs

(Sessa et al. 1994). Exercise training also enhanced conduit

artery NO-mediated dilation after 7–10 days of treadmill

exercise training in another study of dogs (Wang et al.

1993). No changes were evident in response to SNP.

Laughlin et al. (2003a) observed an improvement in conduit

artery endothelial function in coronary arteries after 7 days

of exercise training in pigs. In contrast, in the same study

(Laughlin et al. 2003a), they did not demonstrate a change

in resistance artery endothelial function after short-term

exercise training. Interestingly, the same group also dem-

onstrated that 16–20 week exercise training in pigs did not

increase coronary conduit artery endothelial function

(Laughlin 1995), while they demonstrated the presence of

increased eNOS mRNA (Woodman et al. 1997) and

increased bradykinin induced vasodilation (Muller et al.

1994) in coronary resistance vessels, suggesting that

enhanced NO and endothelium-dependent dilation was

persisting in these vessels. Finally, however, 16–22 weeks

of training augmented vasodilator responses to adenosine in

the large epicardial arteries of pigs, even after removal of

the endothelium. This evidence suggests that changes in

vasomotor response in coronary arteries with longer-term

training might be due, at least in part, to adaptations within

smooth muscle (Oltman et al. 1992). As recently reviewed

by Laughlin et al., the animal data suggest that coronary

arteries follow a time-dependent adaptation to exercise

training, which is different between conduit and resistance

arteries. Whilst smaller coronary arterioles exhibit

enhanced endothelium dependent vasodilation after longer

term training, larger coronary arteries adapt rapidly to

training and then return towards baseline levels when

exercise training continues (Laughlin et al. 2008).

In summary, animal studies suggest that short-term

exercise training enhances eNOS and NO production and

bioactivity, producing a short term buffer to the increased

shear associated with exercise. After extended training, at

least in the peripheral circulation, the increased production

of NO and possibly other mediators induces structural

changes in the vessels resulting in an increase in lumen

diameter (Brown 2003; Prior et al. 2003). Shear stress may

therefore be ‘‘structurally’’ normalised and endothelial NO

activity returns towards initial levels.

Very little data exists regarding the time-course of

arterial functional and structural adaptation to exercise

training in humans. However, we recently completed a

study in which measures of brachial and popliteal artery

function and structure were collected every 2 weeks across

an 8 week exercise training program in healthy young male

subjects (Tinken et al. 2008). The results indicated that

functional adaptation preceded changes in artery peak

vasodilator capacity (Fig. 2). These findings support the

notion that functional adaptations may be superseded by

structural changes including artery remodelling may nor-

malise shear stress. They confirm previous reports that

endothelial function rapidly adapts to training and

detraining (Haram et al. 2006; Pullin et al. 2004).

Healthy subjects versus subjects with cardiovascular

disease

The detailed effects of exercise training in various popu-

lations with endothelial dysfunction are summarised in the

Table 1 and fully reviewed elsewhere (Green et al. 2004;

Maiorana et al. 2003). In subjects with cardiovascular risk

factors and disease, exercise training of localised muscle

groups (Hambrecht et al. 2000b; Hornig et al. 1996; Katz

et al. 1997), and whole body exercise predominantly

involving the lower limbs (Gielen et al. 2003; Gokce et al.

2002b; Hambrecht et al. 1998, 2000b, 2003; Higashi et al.

1999a; Linke et al. 2001; Maiorana et al. 2000a, 2001a;

Schmidt et al. 2002; Walsh et al. 2003a, b), are associated

with improvement in measures of NO vasodilator function.

There is consistency in the literature pertaining to exercise

training mediated improvement in vascular function in

groups in whom it is initially depressed. In contrast, studies

of healthy subjects, with presumably normal endothelial

function, are less compelling (Bergholm et al. 1999;

Clarkson et al. 1999; Franke et al. 1998; Green et al. 1994;

Kingwell et al. 1997b; Maiorana et al. 2001b; Thijssen

et al. 2007a) and improvement may be limited to older

subjects or those who undertake greater volumes of train-

ing (Green et al. 2004; Maiorana et al. 2001b). Collec-

tively, these findings suggest that subjects with impaired

endothelial function may be more amenable to improve-

ment in NO function as a result of training than healthy

subjects.

Mechanisms responsible for change in vascular

function and structure

Vascular function

Hambrecht et al. provided an insight into the mechanisms

responsible for exercise-mediated improvements in endo-

thelial function (Hambrecht et al. 2003). They studied the
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impact of the impact of 4 weeks of cycle exercise on the

internal mammary artery of CAD subjects awaiting coro-

nary artery bypass surgery. Training increased peak endo-

thelium-dependent flow and flow-mediated dilation

responses in the arteries of trained subjects, but not sed-

entary controls. After the final training session and the

repeat in vivo vascular function assessments, a section of

the internal mammary artery was harvested for in vitro

vascular function assessment, immunohistochemistry, NO

synthase mRNA isolation and protein quantification.

Exercise training was associated with significantly higher

NO synthase mRNA and protein expression and higher

shear-stress related eNOS phosphorylation, which corre-

lated with in vivo ACh-mediated vasodilator capacity.

Exercise training therefore improves endothelial function

in vivo by upregulating NO synthase protein expression

and by increasing phosphorylation of this enzyme, effects

consistent with a shear-stress mechanism for enhanced NO

bioactivity with training.

Another explanation for improved vascular function

with training was indirectly proposed by the results of Goto

et al. (2003), who studied the effects of 12 weeks of

exercise undertaken at low, moderate and high intensity

and observed improvement in endothelial function in the

moderate intensity group only. This occurred in the

absence of changes in blood-borne measures of oxidative

stress, whereas the high intensity group exhibited increased

oxidative stress and no improvement in endothelial func-

tion. These findings suggest that the impact of exercise

training on endothelial function may be dependent upon the

intensity of exercise performed and the consequent balance

between acute oxidative stress, chronic changes in anti-

oxidant defences and their impact on NO bioavailability.

Reactive oxygen species, such as superoxide anions,

degrade NO before it has a vasodilator impact on vascular

smooth muscle. However, repeated stimulation of NO

production as a result of exercise training may reduce its

degradation by free radicals (Fukai et al. 2000), directly

decrease free radical production (Adams et al. 2005), or

increase the expression of genes encoding for antioxidant

enzymes (Ennezat et al. 2001).

Vascular remodelling

The classic study of Langille and O’Donnell established a

link between changes in flow and arterial remodelling

(Langille and O’Donnell 1986). They examined rabbit

carotid arteries after unilateral ligation-mediated chronic

decreases in flow (70% reduction, 2 weeks). The diameter

of the ligated vessel was significantly smaller than the

contralateral control vessel and this change was dependent

upon the endothelium, inferring that flow-mediated chan-

ges in vessel structure are dependent upon the release of a

substance from endothelial cells. This concurred with a

similar study which found that shear stress was autoregu-

lated after initial perturbation by an arteriovenous fistula

(Kamiya and Togawa 1980). Recent studies confirm that

the stimulus to arterial remodelling is shear stress (Tuttle

et al. 2001) and that vessels enlarge to regulate wall shear

in NO-dependent manner (Tronc et al. 1996).

The above data are consistent with the evolving

hypothesis that arterial shear stress is a homeostatically

regulated variable (Vita et al. 2008). In this conceptual

framework, shear stress mediated arterial enlargement,

which is at least partly NO-dependent, acts to mitigate the

increases in transmural pressure and wall stress brought

about by repeated exercise bouts (Guyton and Hartley

1985; Langille et al. 1989; Lloyd et al. 2001; Prior et al.

2003; Tronc et al. 1996; Rodbard and Sarzana 1975; Zamir

1977). The consequent ‘‘structural’’ normalisation of shear

may obviate the need for ongoing and acute functional

adaptations (Green et al. 2004; Maiorana et al. 2003). One

recent study in humans provides some support for this

notion, as functional adaptations were superseded by

apparent changes in artery size (Tinken et al. 2008).

Optimal exercise training regimens

Several studies raise the possibility that different modali-

ties or intensities of exercise may impact upon the mag-

nitude of vascular adaptation observed. Bergholm et al.

reported that 3 months of high intensity running reduced

endothelium-dependent function but not endothelium-

independent function (Bergholm et al. 1999). The degree of

endothelial dysfunction following training was greatest in

subjects with the largest improvements in _V O2max: The

authors postulated that the training-induced decrease in

circulating antioxidant levels may adversely affect endo-

thelial function in the highly trained or overtrained state.

Goto et al. (2003) studied the effects low (25% _VO2max),

moderate (50% _VO2max) and high (75% _VO2max) intensity

training in young men. Endothelium-dependent forearm

vasodilation improved in the moderate intensity group

only. This occurred in the absence of changes in oxidative

stress. In the high intensity group, endothelial function did

not improve, but there was evidence for increased oxidative

stress. Taken together, the findings of Bergholm and Goto

suggest that low intensity exercise may fall below a given

threshold for improvement in endothelial function, whilst

moderate intensity exercise enhances NO bioavailability.

Any improvement in vascular function resulting from high-

intensity exercise may be abrogated by excess oxidative

stress. However, this hypothesis clearly requires further

testing, as it is also evident that higher intensity training

may enhance antioxidant defence against oxidative stress

(Adams et al. 2005; Ennezat et al. 2001; Fukai et al. 2000).
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In terms of the impact of exercise modality on vascular

adaptation, the majority of studies indicating improvement

in vascular function have utilised aerobic, or large muscle

group dynamic exercise modalities, such as walking, run-

ning or cycling (see Table 1). Some studies which have

combined aerobic and weight resisted exercises have also

demonstrated generalised improvements in vascular func-

tion (Maiorana et al. 2000b, 2001a; Walsh et al. 2003a, b;

Watts et al. 2004a). Studies of resistance training have not

observed changes in conduit artery function, but suggest

that arterial remodelling may occur (Rakobowchuk et al.

2005). Importantly, recent studies suggest that different

modes of exercise, even when performed at similar relative

intensities, generate distinct patterns of blood flow and

shear stress through active and inactive vessel beds, raising

the possibility of different shear mediated signals for

adaptation (Thijssen et al. 2009). Differences in blood

pressure and transmural pressure between exercise modes

may also contribute to differences in the adaptations evi-

dent (Laughlin et al. 2008). Recent studies also suggest

differences in endothelial adaptations to exercise of dif-

fering modalities in heart failure and healthy subjects

(Schjerve et al. 2008; Wisloff et al. 2007).

Summary: Exercise training and vascular adaptation

Collectively, the above data from both animal and human

studies of exercise training suggest that functional and

structural adaptations of the vasculature to exercise training

alter with training duration and intensity and the vessel

beds involved. Exercise training is associated with signif-

icant reductions in primary (Hakim et al. 1999; Myers et al.

2002; Sesso et al. 2000) and secondary vascular events

(Jolliffe et al. 2001). The effects of exercise on cardio-

vascular risk factors do not account for the magnitude of

risk reduction (Green et al. 2008c; Mora et al. 2007).

Exercise exerts direct effects on the vasculature by virtue

of the impact of repetitive intermittent increases in shear

stress on the vascular endothelium, which responds by

transducing functional and structural vascular adaptations

which ultimately decrease atherosclerotic risk. Changes in

transmural wall pressure may also represent a signal for

chronic adaptation (Laughlin et al. 2008). Hence, exercise-

induced improvements in vessel wall function and structure

represent a ‘‘vascular conditioning’’ effect, which provides

a plausible mechanistic explanation for the cardioprotec-

tive benefits of exercise, independent of the impact of

exercise on traditional CV risk factors.

The clinical relevance of the vascular adaptations to

exercise training was recently highlighted in a study which

compared the effects of percutaneous coronary intervention

with stenting (PCI) to exercise training alone in 101 male

subjects (Hambrecht et al. 2004). After 12 months follow-

up, the PCI group exhibited significantly increased lumen

diameter (0.53–2.57 mm) and decreased relative stenosis

diameter (80.7–11.8%), whereas exercise training had no

impact on stenotic characteristics (0.66–0.69 mm, 77.9–

76.5%). Despite this, there was significantly higher event-

free survival in the exercise training group (88 vs. 70%).

This study reinforces the fact that coronary intervention

treats a short segment of the diseased coronary tree, whilst

exercise training exerts beneficial effects on endothelial

function and disease progression in the entire arterial bed.

The authors concluded that, in contrast to exercise training,

interventional cardiology represents a palliative care mea-

sure with respect to the underlying atherosclerotic disease

process and that exercise training should be a cornerstone

of primary and secondary prevention efforts.

Summary

Physical inactivity is considered a risk factor for cardio-

vascular disease in humans and exercise training is asso-

ciated with a decrease in risk which is similar in magnitude

(*30%) to that associated with pharmacological strategies.

However, the effects of inactivity and exercise training on

established and novel cardiovascular risk factors are rela-

tively modest and cannot fully account for the impact of

inactivity and exercise on vascular risk. However, both

inactivity and exercise have direct effects on the vascula-

ture and specific mechanistic pathways, for example those

associated with shear stress and pulse pressure, have been

identified which provide a basis for direct vascular condi-

tioning and deconditioning effects of exercise and inac-

tivity, respectively.

Inactivity is associated with rapid changes in arterial

structure which result in inward remodelling. Vasodilator

function in the remodelled resistance and conduit arteries

appears to be within the normal range. It is possible that

studies have not observed changes in vasodilator function

because structural changes occur rapidly and allow for

normalisation of function (Fig. 2). Some evidence exists

for enhanced and persistent increases in vasoconstrictor

activity as a result of inactivity, even after artery remod-

eling has occurred.

Exercise training is typically associated with enhanced

vasodilator activity which is ultimately superseded by

outwards arterial remodelling and consequent re-normali-

sation of dilator function. These effects occur in vascula-

ture of the active muscle beds, but also seem to be

generalised to arteries supplying skeletal muscle that is not

directly involved in the training stimulus. Shear stress on

the artery wall appears to be a variable which is regulated

by changes in vasodilator function in the first instance, and

ultimately adaptive changes in artery size as the exercise
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stimulus persists. There is less evidence, in either conduit

or resistance vessels, for diminished vasoconstrictor tone or

function as an adaptation to training.

By far the majority of research has been undertaken on the

relatively accessible and easily studied peripheral skeletal

muscle conduit and resistance arteries. However, the limited

extant evidence regarding coronary vascular adaptations

suggests that the impact of exercise is consistent between the

skeletal muscle and coronary circulations. Surprisingly,

given the established epidemiological evidence linking

inactivity and cardiovascular risk, there appear to be no

studies which have directly assessed the impact of inactivity

on coronary artery structure or function in humans.

Studies on the time-course of change in artery structure

and function in response to inactivity and exercise are in

their infancy in humans, but the limited available evidence

supports the notion that functional change precedes that in

structure and that both can occur rapidly across a time-

course of days and weeks, rather than months or years. The

relative impacts of different durations or models of inac-

tivity, or different exercise volumes and intensities, has not

been comprehensively studied to date.

In conclusion, inactivity and exercise have direct ‘‘vas-

cular deconditioning and conditioning’’ effects which

likely modify cardiovascular risk. However, the nature and

impact of inactivity and exercise on vascular structure and

function suggest that inactivity and exercise are not simply

the opposite ends of a linear spectrum of physiological

adaptation.
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