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Abstract: In contrast to conventional forming gas annealing (FGA), high-pressure deuterium an-
nealing (HPD) shows a superior passivation of dangling bonds on the Si/SiO2 interface. However,
research detailing the process optimization for HPD has been modest. In this context, this paper
demonstrates the iterative impact of HPD for the better fabrication of semiconductor devices. Long-
channel gate-enclosed FETs are fabricated as a test vehicle. After each cycle of the annealing, device
parameters are extracted and compared depending on the number of the HPD. Based on the results,
an HPD condition that maximizes on-state current (ION) but minimizes off-state current (IOFF) can
be provided.

Keywords: annealing; forming gas annealing; gate-enclosed MOSFET; high pressure deuterium
annealing; post metal annealing

1. Introduction

As semiconductor devices are scaled down to improve the packing density and device
performance, device reliability, associated with the gate dielectric, has been degraded. Since
the equivalent oxide thickness (EOT) is extremely scaled for a better gate controllability,
devices are more vulnerable to damage stemming from hot-carrier injection (HCI), bias-
temperature instability (BTI), Fowler–Nordheim Tunneling (F–N) tunneling, and even total
ionizing dose (TID) [1]. As a consequence, increased gate leakage (IG) as well as threshold
voltage (VTH) mismatching are inevitable.

Various fabrication processes to improve the gate dielectric reliability such as lightly
doped draining [2], fluorine ion implantation [3], forming gas annealing [4], and electro-
thermal annealing [5] have been proposed. In particular, high pressure deuterium annealing
(HPD), which is performed under deuterium ambient diluted by nitrogen, is promising
for modern device fabrication. HPD enables dangling bond passivation at the Si/SiO2
interface [6–8]. The passivated Si-D bonding is difficult to break compared to Si-H, and
hence the device lifetime can be further improved.

In the past, the HPD process has been preferred to improve the reliability of the NAND
flash memory [9]. However, nowadays, HPD has been applied to the mass production of
state-of-the-art logic transistors [10] as well as cell DRAM [11].

In contrast to conventional forming gas annealing (FGA), which is performed under
atmospheric pressure, HPD requires a higher pressure. Hence, additional processing
equipment such as a reaction chamber is required to perform HPD. Moreover, the deuterium
gas mixture is difficult to supply compared to diluted hydrogen. In this context, even
though the impacts of HPD on the reliability of semiconductor devices are noticeable,
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research on the process optimization for HPD, e.g., considering the annealing time, number
of annealing cycles, annealing temperature, diluted deuterium concentration, etc., has been
very modest. For example, the annealing time and temperature for HPD were fixed at
60 min and 400 ◦C, respectively [6–8]. In other words, it is difficult to figure out how long
and at what temperature HPD should be applied to maximize the device reliability.

In this article, the impact of iterative HPD is demonstrated for the first time. After
the MOSFET fabrication on a silicon wafer, HPD is performed for several cycles. Then,
based on the measured DC characteristics, the extracted device parameters are compared
according to the number of HPD cycles. Based on the results, an optimized HPD cycle is
proposed to maximize device reliability.

2. Experimental Details

In order to solely investigate the impact of deuterium annealing, the materials as
well as device structure and fabrication processing for a test vehicle (TV) were extremely
minimized. Gate-enclosed n-MOSFETs were fabricated on a p-type (100) bulk-Si wafer,
as shown in Figure 1. The gate dielectric was thermally oxidized with a 30 nm thickness,
and a 170 nm thickness of n+ poly-Si for the gate electrode was deposited by low-pressure
chemical vapor deposition (LPCVD). After the gate patterning, arsenic was implanted by a
self-aligned process, and rapid thermal annealing (RTA) was performed at 1000 ◦C for 10 s.
Finally, the wafer was fab-out without metallization and post metal annealing such as FGA.
The gate length (L) was varied from 5 µm to 50 µm, and the channel width (W) was fixed
at 280 µm. Then, 79 gate-enclosed n-MOSFETs were annealed several times under diluted
deuterium at 450 ◦C for 60 min. The annealing-to-annealing time difference for each cycle
was less than 12 h.

Materials 2022, 15, x FOR PEER REVIEW 2 of 6 
 

 

though the impacts of HPD on the reliability of semiconductor devices are noticeable, re-

search on the process optimization for HPD, e.g., considering the annealing time, number 

of annealing cycles, annealing temperature, diluted deuterium concentration, etc., has 

been very modest. For example, the annealing time and temperature for HPD were fixed 

at 60 min and 400 °C, respectively [6−8]. In other words, it is difficult to figure out how 

long and at what temperature HPD should be applied to maximize the device reliability. 

In this article, the impact of iterative HPD is demonstrated for the first time. After the 

MOSFET fabrication on a silicon wafer, HPD is performed for several cycles. Then, based 

on the measured DC characteristics, the extracted device parameters are compared ac-

cording to the number of HPD cycles. Based on the results, an optimized HPD cycle is 

proposed to maximize device reliability. 

2. Experimental Details 

In order to solely investigate the impact of deuterium annealing, the materials as well 

as device structure and fabrication processing for a test vehicle (TV) were extremely min-

imized. Gate-enclosed n-MOSFETs were fabricated on a p-type (100) bulk-Si wafer, as 

shown in Figure 1. The gate dielectric was thermally oxidized with a 30 nm thickness, and 

a 170 nm thickness of n+ poly-Si for the gate electrode was deposited by low-pressure 

chemical vapor deposition (LPCVD). After the gate patterning, arsenic was implanted by 

a self-aligned process, and rapid thermal annealing (RTA) was performed at 1000 °C for 

10 s. Finally, the wafer was fab-out without metallization and post metal annealing such 

as FGA. The gate length (L) was varied from 5 µm to 50 µm, and the channel width (W) 

was fixed at 280 µm. Then, 79 gate-enclosed n-MOSFETs were annealed several times un-

der diluted deuterium at 450 °C for 60 min. The annealing-to-annealing time difference 

for each cycle was less than 12 h. 

 

Figure 1. (a) Schematic and (b) optical microscope image of test vehicle on which silicon substrate 

is fabricated. 

After the end of each annealing cycle, the 79 samples were measured using a param-

eter analyzer (B1500A) under ambient air at room temperature. The VTH was extracted 

using a constant current method at ID of W/L × 10−7 A [12], and the subthreshold swing 

(SS) was extracted between the ID at VTH and at two orders below. The detailed annealing 

conditions for the overall experiments are summarized in Table 1. Figure 2 shows the 

measured ID-VG and ID-VD characteristics of a fabricated TV device before HPD. 

  

L

100 µm

W

Si-substrate

Poly-Si 

Gate

Gate dielectric

Drain

Source

(a) (b) 

Gate

Figure 1. (a) Schematic and (b) optical microscope image of test vehicle on which silicon substrate
is fabricated.

After the end of each annealing cycle, the 79 samples were measured using a parameter
analyzer (B1500A) under ambient air at room temperature. The VTH was extracted using
a constant current method at ID of W/L × 10−7 A [12], and the subthreshold swing (SS)
was extracted between the ID at VTH and at two orders below. The detailed annealing
conditions for the overall experiments are summarized in Table 1. Figure 2 shows the
measured ID-VG and ID-VD characteristics of a fabricated TV device before HPD.
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Table 1. Summary of device sizes and annealing conditions.

Parameters Value

Gate length (µm) 5 to 50

Channel width (µm) 280

Equivalent oxide thickness (nm) 30

Gas mixture for annealing (%) N2:D2 = 96:4

Annealing temperature and pressure 450 ◦C, 5 bar

Annealing time for a cycle (min) 60

Number of samples (#) 79
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Figure 2. Measured (a) ID-VG and (b) ID-VD characteristics of fabricated TV device before deu-
terium annealing.

3. Results and Discussion

Figure 3a shows the measured ID-VG characteristic of the fabricated device after
iterative deuterium annealing. The SS improved as the number of deuterium annealing
processes increased.
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Figure 3. Measured (a) ID-VG and (b) ID-VD characteristics of the fabricated device after iterative
deuterium annealing.

VTH shifted negatively because of the reduced SS as deuterium annealing was performed.
Moreover, the drain output performance dramatically improved, as shown in Figure 3b. To
elaborate, Figure 4 shows the extracted device parameters after deuterium annealing.
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Figure 4. Extracted device parameters such as (a) SS, (b) VTH, (c) ION, and (d) IOFF after iterative
HPD. The symbol and error bar indicate the average value and standard variation, respectively. ION

and IOFF were extracted at VG = VTH + 2 V and VG = VTH − 2 V, respectively.

The extracted average SS of the initial TV devices without HPD was 326 mV/dec,
but changed to 288, 113, 141, and 95 mV/dec as the HPD cycle increased, as shown in
Figure 4a. The reduced SS characteristic indicates that is possible to supply sufficient
deuterium for the Si-D passivation of the Si/SiO2 interface, as the HPD cycle increases.
In other words, the reduced interface trap density (Dit) induced by the HPD leads to the
reduction in SS. The VTH shifted linearly with the HPD cycles because of the reduced
SS, as shown in Figure 4b. The fitted VTH sensitivity was −161 mV per HPD cycle. In
this context, excessive deuterium annealing should be considered in advance to avoid
unwanted VTH mismatching. The on-state current (ION) as well as the off-state current
(IOFF) are the most representative parameters determining the device performance. ION
improved further as the number of annealing cycles increased. Iterative HPD annealing
increases carrier mobility by eliminating traps at the Si/SiO2 interface. Hence, by boosting
mobility, ION is improved. Considering that most research papers have focused only on
60 min of annealing time, the impact of iterative HPD in terms of ION improvement is
noticeable [7–9]. However, applying excessive HPD for more than four cycles leads to an
increasing IOFF, as shown in Figure 4d. It can be inferred that the increment in IOFF after
four cycles of HPD annealing is related to deuterium dissociation, etc., but this is difficult to
conclude without analyzing the results of secondary ion mass spectrometry (SIMS). Based
on the measured results, performing HPD is recommended for up to three cycles (180 min),
allowing us to maximize ION without increasing IOFF.

Figure 5 shows the extracted IG of fabricated TV devices to investigate the device
reliability. From the viewpoint of device reliability, HPD annealing prolongs the device
lifespan and improves immunity against various electrical stresses during operation (e.g.,
hot-carrier injection, bias-temperature instability, and Fowler–Nordheim stress) [13–17]. In
the same vein, the |IG| gradually decreased until three cycles of HPD. However, when HPD
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was performed for more than four cycles, the |IG| increased again. This result coincides
with the results shown in Figure 4. Even though one cannot determine whether three cycles
of annealing is universal for short-channel devices as well, one can at least conclude that
there is an optimal number of HPD cycles for the fabrication of long-channel FETs.
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4. Conclusions

High pressure deuterium annealing (HPD) has been favorably utilized for better
device performance and reliability. The impact of iterative HPD was demonstrated in
long-channel MOSFETs fabricated on silicon. The device output performance such as the
on-state current (ION) further improved as the number of HPD cycles increased. However,
an excessive HPD of more than four cycles (longer than 180 min) is expected to cause an
unwanted threshold voltage (VTH) mismatch as well as an increased off-state current (IOFF).
It was revealed that deuterium annealing, when unconditionally performed for a long time,
is not effective; hence, this paper can provide a guideline for better device fabrication.
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